On the Oberbeck-Boussinesq approximation on
unbounded domains

Eduard Feireisl and Maria E. Schonbek

Abstract We study the Oberbeck-Boussinesq approximation describing the mo-
tion of an incompressible, heat-conducting fluid occupying a general unbounded
domain inR3. We provide a rigorous justification of the model by means of scale
analysis of the full Navier-Stokes-Fourier system in the low Mach and Froude num-
ber regime on large domains, the diameter of which is proportional to the speed
of sound. Finally, we show that the total energy of any solution of the resulting
Oberbeck-Boussinesq system tends to zero with growing time.
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1 Introduction

Stratified flows occur frequently in the atmosphere or oceans. The Oberbeck-
Boussinesq approximation is a mathematical model of a stratified fluid flow, where
the fluid is assumed to be incompressible and yet convecting a diffusive quantity
creating positive or negative buoyancy force. The diffusive quantity is identified
with the deviation of temperature from its equilibrium value. The resulting system
of equations reads:
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where the unknowns are the fluid velodiy= U(t,x) and the temperature deviation

® = O(t,x). The symbollI denotes the pressune,> 0 is the viscosity coefficient,

k > 0 the heat conductivity coefficierji,> 0 stands for the fluid density, antl> 0

is the reference temperature. Hetg,> 0 is the specific heat at constant pressure
andoa > 0 denotes the coefficient of thermal expansion of the fluid, both evaluated
at the reference densify and temperatur@. The functionG = G(x) is a given
gravitational potential acting on the fluid. Thus the fluid density is constant in the
Oberbeck-Boussinesq approximation except in the buoyancy force, where it is inter-
related to the temperature deviation throlBgussinesq relatio(d), cf. Zeytounian

[30], [31].

In real world applications, it is customary to take #ae-coordinate to be vertical
parallel to the gravitational forcelG = g[0,0,—1]. This is indeed a reasonable
approximation provided the fluid occupies a bounded dongaia R®, where the
gravitational field can be taken constant. Recently, several authors studied system (1
- 4) on the whole spac@ = R, with 0xG = g[0,0, —1], see [4], Danchin and Paicu
[7]. Such an “extrapolation” of the model is quite natural from the mathematical
viewpoint, however, a bit awkward physically. Indeed, if the self-gravitation of the
fluid is neglected, the origin of the gravitational force must be an object placed
outsidethe fluid domainQ therefore

G(x) = / L m(y) dy, with m> 0, supdgm c R®\ 2, (5)
RS [X—Y|
wherem denotes the mass density of the object acting on the fluid by means of
gravitation. In other words3 is a harmonic function i€, G(x) ~ 1/|x| as|x| — co.
Motivated by the previous observations, we consider the Oberbeck-Boussinesq
system on a domaif2 = R®\ K exterior to a compact sé&. Accordingly, we take
G such that

—~AG=min R, [,G € L?(R%R%), supdm] C K. (6)

In particular, introducing a new variable= ® — 9aG/cp, we can rewrite the sys-
tem (1 - 4) in the more frequently used form

divyU = 0, @)
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ﬁ(atu+divXU®U) + 0P = pAU — pabLG, 8)
ﬁcp<8t9+divx(9U)) —xA6 =0, 9)

where we have s&® = IT — G?pda?/2c,.

We will show in Section 2 that the Oberbeck-Boussinesq approximation (1 - 4),
supplemented with suitable boundary conditions, may be viewed as a singular limit
of the full Navier-Stokes-Fourier system considered on a family of “large domains”,
where the Mach and Froude numbers tend simultaneously to zero. This part of the
paper can be viewed as an application of the abstract method developed in [13]
in order to control the propagation and the final filtering of acoustic waves in the
limit system. Furthermore, we discuss the basic properties of the limit system (1 -
4), in particular, validity of the energy inequality, see Section 3. Finally, in Section
4, we show that the total energy of any weak solution to the Oberbeck-Boussinesq
approximation (7 - 9), supplemented with the homogeneous Dirichlet boundary con-
ditions, tends to zero with growing time. To this end, we first establish the result for
the temperature deviations represented psnd then use the standard estimates for
the incompressible Navier-Stokes in the spirit of Miyakawa and Sohr [24].

1.1 Notation and preliminaries

We use the symbaot -, - > to denote duality product, in particular,

< f,g>=/ fg,
(@]

providedf, g are square integrable on a €&t

The symbolLP(O) denotes the space of measurable functignsith |v|P inte-
grable inO. WXP denotes the Sobolev space of functions having derivatives up to
orderk in LP. Finally, we introduce the homogeneous Sobolev spaces:

WmP — {ve Lioe(2), D*ue LP(Q), || = m}, m=0,p=1

By the symbok we denote a generic constant that may change line by line.

Most of the results of the paper concern problems on an exterior dagnaifk®.
In order to avoid technicalities, we assume that the bound&ys smooth, say of
classC?*", in particular, satisfies theone property

The domainQ is said to satisfy theone propertyif there exists a finite cone
% such that each pointe Q is the vertex of a finite con®; contained inQ and
congruent tos.

To conclude the preliminary part, we record a variant of the Gagliardo-Nirenberg
inequalities for exterior domains proved by Crispo and Maremonti [6].
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Proposition 1.1 Let 2 C RN be an exterior domain with cone property. Letew
WMPQ)NLA(Q), withl < p<oe,1<q< .
Then
k. —
D WHL'(Q) < CHDmW”EP(Q)HW”iq(Z) (10)

for any integer ke [0,m— 1], where

1 k 1 m 1
r—N+a(p—N>+(1—a)q,

with ae [, 1], either if p= 1or p>1and m-k— % ¢ .#"U{0}, while ac [X,1)
if p>1land m-k— €./ U{0}.

2 The Oberbeck-Boussinesq approximation as a singular limit of
the full Navier-Stokes-Fourier system

Motivated by the mathematical theory developed in [14], we introduce a scaled
Navier-Stokes-Fourier systeimthe form:

MASS CONSERVATION

ap +divg(pu) =0, (12)
MOMENTUM BALANCE

. 1 . 1
a(pu) +divy(pu®u) + ?DXp(p, ¥) = divyS(9, Oxu) + ngXG7 (12)

ENTROPY BALANCE

. . &, Oy
A(ps(p, 9)) + divx(ps(p, B)) + div <w> —5,  (13)
TOTAL ENERGY CONSERVATION
d /(1 , 1 1 3
&/Q <2P|U| +82pe(p719)—8p6> dx=0, (14)

whereSis the viscous stress given biewton’s rheological law
2 . .
S, Oxu) = u(9) (Dxu + Obu — 3dleu]I) +n(¥)divgul,  (15)

g is the heat flux determined typurier’s law



On the Oberbeck-Boussinesq approximation on unbounded domains 5

q(ﬁ7DX0) = _K(ﬁ)DXﬁv (16)

whereas thentropy production rater satisfies

1 - Oy
625<8ZSZDXU—Q6X ) (17)

The unknowns in (11 - 14) are the fluid mass dengity p(t, x), the velocity field
u = u(t,x), and the absolute temperatufe= 9 (t,x). The pressur@, the specific
internal energye, and the specific entropyare given numerical functions gf and
¥ interrelated througkeibbs’ equation

¥Ds= De+ pD (;) . (18)

The system (11 - 14) is supplemented with tdumservativeboundary conditions,
specifically,

u-njyo =0, Bulan+ [Snjianlse =0, 9-Nlso = —ﬁ\u|2|a.oa B >0, (19)

wheren denotes the outer normal vectord®. The first two conditions in (19) are
usually termedNavier’s slip boundary conditiomwith a friction coefficientf > 0,

see Malek and Rajagopal [22]. In accordance with (19), the total energy of the fluid
is a conserved quantity as stated in (14).

