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Abstract We study the Oberbeck-Boussinesq approximation describing the mo-
tion of an incompressible, heat-conducting fluid occupying a general unbounded
domain inR3. We provide a rigorous justification of the model by means of scale
analysis of the full Navier-Stokes-Fourier system in the low Mach and Froude num-
ber regime on large domains, the diameter of which is proportional to the speed
of sound. Finally, we show that the total energy of any solution of the resulting
Oberbeck-Boussinesq system tends to zero with growing time.
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1 Introduction

Stratified flows occur frequently in the atmosphere or oceans. The Oberbeck-
Boussinesq approximation is a mathematical model of a stratified fluid flow, where
the fluid is assumed to be incompressible and yet convecting a diffusive quantity
creating positive or negative buoyancy force. The diffusive quantity is identified
with the deviation of temperature from its equilibrium value. The resulting system
of equations reads:
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divxU = 0, (1)

ρ

(
∂tU+divxU⊗U

)
+∇xΠ = µ∆U+ r∇xG, (2)

ρcp

(
∂tΘ +divx(ΘU)

)
−κ∆Θ −ρϑαdivx(GU) = 0, (3)

r +ραΘ = 0, (4)

where the unknowns are the fluid velocityU = U(t,x) and the temperature deviation
Θ = Θ(t,x). The symbolΠ denotes the pressure,µ > 0 is the viscosity coefficient,
κ > 0 the heat conductivity coefficient,ρ > 0 stands for the fluid density, andϑ > 0
is the reference temperature. Here,cp > 0 is the specific heat at constant pressure
andα > 0 denotes the coefficient of thermal expansion of the fluid, both evaluated
at the reference densityρ and temperatureϑ . The functionG = G(x) is a given
gravitational potential acting on the fluid. Thus the fluid density is constant in the
Oberbeck-Boussinesq approximation except in the buoyancy force, where it is inter-
related to the temperature deviation throughBoussinesq relation(4), cf. Zeytounian
[30], [31].

In real world applications, it is customary to take thex3−coordinate to be vertical
parallel to the gravitational force∇xG = g[0,0,−1]. This is indeed a reasonable
approximation provided the fluid occupies a bounded domainΩ ⊂ R3, where the
gravitational field can be taken constant. Recently, several authors studied system (1
- 4) on the whole spaceΩ = R3, with ∇xG= g[0,0,−1], see [4], Danchin and Paicu
[7]. Such an “extrapolation” of the model is quite natural from the mathematical
viewpoint, however, a bit awkward physically. Indeed, if the self-gravitation of the
fluid is neglected, the origin of the gravitational force must be an object placed
outsidethe fluid domainΩ therefore

G(x) =
∫

R3

1
|x−y|

m(y) dy, with m≥ 0, supp[m]⊂ R3\Ω , (5)

wherem denotes the mass density of the object acting on the fluid by means of
gravitation. In other words,G is a harmonic function inΩ , G(x)≈ 1/|x| as|x| →∞.

Motivated by the previous observations, we consider the Oberbeck-Boussinesq
system on a domainΩ = R3 \K exterior to a compact setK. Accordingly, we take
G such that

−∆G = m in R3, ∇xG∈ L2(R3;R3), supp[m]⊂ K. (6)

In particular, introducing a new variableθ = Θ −ϑαG/cp we can rewrite the sys-
tem (1 - 4) in the more frequently used form

divxU = 0, (7)
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ρ

(
∂tU+divxU⊗U

)
+∇xP = µ∆U−ραθ∇xG, (8)

ρcp

(
∂tθ +divx(θU)

)
−κ∆θ = 0, (9)

where we have setP = Π −G2ρϑα2/2cp.
We will show in Section 2 that the Oberbeck-Boussinesq approximation (1 - 4),

supplemented with suitable boundary conditions, may be viewed as a singular limit
of the full Navier-Stokes-Fourier system considered on a family of “large domains”,
where the Mach and Froude numbers tend simultaneously to zero. This part of the
paper can be viewed as an application of the abstract method developed in [13]
in order to control the propagation and the final filtering of acoustic waves in the
limit system. Furthermore, we discuss the basic properties of the limit system (1 -
4), in particular, validity of the energy inequality, see Section 3. Finally, in Section
4, we show that the total energy of any weak solution to the Oberbeck-Boussinesq
approximation (7 - 9), supplemented with the homogeneous Dirichlet boundary con-
ditions, tends to zero with growing time. To this end, we first establish the result for
the temperature deviations represented byθ , and then use the standard estimates for
the incompressible Navier-Stokes in the spirit of Miyakawa and Sohr [24].