The small parameteg appearing in (12), (14), and (17) results from the scal-
ing analysis of the Navier-Stokes-Fourier system, wherétheh numbeiand the
Froude numbeare proportional t&, see [14, Chapters 4,5], Klein et al. [16], Zey-
tounian [32]. Physically this means that the characteristic speed of the fluid is largely
dominated by the speed of sound and the fluid is stratified. Note that a similar system
of equations may be obtained bgnstitutivescaling, where the rheological proper-
ties of the fluid are changing rather than the characteristic geometrical parameters
of the flow, see Novoty RlZitka, Thaeter [25], Rajagopal iRitka, and Srinivasa
[26].

2.1 Weak solutions

In the framework ofveak solutionsthe equation of continuity (11) is replaced by a
family of integral identities

| [z )0(.) = pop(0..)] ox 20)
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T
:/ / (p8t<p+pu~Dx<p> dx dt for anyt € [0, T],
0 Jo

for any test functionp € C1([0, T] x Q). In particular, the mapping — p(t,-) is
weakly continuous, ang satisfies the initial condition

p(0,-) = po.

Similarly, the momentum equation (12), together with Navier’s slip boundary con-
ditions (19), read

| Jpu(z.)- 0(x.) = pouo- 9(0,-)] ox 1)
! P P
:/ / (pu-&t(p+pu®u:Dx(p+—2d|vx(p—S:Dx(p+fDxG-(p) dx dt
0 Ja € €

+/OT/QQBU~¢dSAdt7

foranyt € [0,T], and anyp € C}([0,T] x 2;R®), ¢-n|50 = 0. Thus the momentum
T+— (pu)(r,-) is weakly continuous and

(pu)(0,-) = poUo

Finally, we may write the entropy balance (13) in the form

/Q [pS(p,ﬂ)(f,-)q)(f,-) — pos(po, Bo) @ (0, -)} dX=<o0,lpq¢>+ (22)

T q 2 [T B2
/ / (psat(erpsu-Dx(er—-DX(p) dxdt+¢ / / —|ul“¢p dS dt,
Jo Jao % Jo Jan ©

for any test functionp € C1([0,T] x Q), where the entropy production rateis
interpreted as a non-negative measurgom| x Q satisfying

1 Ox0
cr>0<.szS:Dxu—qﬂX ) (23)
The total energy balance (14) reads
1., 1 1
/Q <2P|U| T 2P 8PG) (7,) dx (24)

1,01 1
—/Q <2P0|Uo| +82P09(P0,190)—£P0G> dx.

The interested reader may consult [14, Chapter 2] for a formal interpretation
of the weak solutions to the Navier-Stokes-Fourier system. We only note that the
entropy production rate associated to a weak solution that is sufficiently smooth
necessarily satisfies
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G—1<EZSZDXUQ.EX0),

v

in agreement with the classical theory.

Unlike (20), (21), relations (22), (24) are satisfied only for a.& [0, T]. In
particular, the total entropgs(p, ) may not be a weakly continuous function of
time due to hypothetical jumps . Introducing atime lifting X of the measures
in the form

<X 0>=<o0,l[p] >,

where .
o]t X) :/ ¢(zx) dzfor anyg € LY(0, T;C(22)),
0

we check easily thaE can be identified with a mapping € L%,(0,T;.#Z " (Q)),
where
<Z(1),¢p>= lim <o,ysp >,
80+

with
0fort €[0,71),

ys(t) =14 3(t—1), forte(r,7+3),

1fort >7+46.

In particular, the measurE is well-defined forany t € [0,T], and the mapping
T+— X is non-increasing in the sense of measures. Here the subsdtjptjmeans
“weakly measurable”.

The entropy balance (22) can be therefore rewritten as

| [pste.9)(x.)9(z.) — posipo. 20)(0. )] o 25)
+ < Z(1),0(7,") > — < Z(0),9(0,-) >
:/OT <Z, o> dt+/or/ﬂ (PS(Paﬁ)at(P+PS(P719)U'DX(P+%'DX(P> dx dt
+£2/0T/39 %\uﬁp ds dt,
for any @ € C1([0,T] x ), where the mapping

T+ ps(p,¥)(r,-) + £() is continuous with values i (Q)

provided the space of measures is endowed with theveak— (x) topology.
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2.2 Existence theory for the Navier-Stokes-Fourier system

The framework of weak solutions introduced in Section 2.1 is broad enough to de-
velop an existence theory without any essential restrictions imposed on the initial
data as well as the length of the time inter/@|T). We start with a list of techni-
cal hypotheses imposed on the constitutive equations and the transport coefficients.
The reader may consult [14, Chapter 3] for the physical background and further
discussion.

The pressur@ will be given by a general formula

_ 45/2 p a4
p(p,d) =10 P<193/2>+319 ,a>0, (26)
where
P e Cl[0,»), P(0)=0, P/(Z) > 0forallZ >0, (27)

in particular, the compressibility, p(p, ¢) is always positive. The former compo-
nentin (26) represents the standard molecular pressure of a general monoatomic gas
while the latter is a contribution due to thermal radiation.

In accordance with Gibbs' relation (18), the specific internal energy can be taken

in the form
3 83/2 p 54
where, in addition to (27), we assume that
3P(2)-P(2)Z
0<=—————<cforalzZ>0. (29)

z

The awkwardly looking condition (29) has a clear physical meaning, namely the
specific heat at constant volumése(p, ) - is positive and bounded. In particular,
(29) implies that the functio# — P(Z)/Z°/3 is decreasing, and we assume

. Pz
2|'an % =P, >0. (30)

We remark that the molecular pressure?P(p /9%?) coincides with the stan-
dard perfect gas lawp as long a$(Z) ~ RZ, see Eliezer, Ghatak, and Hora [11]
and [14, Chapter 1].

In addition to the previous hypotheses, we suppose that the transport coefficients
u=u(d),n=n(¥), andx = k() are continuously differentiable functions of
® € [0,00) such that

0<pu(l+0) <u(v), |u'(v)| < uforall v >0, (31)

0<n(¥) <7M(1+ ) forall ¥ >0, (32)

and
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0< k(1+ 9% < k(¥) <x(1+ 93 forall ¥ > 0. (33)
We report the following result (see [14, Chapter 3, Theorem 3.1]):

Theorem 2.1 Assume thaf2 ¢ R® is a bounded domain of clas€t. Let
€ > 0B > 0be given, let the initial data satisfy

Po € L?(R),p0 >0, B € L*(R),% >0, ug € L”(2;R®),

and let Ge W3*(Q). Suppose that the thermodynamic functions p, e, and s
satisfy Gibbs’ equation (18), together with the structural hypotheses (26 - 30),
and the transport coefficients comply with (31 - 33).

Then the Navier-Stokes-Fourier system possesses a weak s@lutiom
on the setf0, T) x Q in the sense specified in Section 2.1.

Remark 2.1 As a matter of fact, the existence theorem [14, Chapter 3, Theorem
3.1] is proved forf = 0, however, the casf > 0 requires only straightforward
modifications.

Remark 2.2 The weak solution, the existence of which is claimed in Theorem
2.1, satisfiep > 0, ¥ > 0a.a.in(0,T) x . In addition, the weak solutions can be
constructed to satisfy the equation of continuity (11) in the sense of renormalized
solutions introduced by DiPerna and Lions [9]. Other regularity properties of the
weak solutions are discussed in [14, Chapter 3, Section 3.8].