1.1 Notation and preliminaries

We use the symbol< ·, ·> to denote duality product, in particular,

< f ,g >=
∫

O
f g,

provided f , g are square integrable on a setO.
The symbolLp(O) denotes the space of measurable functionsv, with |v|p inte-

grable inO. Wk,p denotes the Sobolev space of functions having derivatives up to
orderk in Lp. Finally, we introduce the homogeneous Sobolev spaces:

Ŵm,p =
{

v∈ L1
loc(Ω), Dαu∈ Lp(Ω), |α|= m

}
, m≥ 0, p≥ 1.

By the symbolc we denote a generic constant that may change line by line.
Most of the results of the paper concern problems on an exterior domainΩ ⊂R3.

In order to avoid technicalities, we assume that the boundary∂Ω is smooth, say of
classC2+ν , in particular,Ω satisfies thecone property:

The domainΩ is said to satisfy thecone propertyif there exists a finite cone
C such that each pointx∈ Ω is the vertex of a finite coneCx contained inΩ and
congruent toC .

To conclude the preliminary part, we record a variant of the Gagliardo-Nirenberg
inequalities for exterior domains proved by Crispo and Maremonti [6].
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Proposition 1.1 Let Ω ⊂ RN be an exterior domain with cone property. Let w∈
Ŵm,p(Ω)∩Lq(Ω), with 1≤ p≤ ∞, 1≤ q < ∞.

Then
‖Dkw‖Lr (Ω) ≤ c‖Dmw‖a

Lp(Ω)‖w‖
1−a
Lq(Ω) (10)

for any integer k∈ [0,m−1], where

1
r

=
k
N

+a

(
1
p
− m

N

)
+(1−a)

1
q
,

with a∈
[

k
m,1
]
, either if p= 1 or p> 1 and m−k− N

p /∈N ∪{0}, while a∈
[

k
m,1
)

if p > 1 and m−k− N
p ∈N ∪{0}.

2 The Oberbeck-Boussinesq approximation as a singular limit of
the full Navier-Stokes-Fourier system

Motivated by the mathematical theory developed in [14], we introduce a scaled
Navier-Stokes-Fourier systemin the form:

MASS CONSERVATION

∂tρ +divx(ρu) = 0, (11)

MOMENTUM BALANCE

∂t(ρu)+divx(ρu⊗u)+
1
ε2 ∇xp(ρ,ϑ) = divxS(ϑ ,∇xu)+

1
ε

ρ∇xG, (12)

ENTROPY BALANCE

∂t(ρs(ρ,ϑ))+divx(ρs(ρ,ϑ))+divx

(
q(ϑ ,∇xϑ)

ϑ

)
= σ , (13)

TOTAL ENERGY CONSERVATION

d
dt

∫
Ω

(
1
2

ρ|u|2 +
1
ε2 ρe(ρ,ϑ)− 1

ε
ρG

)
dx = 0, (14)

whereS is the viscous stress given byNewton’s rheological law

S(ϑ ,∇xu) = µ(ϑ)
(

∇xu+∇t
xu−

2
3

divxuI
)

+η(ϑ)divxuI, (15)

q is the heat flux determined byFourier’s law
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q(ϑ ,∇xϑ) =−κ(ϑ)∇xϑ , (16)

whereas theentropy production rateσ satisfies

σ ≥ 1
ϑ

(
ε

2S : ∇xu−
q ·∇xϑ

ϑ

)
. (17)

The unknowns in (11 - 14) are the fluid mass densityρ = ρ(t,x), the velocity field
u = u(t,x), and the absolute temperatureϑ = ϑ(t,x). The pressurep, the specific
internal energye, and the specific entropys are given numerical functions ofρ and
ϑ interrelated throughGibbs’ equation

ϑDs= De+ pD

(
1
ρ

)
. (18)

The system (11 - 14) is supplemented with theconservativeboundary conditions,
specifically,

u ·n|∂Ω = 0, β [u]tan+[Sn]tan|∂Ω = 0, q ·n|∂Ω =−β |u|2|∂Ω , β > 0, (19)

wheren denotes the outer normal vector to∂Ω . The first two conditions in (19) are
usually termedNavier’s slip boundary conditionwith a friction coefficientβ > 0,
see Ḿalek and Rajagopal [22]. In accordance with (19), the total energy of the fluid
is a conserved quantity as stated in (14).