Remark 2.3 The hypotheses imposed on the initial data in Theorem 2.1 are not
optimal. As a matter of fact, it is enough to assume that the initial energy and en-
tropy of the system is finite. see [14, Chapter 3]. Similarly, the hypotheses imposed
on the structural properties of thermodynamic functions as well as the transport
coefficients may be considerably relaxed, see [14, Chapter 3].

2.3 Uniform bounds and stability with respect to the singular
parameter

Our goal is to identify the Oberbeck-Boussinesq approximation (1 - 4) with the
asymptotic limit fore — O of the scaled Navier-Stokes-Fourier system (11 - 14).
Moreover, we want the limit system to be defined on an exterior (unbounded) do-
mainQ c R2. To this end, we consider the scaled Navier-Stokes-Fourier system on
a family of (bounded) domains

1
Qg:Qm{xeR|\x\<g},r>1, (34)
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supplemented, for simplicity, with the complete slip boundary condition (Navier's
slip with § = 0),

u-njpe, =0, [Sn] xnjyo, =0, q-n|jo, =0, (35)

cf. (19).

Thus, at least formally2, — Q ase — 0. As we shall see, the major problem
in the limit passage is filtering the acoustic waves represented by the gradient com-
ponent of the velocity field. Since the speed of sound in the fluid is proportional to
1/¢, hypothesis (34) ensures that the outer bounda.obecomes irrelevant, at
least for what concerns the behavior of acoustic waves on compact subsets of the
physical space, and, accordingly, we may use the dispersive phenomena to eliminate
the presence of acoustic waves in the asymptotic limit.

2.3.1 Uniform bounds based on energy dissipation

Let {pe, D¢, U, } be a weak solution of the scaled Navier-Stokes-Fourier system on
the set(0,T) x Q. in the sense of Section 2.1. We start by derivimiformbounds
independent ot — 0. The key quantity is theallistic free energyintroduced by
Ericksen [12, Chapter 1.3]:

H(pa 19) = pE(p,ﬁ) _5[)3([)719),
whered is a positive constant. It is easy to check that

op? p dp 0¥ B 20

in particular, hypotheses (27), (29) imply that

p — H(p, ) is strictly convex
9 — H(p, ) is strictly decreasing fot < &

and strictly increasing fot > ¢.

Conditions (27), (29) guarantéeermodynamic stabilitgf the system, see Bechtel,
Rooney, and Forest [3]. As we will see, they are crucial to control the norm of
solutions to the scaled system.
In the so-calledstaticdensity and temperature distribution for the scaled Navier-
Stokes-Fourier system, the temperature equals a positive codsteimte the den-
sity p. satisfies
Oxp(Pe, ) = €pe UG-

It is easy to check that



On the Oberbeck-Boussinesq approximation on unbounded domains 11

aH(ﬁ87§)

=eG+constin® 36
p eG+ inQ, (36)

providedpe is strictly positive inf;.
Taking advantage of (36), we may combine total energy balance (24) with the
entropy equation (22) to obtain

[, (Goetue+ 5 (ipeo) - 25 i) (5, ) ) 5. o
@)

) — 1 1
‘*‘?06[[07 7] % ]:/Qs <2P0,6|U0,6|2+£2(H(P0,87790,e)

PP o i)~ (5. ) ) i

for a.a.t € (0,T) provided we fix the static density so that

pe(T,-) dx:/ Po.e dx:/ Pe dX,
Qe Q¢ Q¢

meaning the total mass of the fluid contained2ncoincides with the total mass of
the static distributiorp;.

As a matter of fact, it is more convenient to consider a static solytiatefined
on the whole spaci®, specifically,

Oxp(Pe, 8) = €pe0xG in R,

satisfying
lim pe(x) =p.
x| —o0
Consequently, we have
0 f*—LGJrszh G, Z'( )—18 (p,?d) (38)
pg p*y/(ﬁ) £y P *p Pppa )
with
[Ihel| ey < € |OxPe(X)] < £¢|0xG(x)| for x € R®. (39)

In order to exploit (37), the initial data must be chosen in such a way that the
right-hand side of (37) remains bounded uniformly §or> 0. To this end, we take

pO,E = ﬁE +ep(()f|27 190,8 :§+860(27 (40)

where @ @
1Po.e lL2nie () < € [0 lznie(o.) < (41)

1 1 .
/Qg Y dx = /Q oY dx=0; (42)
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and
[Uoell2nie(0pr3) < C, (43)

where all constants are independent of
By virtue of (27), (29), the ballistic free energy possesses remarkable coercivity
properties, specifically,

_ 3H(3,D)

H(p,?) p

(p—p)—H(p,D) (44)

> c(K)(|p — B +[ ~B[?) forall (p, 9) € K,

and o
IH(p, D)
dp

> c(K) (1+ple(p, 9)|+pls(p, )| ) for all (p, 3) € (0,20)7\ K,

H(p, %) - (p—p)—H(p, V) (45)

for any compacK c (0,)? containing(p, ), see [14, Chapter 5, Lemma 5.1].
Consequently, introducing the decomposition

h = hesst Nres, Ness= X (Pe, Fe )N, Nres= (1~ x(pe, Ve))h, (46)
for any measurable functidm wherey € CZ((0,%)?) such that
0< x <1, x =1ontherectangl@s/2,20] x [p/2,2p],

we deduce from (37) the following list of uniform bounds:

ess sup [ pelue[?(t,) dx<c, (47)
te(0,T) /L2

and, by virtue of (44),

ess sup [pg—pg] (t,") <c, (48)
te(0T) € ess L2(Q)

ess sup [68 — ﬂ (t,-) <c, (49)
te(0,T) € ess L2(Q¢)

where we have used (38), (39) and the fact that the static dgmsigmains uni-
formly close to the constaft as soon as is small enough.
Furthermore, by virtue of (45) and the hypotheses (26 - 30), it follows that

ess sup [ [pelRle(t, ) dx < e%c, (50)

te[0,T] Q¢
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ess sup [ [B:]hdt, ) dx < g’c, (51)
te[0,T] /L2
and

€SS sup (|[P£e(P87198)]res|+|[p(Ps,19£)}res|+|[p£S(Pe,19£)]res|) dx<c. (52)
te[0,T] /€2

Finally, by the same token, the measure of the “residual” set is also small, specifi-
cally,

ess sup | legt,-) dx < e’c, (53)
te[0,T] /€2

where all the constant<™ are independent of. It is remarkable that the measure
of the “residual” set remains small although the measur@ofends to infinity as
e —0.
Going back to (37) we get
16e ]|+ o1 a,) < E°C: (54)
whence, in view of (23) and hypotheses (31 - 33),

2

T
/ OxUe + Obue — gdivxug]l at <c, (55)
0 3 LZ(QE;R3X3)
and
T 97| T _ log(d) —log(®) 2
/ Oy dt+/ O, —9\e) —O9T) dt<c (56)
0 € L2(Q¢;R3) JO € L2(Q¢:R®)

Moreover, since the measure of the residual set is small (see (53)), we can apply
Poincaé’s inequality to conclude that
=12

T 198 Y T
ar
~/0 WL2(Q;) * 0

€

A similar argument, based on a generalized version of Korn’s inequality due to
Reshetnyak [28] (see also [14, Chapter 10, Theorem 10.16]), can be applied to (47),
(48) to conclude that

dt <c. (57)

log(d,) —log(d) ’ ?
€

Wl‘z(Qs)