The small parameterε appearing in (12), (14), and (17) results from the scal-
ing analysis of the Navier-Stokes-Fourier system, where theMach numberand the
Froude numberare proportional toε, see [14, Chapters 4,5], Klein et al. [16], Zey-
tounian [32]. Physically this means that the characteristic speed of the fluid is largely
dominated by the speed of sound and the fluid is stratified. Note that a similar system
of equations may be obtained byconstitutivescaling, where the rheological proper-
ties of the fluid are changing rather than the characteristic geometrical parameters
of the flow, see Novotńy, Růžička, Thaeter [25], Rajagopal, Růžička, and Srinivasa
[26].

2.1 Weak solutions

In the framework ofweak solutions, the equation of continuity (11) is replaced by a
family of integral identities∫

Ω

[
ρ(τ, ·)ϕ(τ, ·)−ρ0ϕ(0, ·)

]
dx (20)
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=
∫

τ

0

∫
Ω

(
ρ∂tϕ +ρu ·∇xϕ

)
dx dt for anyτ ∈ [0,T],

for any test functionϕ ∈C1([0,T]×Ω). In particular, the mappingτ 7→ ρ(τ, ·) is
weakly continuous, andρ satisfies the initial condition

ρ(0, ·) = ρ0.

Similarly, the momentum equation (12), together with Navier’s slip boundary con-
ditions (19), read ∫

Ω

[
ρu(τ, ·) ·ϕ(τ, ·)−ρ0u0 ·ϕ(0, ·)

]
dx (21)

=
∫

τ

0

∫
Ω

(
ρu ·∂tϕ +ρu⊗u : ∇xϕ +

p
ε2 divxϕ−S : ∇xϕ +

ρ

ε
∇xG·ϕ

)
dx dt

+
∫

τ

0

∫
∂Ω

βu ·ϕ dSx dt,

for anyτ ∈ [0,T], and anyϕ ∈C1([0,T]×Ω ;R3), ϕ ·n|∂Ω = 0. Thus the momentum
τ 7→ (ρu)(τ, ·) is weakly continuous and

(ρu)(0, ·) = ρ0u0

Finally, we may write the entropy balance (13) in the form∫
Ω

[
ρs(ρ,ϑ)(τ, ·)ϕ(τ, ·)−ρ0s(ρ0,ϑ0)ϕ(0, ·)

]
dx =< σ ,1[0,τ]ϕ > + (22)

∫
τ

0

∫
Ω

(
ρs∂tϕ +ρsu ·∇xϕ +

q
ϑ
·∇xϕ

)
dx dt + ε

2
∫

τ

0

∫
∂Ω

β

ϑ
|u|2ϕ dSx dt,

for any test functionϕ ∈ C1([0,T]×Ω), where the entropy production rateσ is
interpreted as a non-negative measure on[0,T]×Ω satisfying

σ ≥ 1
ϑ

(
ε

2S : ∇xu−
q ·∇xϑ

ϑ

)
. (23)

The total energy balance (14) reads∫
Ω

(
1
2

ρ|u|2 +
1
ε2 ρe− 1

ε
ρG

)
(τ, ·) dx (24)

=
∫

Ω

(
1
2

ρ0|u0|2 +
1
ε2 ρ0e(ρ0,ϑ0)−

1
ε

ρ0G

)
dx.