;
/O U2z ) o < . (58)

Here we have also used the fact thalessis bounded below away from zero on a
set, the complement of which is of small measure (see (53)).
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2.4 Convergence to the limit system - part |

Our goal now is to exploit the uniform bounds obtained in the previous part to pass
to the limit in the sequencép.,u., ¥ }e~0 for € — 0. To begin, we observe that
(48), (50) yield

ess sup|lps(t,-) — ﬁg||(L2@L5/3>(Q£) — 0 ase — 0. (59)
te(0,T)

In particular, by virtue of (38),

ess sup|pe(t,-) —ﬁ||L5/3(K) — 0 ase — 0 for any compacK C Q. (60)
te(0,T)

Thus the fluid density becomes constant provided the Mach number tends to zero.
Similarly, relations (49), (51), and (53) yield

ess sup||ve(t,-) — ¥l 2o, — 0 ase — 0. (61)
te(0,T)

Next, in order to control the temperature deviations from the equilibrium state
we use (57), (58) to deduce that

O, = ﬁfe_ v e weakly inL?(0, T;W12(Q)). (62)

Moreover, by the same token,
ue — U weakly inL?(0, T;W2(Q; R?)), (63)

passing to subsequences if necessary. Here, we have assumégd thatvere ex-
tended to the whole domai@.

A short inspection of the scaled Navier-Stokes-Fourier system (11 - 13) reveals
the most difficult step, namely we need to show strong (pointwise) convergence of
the velocity in order to control the convective term. More specifically, we need to
show that

ue — U (strongly) inL2((0,T) x K; R®) for any compack c Q.  (64)
As a matter of fact, it is enough to prove that
peUe — pU in L2(0, T;W~12(K)). (65)

Indeed, for anyp € C7 (), we have

T T T
p[ [ olloc=[ [ oo-polulati+ [ | ppee-ueoxet,
0 JQ 0 JQ 0 JQ
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where, by virtue of the previous estimates and the embedding relatiénR) —
L8(Q),

T ,
[ | o~ poluel? dxct —0.
JO Q

while, as a consequence of (63), (65),

T T
/ /(ppgu‘yu,S dxdt—>ﬁ/ /(p|U|2dxdt.
o Ja 0o Ja

The final observation is that for (65) to hold it is enough to show that
{t D—>/ (pele)(t,-) - @ dx} is precompact ih.2(0, T) (66)
Q

for any fixedp € CZ(Q) since, as a consequence of (47), (48), and (50),

ess sup||peUe |l 5/4x.re) < ¢(K) for any compacK C Q
te(0,T) '

and the embedding®*4(K) — W~12(K) is compact. Accordingly, we fixp €
CZ () for the remaining part of this section and focus on proving (66).

2.5 Acoustic equation

As already pointed out, our main goal is to show (66) for any figedCZ (). To
this end, we rewrite the Navier-Stokes-Fourier system in the form

gqRe + odivyV, = efl, (67)

€V + OxRe = £f?, (68)

where we have set

R. :A(psg—p) +B<pgS(ps,6sL—pS(p,é)> 3G, Ve = pell.
fg':B[dlvx <pgs(p7ﬁ)_s(p87ﬁ£) ué‘) —‘rdiVX(K(ﬁS) Dxﬁ&‘) +1o-£:|7
€ Ve € €

f2 = }DX {A<P'€;P> 1B <Pe$(pe,z9£) —ps(p,ﬁ))

4

B (p(ps, V) — p(p,ﬁ))]

€
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—div(peUe © Ug) + diveSe + pee_p 4G,

and where the constams B, w are chosen so that

Bﬁaﬂs(ﬁ75) = 81.9 p(§75)a A+ Bap (pS) (pv ) = pP (575)7

and —
P,V
1P @-B)F g
pss(p, V)
System (67), (68) is usually termegdoustic equatiopor, Lighthill's acoustic anal-
ogy, see Lighthill [19], [20].

The inevitable presence of the measuatein the forcing termfl may cause
discontinuities (in time) in solutions of the system (67), (68); therefore it seems
more convenient to use the time-liftik of the measure, introduced in Section
2.1. With the new variables

-p ) —ps(p, ¥ B
Sg:A<p££ P)+B(P85(P8a ) —PS(p, ))—pG+8287V£:p8u83 (69)

o= pp(ﬁvg> +

€

we may write the acoustic equation in the form

£aS: + odivyV, = eFl, (70)
Ve + S = eF?, (71)
with
Fgl —-B l:diVX (pg S(p7 19) — S(p&‘a 198) u£> + diVX (K(1~9€) Dxﬁf >:| , (72)
& 198 &
and _ =
nggmx |:A<P££_P)_i_B(PsS(PSaﬁs)g—PS(Paﬂ)) (73)

—5 B
pes pDXG+?DX2£,

B (p(pe, V) —p(p, V)
€

ﬂ — divg(peUe ® Ug) + divkSe +
supplemented with the homogeneous Neumann boundary condition
Ve njyg, =0. (74)

Of course, system (69 - 74) should be understood in the weak sense as specified in
the following section.
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2.5.1 Boundedness of the data in the acoustic equation

As suggested by the previous discussion, the system (70), (71) will describe the be-
havior of the velocity field or rather the momentig, while the remaining quan-
tities appearindg=?, F2 are given. Using the uniform bounds established in Section
2.3, we estimate the forcing terms as well as the initial data in the acoustic equation.
To begin write, using the decomposition introduced by (46)

b

PS_PPS_ISEJFISS_P{PE_IS«S] +{Pe_ﬁe} +5£_ﬁ
€ € € € ess € res €

where, in accordance with (48), (50), and (51), we have

ess sup {pg—pg] J <c, ess sup {pg_pg <ec, (75)
te(0,T) € esslL2(Q;) te(0,T) € Jres L1(Q¢)
and, moreover, using (38), (39) it follows that
‘pgp < cforanyq> 3, Dx<p8p) <c, (76)
€ ML r) ¢ Jllrere)

The next step is to write

PeS(Pe, V) — PS(P, D) _ PeS(Pe, Oe) — PeS(Pe, V) n Pes(Pe, ) —pS(p, B)
€ € €

_ {PsS(Pe» Ue) — 1355([38719)} I [PeS(Pea e) — 1353([35719)}
€ ess € res
 Pes(pe. ) —pS(p. )
€
where, in accordance with the uniform bounds established in Section 2.3,

|:pss(p£7ﬁ£)_ﬁgs(58aﬁ):| J

)

<c

— b

L2(Q¢)

ess sup

te(0,T) €

ess sup
te(0,T)

<ec,

{PeS(Psa Be) — ﬁeS(ﬁevﬁ‘)}
€ res

L1(Qe)

and L
Pes(pe, ¥) —ps(p, D)
€

Furthermore, by virtue of (54),

<cforallg> 3,
(LNL9)(RS)

0, (ﬁsS(ﬁs %) —ps(p. V) )

<c.