The interested reader may consult [14, Chapter 2] for a formal interpretation
of the weak solutions to the Navier-Stokes-Fourier system. We only note that the
entropy production rateσ associated to a weak solution that is sufficiently smooth
necessarily satisfies
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σ =
1
ϑ

(
ε

2S : ∇xu−
q ·∇xϑ

ϑ

)
,

in agreement with the classical theory.
Unlike (20), (21), relations (22), (24) are satisfied only for a.a.τ ∈ [0,T]. In

particular, the total entropyρs(ρ,ϑ) may not be a weakly continuous function of
time due to hypothetical jumps inσ . Introducing atime lifting Σ of the measureσ
in the form

< Σ ,ϕ >≡< σ , I [ϕ] >,

where

I [ϕ](t,x) =
∫ t

0
ϕ(z,x) dz for anyϕ ∈ L1(0,T;C(Ω)),

we check easily thatΣ can be identified with a mappingΣ ∈ L∞
weak(0,T;M +(Ω)),

where
< Σ(τ),ϕ >= lim

δ→0+
< σ ,ψδ ϕ >,

with

ψδ (t) =


0 for t ∈ [0,τ),

1
δ
(t− τ), for t ∈ (τ,τ +δ ),

1 for t ≥ τ +δ .

In particular, the measureΣ is well-defined forany τ ∈ [0,T], and the mapping
τ 7→Σε is non-increasing in the sense of measures. Here the subscript inL∞

weakmeans
“weakly measurable”.

The entropy balance (22) can be therefore rewritten as∫
Ω

[
ρs(ρ,ϑ)(τ, ·)ϕ(τ, ·)−ρ0s(ρ0,ϑ0)ϕ(0, ·)

]
dx (25)

+ < Σ(τ),ϕ(τ, ·) >−< Σ(0),ϕ(0, ·) >

=
∫

τ

0
< Σ ,∂tϕ > dt +

∫
τ

0

∫
Ω

(
ρs(ρ,ϑ)∂tϕ +ρs(ρ,ϑ)u ·∇xϕ +

q
ϑ
·∇xϕ

)
dx dt

+ε
2
∫

τ

0

∫
∂Ω

β

ϑ
|u|2ϕ dSx dt,

for anyϕ ∈C1([0,T]×Ω), where the mapping

τ 7→ ρs(ρ,ϑ)(τ, ·)+Σ(τ) is continuous with values inM (Ω)

provided the space of measuresM is endowed with theweak− (∗) topology.
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2.2 Existence theory for the Navier-Stokes-Fourier system

The framework of weak solutions introduced in Section 2.1 is broad enough to de-
velop an existence theory without any essential restrictions imposed on the initial
data as well as the length of the time interval(0,T). We start with a list of techni-
cal hypotheses imposed on the constitutive equations and the transport coefficients.
The reader may consult [14, Chapter 3] for the physical background and further
discussion.

The pressurep will be given by a general formula

p(ρ,ϑ) = ϑ
5/2P

(
ρ

ϑ 3/2

)
+

a
3

ϑ
4, a > 0, (26)

where
P∈C1[0,∞), P(0) = 0, P′(Z) > 0 for all Z≥ 0, (27)

in particular, the compressibility∂ρ p(ρ,ϑ) is always positive. The former compo-
nent in (26) represents the standard molecular pressure of a general monoatomic gas
while the latter is a contribution due to thermal radiation.

In accordance with Gibbs’ relation (18), the specific internal energy can be taken
in the form

e(ρ,ϑ) =
3
2

ϑ

(
ϑ 3/2

ρ

)
P

(
ρ

ϑ 3/2

)
+a

ϑ 4

ρ
, (28)

where, in addition to (27), we assume that

0 <
5
3P(Z)−P′(Z)Z

Z
< c for all Z > 0. (29)

The awkwardly looking condition (29) has a clear physical meaning, namely the
specific heat at constant volume -∂ϑ e(ρ,ϑ) - is positive and bounded. In particular,
(29) implies that the functionZ 7→ P(Z)/Z5/3 is decreasing, and we assume

lim
Z→∞

P(Z)
Z5/3

= P∞ > 0. (30)

We remark that the molecular pressureϑ 5/2P(ρ/ϑ 3/2) coincides with the stan-
dard perfect gas law Rϑρ as long asP(Z)≈RZ, see Eliezer, Ghatak, and Hora [11]
and [14, Chapter 1].

In addition to the previous hypotheses, we suppose that the transport coefficients
µ = µ(ϑ), η = η(ϑ), andκ = κ(ϑ) are continuously differentiable functions of
ϑ ∈ [0,∞) such that

0 < µ(1+ϑ)≤ µ(ϑ), |µ ′(ϑ)| ≤ µ1 for all ϑ ≥ 0, (31)

0≤ η(ϑ)≤ η(1+ϑ) for all ϑ ≥ 0, (32)

and
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0 < κ(1+ϑ
3)≤ κ(ϑ)≤ κ(1+ϑ

3) for all ϑ ≥ 0. (33)

We report the following result (see [14, Chapter 3, Theorem 3.1]):

Theorem 2.1 Assume thatΩ ⊂ R3 is a bounded domain of class C2+ν . Let
ε > 0 β > 0 be given, let the initial data satisfy

ρ0 ∈ L∞(Ω),ρ0 > 0, ϑ0 ∈ L∞(Ω),ϑ0 > 0, u0 ∈ L∞(Ω ;R3),

and let G∈W1,∞(Ω). Suppose that the thermodynamic functions p, e, and s
satisfy Gibbs’ equation (18), together with the structural hypotheses (26 - 30),
and the transport coefficients comply with (31 - 33).

Then the Navier-Stokes-Fourier system possesses a weak solutionρ, ϑ , u
on the set(0,T)×Ω in the sense specified in Section 2.1.

Remark 2.1As a matter of fact, the existence theorem [14, Chapter 3, Theorem
3.1] is proved forβ = 0, however, the caseβ > 0 requires only straightforward
modifications.

Remark 2.2 The weak solution, the existence of which is claimed in Theorem
2.1, satisfiesρ ≥ 0, ϑ > 0 a.a. in(0,T)×Ω . In addition, the weak solutions can be
constructed to satisfy the equation of continuity (11) in the sense of renormalized
solutions introduced by DiPerna and Lions [9]. Other regularity properties of the
weak solutions are discussed in [14, Chapter 3, Section 3.8].

Remark 2.3The hypotheses imposed on the initial data in Theorem 2.1 are not
optimal. As a matter of fact, it is enough to assume that the initial energy and en-
tropy of the system is finite. see [14, Chapter 3]. Similarly, the hypotheses imposed
on the structural properties of thermodynamic functions as well as the transport
coefficients may be considerably relaxed, see [14, Chapter 3].

2.3 Uniform bounds and stability with respect to the singular
parameter

Our goal is to identify the Oberbeck-Boussinesq approximation (1 - 4) with the
asymptotic limit forε → 0 of the scaled Navier-Stokes-Fourier system (11 - 14).
Moreover, we want the limit system to be defined on an exterior (unbounded) do-
mainΩ ⊂ R3. To this end, we consider the scaled Navier-Stokes-Fourier system on
a family of (bounded) domains

Ωε = Ω ∩{x∈ R | |x|< 1
ε r }, r > 1, (34)
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supplemented, for simplicity, with the complete slip boundary condition (Navier’s
slip with β = 0),

u ·n|∂Ωε
= 0, [Sn]×n|∂Ωε

= 0, q ·n|∂Ωε
= 0, (35)

cf. (19).
Thus, at least formally,Ωε → Ω asε → 0. As we shall see, the major problem

in the limit passage is filtering the acoustic waves represented by the gradient com-
ponent of the velocity field. Since the speed of sound in the fluid is proportional to
1/ε, hypothesis (34) ensures that the outer boundary ofΩε becomes irrelevant, at
least for what concerns the behavior of acoustic waves on compact subsets of the
physical space, and, accordingly, we may use the dispersive phenomena to eliminate
the presence of acoustic waves in the asymptotic limit.

2.3.1 Uniform bounds based on energy dissipation

Let {ρε ,ϑε ,uε} be a weak solution of the scaled Navier-Stokes-Fourier system on
the set(0,T)×Ωε in the sense of Section 2.1. We start by derivinguniformbounds
independent ofε → 0. The key quantity is theballistic free energyintroduced by
Ericksen [12, Chapter 1.3]:

H(ρ,ϑ) = ρe(ρ,ϑ)−ϑρs(ρ,ϑ),

whereϑ is a positive constant. It is easy to check that

∂ 2H(ρ,ϑ)
∂ρ2 =

1
ρ

∂ p(ρ,ϑ)
∂ρ

,
∂H(ρ,ϑ)

∂ϑ
=

ρ

ϑ
(ϑ −ϑ)

∂e(ρ,ϑ)
∂ϑ

,

in particular, hypotheses (27), (29) imply that
ρ 7→ H(ρ,ϑ) is strictly convex,

ϑ 7→ H(ρ,ϑ) is strictly decreasing forϑ < ϑ

and strictly increasing forϑ > ϑ .