€ L2(R3:R3)
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Ze(t,)

€ H//ﬁ(_Q)

ess sup
te(0,T)

< ec,

therefore we may write
S(t) =St + S+,
with

ess supHS£||/,,+ a,) S €c, ess sup||Klizq,) <€ Kb <.
te(0,T) te(0,T)

where the symboD? denotes the homogeneous Sobolev space - a completion of
compactly supported smooth functions with respect toLthaorm of their gradi-
ents.
Next, writing
Ve = [PeUelesst [Pele]res:

we have, in agreement with (47), (50), (53),

ess sup||[peUelesd| 2(o,;r3) < C,€SS SUP||[peUelres||L1(q,re) < €C. (77)
te(0,T) te(0,T)

Other terms appearing iR}, F2 can be treated in a similar manner. We focus
only on the most complicated expression:

A<ps£ p) +B (pSS(ps,ﬁs) —pS(p,ﬁ)) B (p(psﬁe) - p(p,0)>

€2 €2

_ A(Pse—zﬁs) B (PgS(Pg,ﬁg); ﬁﬁ(ﬁs,é)) - (p(p£7198)8; p(ﬁs,ﬂ)>

LA (psg p> B (ﬁeS(ﬁe,ﬁ)gz—PS(P,ﬁ)> B ( p(ﬁeﬁ)g; D(P,0)>
Seeing that
A+Bd, (ps)(p, D) — dpp(p, V) =0,
the quantity
(pes P£> <P£S(p£;19£)g; 1383(138»19)> _ (p(pe,ﬂe)g—z p(ﬁe,ﬁ))

contains only quadratic terms proportionalgo— pe, ¥ — © and as such may be
estimated in terms of (48 - 53). Similarly,

HA< Pe) (pss(pmg)g—z ﬁgs@g,a))
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B (p(pe,ﬂs) - p(r%ﬁ)) ‘

g2

< .
LenLa) ) = cforallq>3/2

Summing up the previous estimates we may write down a weak formulation of
the acoustic equation in the form:

T T
e/ <S(t, ), ke > dt+w/ / V- Dy dx dt (78)
0 0 JQ
T
:—8<SO.£a(P(07')>+8// (Hi-DxfpﬂLH?-Dxfp)dxdt
0 JQ¢
foranyp € CL([0,T) x Q¢),

//ve 8t(pdxdt+/ < S(t, ), divgp > dt (79)

T
:—e/ Voe- (0 dx+£/0 <G§(t,-),Dx(p> dt

.
+8/ /Gg:Dx(pdxdtJrs/ /Gg'(pdxdt
0 Jo 0 Jo

foranyg € C1([0,T) x Q¢;R®), ¢ -n|yo = 0, where
=S+g+87%

ess sup||Si(t, )|l suq,) < €€, ess SUp|ISH(t, )iz, + 1S llpregre) <

te(0,T) te(0,T)
(80)
= e+ S +S7
1S5l (@) = €C, 1S5 llL2 Q) = (81)
and, moreover, o
S € Cweak—(*)([ovﬂ;/[,—(ge))'
Furthermore,
Ve=V5iyve
ess supHV [L1(0pr3) < €C, €SS sup||V?2 L2(0pr3) <G, (82)
te(0,T) te(0,T)
Vol (LenL2)pr3) < G, (83)
and
Ve € Cuear([0, T]; L1(£2¢)).
Finally,

[ (1981200, 1H21R2 g 50)) e < (84)
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/ (IGH2 1 (g 9, + G s ) e <, (85)
and
ess Sup‘|G§(ta')|||_5/3(R3;R3) =C (86)
te(0,T)

where all constants are independent of

2.5.2 Reduction to smooth solutions

With the notation introduced in the previous section, the desired relation (66) reads:
t — / Ve(t,)-@ dx is precompact i.?(0,T) for any ¢ € CT(2;R%). (87)

In order to see (87), it is more convenient to deal with the classical (smooth) so-
lutions of acoustic equation (78), (79). Sinpec CZ(Q;R®) is fixed, the idea is to
replace the data in (78), (79) by smooth ones in such a way that the resulting smooth
solution of (78), (79) is close t¥, at least on the support @f. To this end, fixing

€ > 0 for a moment, we consider

3'),8‘5 €C(Q), 1=1,23, ||3%,e,5\|Ll(_Q) + ||%,s,5||L2(Q) + ||§,£.5”D1v2(R3 <( )
88
such that

Se.s — e weakly-(%) in.z* (Qy), sg'),g’ 5= SeinLA(Qe), j=2,3, for 8 0.
Similarly, take
Vies €CO(RR), i =12 [IVi, slliaare) + IVoeslizam < ¢

Vies — Voe in LY Qe R?), VG, 5 — Voe in L2(Qe;R?) asé — 0, (89)

and, finally, _
His €CT((0,T) x 2R, i =12,

”Hg5HL2 (OT;LY(@:R%) T HH§6”L2 oTL2@Re) =G
His — HEINL2O,T;LY Qe R)), H2 5 — HZin L2(0, T;L2(2:; R?) ass — 0

(90)
with ‘
G5 €CI((0,T) x Qe;R®), i=1.2,
”Géﬁ HLZ(O,TiLl(Q;RSX3)) + HGE,,S ||L2(0,T;|_2(Q;R3x3>) <gc,
Gl 5 Gl Weakly-(*) in LZ(O,T,%J’_ (Qe, R3><3)), (91)

G2 5 — G2in L%(0,T;L%(Q:;R¥®)) ass — 0, (92)
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3 00 . 3
Gg,ﬁ €Ce (QEvRs)a HGE,’8|||_5/3(,Q;R3) <gc

G35 — G2inL%3((0,T) x Q¢;R%) asé — 0. (93)

Assume tha§ s, V. s is the (unique) classical solution of the acoustic equation
(78), (79), with the initial data and the forcing terms replaced by theimpproxi-
mations specified in (88 - 93). Keeping (87) in mind we will show that

ess sup
te(0,T)

< e wheneveid is small enough (94)

Ves(t,-) = Ve(t,-) ) - @ dx
. ( )

for any fixede > 0. Consequently, it follows from (94) that it is enough to show (87)
for V¢ s(). In other words, we may assume that all the quantities appearing in the
acoustic equation are smooth and all the data is compactly suppouikd in
To see (94), we fie and write the functiorp in terms of itsHelmholtz decom-
position
¢ =Hp]+H"[¢],

where
H* @] = Oxy, Ay =divkp in Q¢, Oy -n[yq, =0.

TakingH[¢] as a test function in (79) we easily deduce that

sup
te(0,T)

<e (95)

/Qs <Ve,6(t,-) —Vs(t7.)) -H[g] dx

whenevers = §(¢) is small enough.

Now, let{yn}n_, be an orthonormal system of eigenfunctions of the Laplace op-
erator inQ2; endowed with the homogeneous Neumann boundary conditions, specif-
ically,

—AYn = AnWnin Q¢, Oxyn-Njpe, =0, n=0,1,....

Taking the quantitie® (t) yn(x), ¢ (t)Oxyn, ¢ € CZ(0,T) as test functions in (78),
(79), respectively, we obtain a system of two ordinary differential equations:

g | V(t,-) Oxyn dX—An < S(t,-), yp >=ef},
Qe

edk < S(t,-), vn > +/ V(t,-) - Dy dx = e 2
Q¢
for the unknown functions of time:

{tm [ Vi) Bamad. tmest ),

where the initial data as well as the forcing terfgs fZ can be evaluated in terms
of the (g, 6)-quantities. Consequently, we infer that for given- 0, N > 0, there
existséd = (N, e) > 0 such that
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sup / (Ves(t,) = Ve(t,)) - Deyn o] < e whenevers < 5(N.2) ~ (96)
te(0,T) |/ 82 )
foranyn <N.
Finally, sinceV, admits the bound (82), we have
sup Ve - Ox (Ay Hdivkg — Pu[Ay Mdivye]) dx| < e for all M > M(g), (97)
te(0,T) |/ L

whereRy denotes the orthogonal projection onto span ..., wm }. Moreover,

/Q Ve 5 - Ox (Ay divep — Pu[Ag divke]) dx

- /Q Ok 5 - Ox (A *divep — Pu [Agtdivke]) dx

= _/Q ¥ 5 (divX(p — H\/][divx(p]) dx,

where; s solves a wave equation
£S5+ @AW 5 = edive(HEs+H2;5), (98)

€% 5+ S5 = AN [divadive (6L + 625 )| + ey [dvGEsl,  (99)
supplemented with the boundary conditions
D% 5 Nlag, = 0. (100)

Thus in view of the uniform bounds (88 - 93), we can fd= M(¢g) > 0 such that

sup
te(0,T)

Ves - Ox (Aytdiveg — Pu[Ay tdiveg]) dx| < e forallM > M(e), § > 0.

Qe

(101)
Combining the estimates (95 - 101) we obtain the desired conclusion (94). Con-
sequently, we may assume that all quantities appearing in the acoustic equation are
smooth, with the data compactly supporteddnT ) x Q.. Accordingly, the acoustic
equation reads:

£2S + OdivyVe = sdivX(H 1y Hg) : (102)

£QVe+ 0,8 = edive (G +G2) +£GE, (103)
supplemented with the boundary conditions

Ve Nlog, =0, (104)
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and the initial conditions

S(0,) =S+ + e, Ve(0,) = Vi + V7, (105)

where
||3%,3H|_1(9) + ||%,e|||_2(9) + Hg,e”Dl’z(RS) <c (106)
HV%,£||L1(Q;R3) + HV(2).£||L2(Q;R3) =¢ (107)

and

IHZ 20 7:020me)) + IHEll 20 1200:08)) < © (108)
IGH I 20713 (0:r0<3)) + G2l 20 T2 0:mex3)) < C (109)
||Gg||L°°(O,T;L5/3(.Q;R3)) S C. (110)

2.5.3 Finite speed of propagation

System (102), (103) admits a finite speed of propagation proportionglaige,
specifically, if the initial data for two solutions coincide on the set

Bryae = {X€ Q| X <R+TVw/e} C Q,

and the forcing terms are the same on the space-time cyliddey x By, /., then
the two solutions are the same on the cone

{(t,x) |t € (0,T),XE By g/, distx, dBr /] >t\/5/8}.

Since we are interested only in the local behavior of solutions, specifically we want
to show

t»—>/ Ve(t (pdx is precompact in.?(0,T) for any ¢ € C3(Q;R®), (111)

we may assume that the acoustic system (102), (103) is satisfied on the whole set
(0,T) x £ and that its solutions have compact suppofffil ] x Q.

2.5.4 Compactness of the solenoidal component

A short inspection of (103) implies that the family
{t — / V¢ -H[o] dx} is precompact iiC[0, T]
JQ

for any ¢ € C®(Q;R®). Consequently, writing the fiel#/, in the form of its
Helmholtz decomposition if:



24 Eduard Feireisl and Maria E. Schonbek
Ve = H[VE] + |:|le’87

we can see that (87) follows as soon as we show
{t — / O - ¢ dx} ~0inL2(0,T) (112)
Q

for any ¢ € C2(2;R®), where¥ is the acoustic potential.

2.6 Acoustic equation - abstract formulation

In order to show (112), we introduce an abstract formulation of the acoustic equation
in terms of theNeumann Laplaceany,

ANV =AVINn Q, Oy -n|yo =0, ve CI(Q).

Itis standard that\y can be extended as a self-adjoint operator on the Hilbert space
L?(R). As a consequence of Rellich’s theorem, the point spectrunidé empty.
Moreover, the spectrum 6fAy is absolutely continuous and coincides wjitkieo),
see Leis [18].

Since all quantities in the acoustic equation (102), (103) are smdgtm|,, =
0, and the dat&., i = 1,2, G2 are compactly supported, we deduce thg8. -
N|so = 0. In particular, system (102), (103) converts twave equation

£S: + 0ANT: :edivX(Hg+H§), (113)

e +§ = ey divdivy (GL + G2) + 4y G, (114)
supplemented with the homogeneous Neumann boundary conditions
Ok -Nga =0, (115)
and the initial conditions
S(0,1) = Soe, ¥e(0,-) = Ay divkVoe, (116)

where,%: = H1[V,] is the gradient component of the Helmholtz decomposition
of Ve.

Our goal is to rewrite system (113), (114) solely in terms of the opet&tor
and functions ranging in the Hilbert spac& Q). To this end, observe first that the
expression diydivy(GL + G2)(t,-) may be viewed as a continuous linear form on
2((—AN)?) N 2((—An)Y?) for any fixedt. Indeed it is enough to show that if

he 2((—An)?) N 2((—An)*Y?),
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thenh possesses second derivatives bounded and continuglisaind, in addition,
Okh € L2(2;R?), O02h e L2(Q,R**3).

Since2((—An)Y?) = D}2(Q), we immediately geflsh € L2(Q;R®), he L5(Q).
Next, takingy € C*(R2), supy] C Q, y = 1 outside some ball, we get

A(yh) = wAh+ 20,y - Oh+Ayhin RS,

where the right-hand side is bounded #{R%). We conclude, by means of the well-
known regularity properties ad on R®, that 02h € L?(Q;R®>*?), in particular,h
is Holder continuous and bounded . Finally, sinceAh € L?(), andA?[h] €
L?(R2), we haveAh Holder continuous, and the standard elliptic theory provides the
desired conclusion.

Estimating the remaining terms in a similar fashion, we arrive at the following
system:

eaS: + oy =& ((—an)2nE] +h2), (117)

ed%+S =e((-an)gh+ )+ (—an) VAR +ol)). (19
supplemented with the initial data

S:(0) = (~An)%[she] + (—an) V2, ). (119)

¥ (0) = An[Vge] + AN VG e (120)

with
{hes0, i =1,2,{g  e=0, j = 1,...,4 bounded i 2(0,T;L3(Q)),  (121)

{hetes0, i =1,2, {V} }e0 j = 1,2, bounded in ?(Q). (122)

2.6.1 Variation-of-constants formula

In accordance with (117 - 122), the acoustic potenffalis determined through
variation-of-constants formulapecifically,

w(t) = Sexp(it v/~ an) {< Ao i) - (B ] ] (123)

e )
+;exp(—i2\/TAN){ —AN) Vo —iS5e] + e i) }

o 1, 3 1 2 44
(—AN)[ge +9¢] + (_AN)[gg+gg]

t —
—s—%/ exp(itgs\/—wAN)
0
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1

+i(—An)¥2[hE] +i =

)| o

1, 3 1 2, 4
(7AN)[ge +ge] + m[ge +gs]

2.6.2 Strong convergence of velocities
We are ready to show (112), specifically,
{tm / w(t,)divyg dx} — 0inL2(0,T) ase — 0 (124)
Q

for any fixedp € CT(Q;R®).
First of all, observe that it is enough to show

{t H/ ZH(—AN) [ (t, )] dx} —0inL2(0,T) (125)
Q

for any fixed y € C7(Q), H € CZ(0,). Indeed, takingy € CZ() such that
X\supmp] =1, we have

/ P dlivyp dx — / £ Wedivy dx
JQ JQ
= [ 210 —H(=aw) (#eldivp dx+ | zaivgH (—an) (] b
where, as stated in (125),
{t— / xAivyH (~a) [#4(t, )] dx} — 0 inL3(0,T) ase — 0.
JQ
On the other hand,

/Qx(ld—H(—AN))[%]divx(pdx:/g (1d—H(-an) ) [#]divp dx  (126)

_ / (10— H(-aw)) divyg]# o
Q
Taking a family of function$d (1) 1, in particular,
(H(—An) —1d)[h] — 0 for any fixedh € L2(Q),

we observe that the integral (126) is small, uniformly with respettag0, T) for
a suitable choice dfl, as soon as we can show that
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(—An)*/?[divyg)], [divke] € L?(Q) (127)

1
(—4n)
sinceY¥; is given by (123). To see (127), it is enough to observe that

Anh] = divkg implies Oxh € L9(Q; R®) for anyq > 1;

whence, by virtue of Sobolev’s theoreéme L?(Q).