Conditions (27), (29) guaranteethermodynamic stabilityof the system, see Bechtel,
Rooney, and Forest [3]. As we will see, they are crucial to control the norm of
solutions to the scaled system.

In the so-calledstaticdensity and temperature distribution for the scaled Navier-
Stokes-Fourier system, the temperature equals a positive constantϑ while the den-
sity ρ̃ε satisfies

∇xp(ρ̃ε ,ϑ) = ερ̃ε ∇xG.

It is easy to check that
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∂H(ρ̃ε ,ϑ)
∂ρ

= εG+const inΩε (36)

providedρ̃ε is strictly positive inΩε .
Taking advantage of (36), we may combine total energy balance (24) with the

entropy equation (22) to obtain∫
Ωε

(
1
2

ρε |uε |2 +
1
ε2

(
H(ρε ,ϑε)−

∂H(ρ̃ε ,ϑ)
∂ρ

(ρε − ρ̃ε)−H(ρ̃ε ,ϑ)
))

(τ, ·) dx

(37)

+
ϑ

ε2 σε [[0,τ]×Ω ] =
∫

Ωε

(
1
2

ρ0,ε |u0,ε |2 +
1
ε2 (H(ρ0,ε ,ϑ0,ε)

−∂H(ρ̃ε ,ϑ)
∂ρ

(ρ0,ε − ρ̃ε)−H(ρ̃ε ,ϑ)
))

dx

for a.a.τ ∈ (0,T) provided we fix the static density so that∫
Ωε

ρε(τ, ·) dx =
∫

Ωε

ρ0,ε dx =
∫

Ωε

ρ̃ε dx,

meaning the total mass of the fluid contained inΩε coincides with the total mass of
the static distributioñρε .

As a matter of fact, it is more convenient to consider a static solutionρ̃ε defined
on the whole spaceR3, specifically,

∇xp(ρ̃ε ,ϑ) = ερ̃ε ∇xG in R3,

satisfying
lim
|x|→∞

ρ̃ε(x) = ρ.

Consequently, we have

ρ̃ε −ρ =
ε

P ′(ρ)
G+ ε

2hεG, P ′(ρ) =
1
ρ

∂ρ p(ρ,ϑ), (38)

with
‖hε‖L∞(R3) ≤ c, |∇xρ̃ε(x)| ≤ εc|∇xG(x)| for x∈ R3. (39)

In order to exploit (37), the initial data must be chosen in such a way that the
right-hand side of (37) remains bounded uniformly forε → 0. To this end, we take

ρ0,ε = ρ̃ε + ερ
(1)
0,ε , ϑ0,ε = ϑ + εϑ

(1)
0,ε , (40)

where
‖ρ

(1)
0,ε ‖L2∩L∞(Ωε ) ≤ c, ‖ϑ

(1)
0,ε ‖L2∩L∞(Ωε ) ≤ c, (41)∫

Ωε

ρ
(1)
0,ε dx =

∫
Ωε

ϑ
(1)
0,ε dx = 0; (42)
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and
‖u0,ε‖L2∩L∞(Ωε ;R3) ≤ c, (43)

where all constants are independent ofε.
By virtue of (27), (29), the ballistic free energy possesses remarkable coercivity

properties, specifically,

H(ρ,ϑ)− ∂H(ρ̃,ϑ)
∂ρ

(ρ− ρ̃)−H(ρ̃,ϑ) (44)

≥ c(K)
(
|ρ− ρ̃|2 + |ϑ −ϑ |2

)
for all (ρ,ϑ) ∈ K,

and

H(ρ,ϑ)− ∂H(ρ̃,ϑ)
∂ρ

(ρ− ρ̃)−H(ρ̃,ϑ) (45)