In view of the previous discussion, the proof of strong (a.a. pointwise) conver-
gence of velocities reduces to showing (125). This will be done in the following
section.

2.6.3 Spectral measures

Our goal in this section is to show (125). Singgis given by (123), it is sufficient
to check that

1/2

(] [(exe(iv=ant)H-amino)| @) <oteH ol 028)

for anyh € L2(Q), with

o(g,H,p) — 0 ase — O for any fixedyp, H,
where <, > denotes the standard (complex) scalar produdt?f®). Uniformity
with respect tdh is needed when handling the time integrals in (123).

The integrand in (128) may be written bpectral theorenisee Reed and Simon
[27, Chapter VIII]) as follows

(exp(iv=dngH(-an)) .¢) = [“exp(iVA ) HIRR) dup(2), (129)

wherep,, is the spectral measure associated to the fungticand
he L2(Q;duy), ||F‘|‘Lﬁ¢(9) < |Ihll z(q)

Following Last [17], we obtain

[ [(exo(iv=ant ) He-ani. o) a (130)

‘/ / / exp(i (vX— ) ) H)P(x) H(Y)P(y) dutg (%) dug(y) dt

//(/ exp(— t/T)Z)exp(i(\/i—\[y)é) dt>><
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H()RX)H (y)A(y) ditg(x) ditg (y)
w poo . 2 _ 2
SN |h<x>||h<y>|exp<w> ity () g (4)

4¢e2

Consequently, by virtue of the Cauchy-Schwartz inequality,

[ [(exp(iv-ant ) Haio)[ & <cro?(e o, a3y

where

2 2 1/4
</ [ exp( T'@fy) (X)duw(y)) .

Now, it is easy to check thab(e,H,p) — 0 ase — 0 provided the spectral
measureu, does not charge points i0,), in other words, as long as the point
spectrum of the operataty is empty. As a matter of fact, the rate of convergence
is independent of the specific choicetdf Thus we have proved (125) yielding the
desired conclusion

ue — Uin L2((0,T) x K;R®) for any compact sef C Q. (132)

2.7 Convergence to the limit system - part Il

Since we have shown strong pointwise (a.a.) convergence of the family of the ve-
locity fields {u, }¢~0 it is a routine matter to let — 0 in the weak formulation of
the primitive system to deduce that

? — 1 weakly-(*) in L(0, T;L%3(K)) for any compacK C €,

%e =% _ @ weakly inL2(0, T:W-2()),

ue — U weakly inL?(0, T;W2(Q; R?)),

and
ue — Uin L2((0,T) x K) for any compacK cC £,

whereU, O, r is a weak solution of the Oberbeck-Boussinesq approximation (1 -
4), together with the boundary conditions

U-n|po =0, [S(OxU)N] xNn|go =0, O0xO -n|yq = 0.

More specifically, we have
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div\U =0a.a.on0,T) x Q,
[ [ #U-ag+UaU): D)) axat, (133)
0 Q

-
:—/5U0~(pdx+/ /S:Dx(p—rDXdedt
Q 0 Q

for any test functionp € C2([0,T) x Q;R®), divxp = 0, ¢ -n|yo = 0, where we
have set B
S = u(¥)(0xU + OLU).

Furthermore,

PCp(p, V) |0 +divy(OU) | — kAO —pda(p, 9)divy(GU) =0a.a. in(0,T) x 2,
(134)
ENCE n|¢9.Q = 07@(Oa ) = Oy,
and
r+pa(p,9)®=0a.a.in(0,T) x Q.

We remark that the uniform bounds established above yield
0 cL*(0,T;L3(Q)),

while
UelL®0,T;L2(Q;R%),

in particular, the standard maximal regularity theory of the heat equation justifies
validity of (134) a.a. in(0,T) x Q.
It is interesting to note that the initial conditions for the velocity are determined
through
Upe — Up weakly inL%(Q;R?),

while the initial value®g reads

( Is(p, 5) 1) Is(p, 5)

_ (1) =
00 = P pg S Lap)G),  (39)

K]
Cp(ﬁ?g)
where

poy — pit, 05 — oY weakly inL2(Q).

€
Moreover, we can check ﬁél), 19(51) satisfy a compatibility condition
ap(p,. %) (1, PP, D) (1)  —
gp Po o5 Y PG

where the expression on the left-hand side is nothing other than the linearization of
the pressure at the constant stgied) applied to the vecto['p(()l)ﬁél)}, relation
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(135) reduces to
1
@ =Y.

The reader may consult [14, Chapter 5, Section 5.5] for other aspects of the “data
adjustment” problem related to incompressible limits.
Summarizing the arguments of this section we have proved the following result:

Theorem 2.2 Under the hypotheses of Theorem 2.1 {let, ¢, U }e~0 be

a family of weak solutions to the Navier-Stokes-Fourier system on the set
(0,T) x ¢, whereQ, are given by (34), and the initiglpo e, Yo, Uoe }e>0

data satisfy (40 - 43), with

pé’lg) oY, ﬁég — oY weakly in 2(Q),
Uge — Up weakly in 12(Q;R?).
Then, extracting a suitable subsequence, yields
pe — P in L”(0,T;L¥3(K)),

=Y g weakly in 12(0, T;WL2(K)),

and
ue — U weakly in 12(0, T;W2(K;R®)) and, strongly in B((0,T) x K;R®)

for any compact KC Q, whereU, @ is a weak solution of the Oberbeck-
Boussinesq approximation {8, T) x Q in the sense specified in (133), (134),
and the initial data (135) and

U(0,-) = H[Uo.

Note that dispersive (Strichartz’ estimates) for the wave equation considered in
the whole spacB® were used by Desjardins and Grenier [8] in order to eliminate the
acoustic waves in the low Mach number limit for the compressible Navier-Stokes
system. Similar technique was used by Alazard [1] and Isozaki [15] in the context of
Euler equationseakconvergence of the convective term could be also established
by a “local” method developed by Lions and Masmoudi [21](see also a nice survey
by Masmoudi [23]).
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3 Oberbeck-Boussinesq approximation

In the remaining part of the paper, we examine the Oberbeck-Boussinesq approxi-
mation written in the form introduced in (7 - 9), specifically,

divU =0, (136)
U +divyU® U+ 0P = AU — 00,G, (137)
&6 +divy(0U) — A6 =0, (138)

where, for the sake of simplicity, all physical constants have been set to one. As
we have seen in Section 2, the system (136 - 137), modulo an obvious change of
variables specified in Section 1, can be identified as a singular limit of the full
Navier-Stokes-Fourier system, where the Mach and Froude numbers tend to zero.
In contrast with Section 2, where the boundaiy was supposed to kEeoustically

hard (cf. (19)), we consider the more common no-slip boundary condition

Ulpe =0, (139)

supplemented with a similar homogeneous Dirichlet boundary condition for the
temperature deviation
0y =0. (140)

Let us remark that (139), (140) could be justified by similar arguments as in Section
2, provided (19) was replaced by more general “penalized” boundary conditions in
the spirit of [10].

In addition to (136 - 140), we suppose that the (weak) solutions satisgnirgy
inequality

T T
U)oy +2 | IV g s, < V() Pagqup = [ OOG-u aixet
(1412)
foranyz > 0and a.as< tincludings= 0. If the velocity fieldU is smooth, formula
(141) follows easily by multiplying (137) by and integrating by parts.
Similarly, a formal manipulation of (138) yields

/QH(e(r))dx+/:/QH”(e)|Dxe|2dxdtg/QH(e(s))dx (142)

foranyt > 0 and a.as < 7 includings= 0 for any smooth conveld.
The interested reader may consult [14, Section 5.5.4, Chapter 5] for a rigorous
derivation of the energy inequalities (141), (142) via a singular limit process.
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3.1 Suitable weak solutions

We consider the initial data for system (136 - 138) in the form
U(0,-) = Ug € L3(Q), 6(0,-) = 6o € L' NL"(Q). (143)

Motivated by the previous discussion, we shall say tha# is a suitable weak
solutionto problem (136 - 140), supplemented with the initial data (143) if

U € Cueak([0, T]; L?(2; R3)) N L2(0, T; Wi 2(2; R%));
6 € Cweak([0, T];L2(2))NL®(0,T;LP(Q)) for any 1< p < w,
6 € L2(0, T;W3(Q));
divyU=0a.a.in(0,T) x Q;
the integral identity

/OT/Q(U-Bt(p—i-U®U:IZIX(p) dx ct

T
— / / (0U: Dxp+ 0,6 0) dx—/ Uo- (0,-) dx
0 Jo Q
holds for anyp € C([0,T) x 2;R®), divxp = 0;
30 +divy(0U) —A6 =0a.a.in(0,T) x Q;
the energy inequalities (141), (142) are satisfies formaa|0, T].

Remark 3.1

Given the anticipated regularity &f, 6 enforced by (141), (142), we may use the
maximal regularity theory for the heat equation (138) in order to concluded{tt
A0 € LY9(0,T; L)) for a certain q> 1.

Given thea priori bounds induced by (141), (142), thgistencef suitable weak
solutions can be proved, besides a rather complicated undirect proof in the spirit of
Section 2, by means of nowadays standard methods, see the monograph by Sohr
[29]. In the last part of this study, we examine the asymptotic behavior of suitable
weak solutions to the Oberbeck-Boussinesq approximation-foro.
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4 Long-time behavior of solutions to the Oberbeck-Boussinesq
approximation

We conclude the present study of the Oberbeck-Boussinesq system by investigating
the asymptotic behavior of solutions for large times. In contrast with [4], we show
that the physically relevant choice of the forcing telixG yields strong conver-
gence to zero of the total energy associated to system (136 - 140). Our approach
is based on the available results by Miyakawa and Sohr [24] for the forced Navier-
Stokes system. More precisely, we derive suitable decay estimates for the tempera-
ture deviationg resulting from the “entropy” inequality (142) and then use the fact
that, in accordance with (5), (6),

OxG € LPNL®(Q;R®) for p > 3/2, (144)

in particular, the forcing term in the Navier-Stokes system decays to zero sufficiently
fast for|x| — co.

4.1 Decay estimates for the temperature deviations

In this subsection we show that the solutions to the Oberbeck-Boussinesq system
decay inLP,1 < p < o at the same rate as the solutions of the underlying linear
counterpart, namely the solutions to the heat equations.

Theorem 4.1 LetU(0,-) = Ug € L?(R), 6(0,-) = 8p € L1NL>(Q). Suppose
U, 0 is asuitable weak solutioto problem (136 - 140), with the initial data
(Uo, 6p), then

16(t, e < c(lBollLinie(@)t 23 P, 1< p<w t>0.  (145)

where the constant c is independent of p.

Proof

We note first that by appropriate choiceg-bfthe estimate (142) yields

16(t,-)lILpce) < 16ollLp(o) foranyt >0, 1< p< . (146)

Following the well-known argument of Alikakos [2] (cf. also Cordoba, Cordoba
[5]), we multiply (138) by 4|6|2-26 and integrate the resulting expression over
Q, obtaining
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; 2j(2j—-1 ;
at/ 1612 dx+ M/ 0402 dx < O,
Q ] Q
in particular choosing = 2¢~1 yields

1 K12 -1
— < -
(3o T o) <5

By means of the standard Gagliardo-Nirenberg inequality (see Proposition 1.1), in-
terpolatingL? betweerL! andH! we have

‘ k-1

2
dx, k=1,2,...  (147)

Dx|6

k-1 ok—1 k-1 4/5

Ox|0] : (148)

Jio s

gc]

6|

2 6/5
L2(Q) L2(Q) ’

Let mg = 25. We proceed by induction am For my the conclusion of the Theorem
follows by (146). Fors= k— 1 we assume by induction that

/ 102" dx < by_qt 3@ 1), (149)
Q

o= [ [lof*”
Q
Combining (147), (148) and (149) yields

Lets=k, define ,
dx,

ady < @y %0 %0 A2,

therefore, integrating in time ovéd, t] and a simple reordering of the terms gives

2 5343 1 kg 2
D(t) < | D(0) + 5 o L (150)
By virtue of (146), we can take
bo = {/60]|1(q), (151)

and, consequently, formula (150) yields, by induction and interpolation,
[6(t,)llLpe) < C(||90H|_1m_°°(9))t7%(lfl/p) foranyl1<p<e,t>0.  (152)

The constant in (152) may, in principle, dependmimowever, a close inspection of
(150) reveals, similarly to Alikakos [2, Theorem 3.1] that

b < cb?_,, meaningly < CM? for certainC,M > 0,
It follows from (151) that

(pkl/Zk )t—g(1—1/2k>.

< ¢(|[6ol|L1rL(@)
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Taking the limit ak tends to infinity extends the decay ratepte- o, specifically,

_3
16t )llL=(@) < c([[6ollL1nL=(@))t "2, t > 0.

This concludes the proof of the theorem.
O

4.2 Decay estimates for the velocity

In view of the specific choice of the potenti@l(cf. (144)), and the uniform decay
estimates of the temperature deviati@restablished in (145), (152), the decay of
the velocity fieldU follows from the results of Miyakawa and Sohr [24]. Indeed it
is enough to check that (144), (152) imply that

00xG € L'NL"(0,0;L%(Q; R)),
therefore, by virtue of [24, Theorem 1],
Iim V)]l 2(am0) = O- (153)

Moreover, the velocity becomes ultimately more regular, specifically, there exists
To > 0 such that

U e L?(To, To+T;W22(2;R%)), aU € L%(To, To+T,L%(Q;R%)), foranyT > 0.
(154)
Let us summarize the results obtained in this section:

Theorem 4.2 LetQ C R® be an unbounded (exterior) domain with compact
boundary of class €. LetU, 6 be a suitable weak solution to the Oberbeck-
Boussinesq approximation {{®,») x Q specified in Section 3.1, emanating
from the initial data

Uo € L2(2;R%), go e L1NL>(Q).
Then

U(t,-) — 0in L2(2;R®), 6(t,-) — 0in LP(Q) foranyl < p < o as t— .

Remark 4.1

Since G is a harmonic (regular) function @, the nowadays standard ultimate
regularity results for the Navier-Stokes system (see e.g. the monograph by Sohr [29,
Chapter V, Theorem 4.2.2]), together with a simple bootstrap argument applied to
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the heat equation (138), could be used to deduce that the solutighbecomes
regular if time is large enough. Similarly, decay in stronger Sobolev norms can be
shown.
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