≥ c(K)
(

1+ρ|e(ρ,ϑ)|+ρ|s(ρ,ϑ)|
)

for all (ρ,ϑ) ∈ (0,∞)2\K,

for any compactK ⊂ (0,∞)2 containing(ρ̃,ϑ), see [14, Chapter 5, Lemma 5.1].
Consequently, introducing the decomposition

h = hess+hres, hess= χ(ρε ,ϑε)h, hres= (1−χ(ρε ,ϑε))h, (46)

for any measurable functionh, whereχ ∈C∞
c ((0,∞)2) such that

0≤ χ ≤ 1, χ ≡ 1 on the rectangle[ϑ/2,2ϑ ]× [ρ/2,2ρ],

we deduce from (37) the following list of uniform bounds:

ess sup
t∈(0,T)

∫
Ωε

ρε |uε |2(t, ·) dx≤ c, (47)

and, by virtue of (44),

ess sup
t∈(0,T)

∥∥∥∥[ρε − ρ̃ε

ε

]
ess

(t, ·)
∥∥∥∥

L2(Ωε )
≤ c, (48)

ess sup
t∈(0,T)

∥∥∥∥[ϑε −ϑ

ε

]
ess

(t, ·)
∥∥∥∥

L2(Ωε )
≤ c, (49)

where we have used (38), (39) and the fact that the static densityρ̃ε remains uni-
formly close to the constantρ as soon asε is small enough.

Furthermore, by virtue of (45) and the hypotheses (26 - 30), it follows that

ess sup
t∈[0,T]

∫
Ωε

[ρε ]
5/3
res (t, ·) dx≤ ε

2c, (50)
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ess sup
t∈[0,T]

∫
Ωε

[ϑε ]4res(t, ·) dx≤ ε
2c, (51)

and

ess sup
t∈[0,T]

∫
Ωε

(
|[ρεe(ρε ,ϑε)]res|+ |[p(ρε ,ϑε)]res|+ |[ρεs(ρε ,ϑε)]res|

)
dx≤ c. (52)

Finally, by the same token, the measure of the “residual” set is also small, specifi-
cally,

ess sup
t∈[0,T]

∫
Ωε

1res(t, ·) dx≤ ε
2c, (53)

where all the constants “c” are independent ofε. It is remarkable that the measure
of the “residual” set remains small although the measure ofΩε tends to infinity as
ε → 0.

Going back to (37) we get

‖σε‖M +([0,T]×Ω ε ) ≤ ε
2c; (54)

whence, in view of (23) and hypotheses (31 - 33),

∫ T

0

∥∥∥∥∇xuε +∇t
xuε −

2
3

divxuεI
∥∥∥∥2

L2(Ωε ;R3×3)
dt ≤ c, (55)

and∫ T

0

∥∥∥∥∇x
ϑε −ϑ

ε

∥∥∥∥2

L2(Ωε ;R3)
dt +

∫ T

0

∥∥∥∥∇x
log(ϑε)− log(ϑ)

ε

∥∥∥∥2

L2(Ωε ;R3)
dt ≤ c. (56)

Moreover, since the measure of the residual set is small (see (53)), we can apply
Poincaŕe’s inequality to conclude that

∫ T

0

∥∥∥∥ϑε −ϑ

ε

∥∥∥∥2

W1,2(Ωε )
dt +

∫ T

0

∥∥∥∥ log(ϑε)− log(ϑ)
ε

∥∥∥∥2

W1,2(Ωε )
dt ≤ c. (57)

A similar argument, based on a generalized version of Korn’s inequality due to
Reshetnyak [28] (see also [14, Chapter 10, Theorem 10.16]), can be applied to (47),
(48) to conclude that ∫ T

0
‖uε‖2

W1,2(Ωε ;R3) dt ≤ c. (58)

Here we have also used the fact that[ρ]ess is bounded below away from zero on a
set, the complement of which is of small measure (see (53)).
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2.4 Convergence to the limit system - part I

Our goal now is to exploit the uniform bounds obtained in the previous part to pass
to the limit in the sequence{ρε ,uε ,ϑε}ε>0 for ε → 0. To begin, we observe that
(48), (50) yield

ess sup
t∈(0,T)

‖ρε(t, ·)− ρ̃ε‖(L2⊕L5/3)(Ωε ) → 0 asε → 0. (59)

In particular, by virtue of (38),

ess sup
t∈(0,T)

‖ρε(t, ·)−ρ‖L5/3(K) → 0 asε → 0 for any compactK ⊂Ω . (60)

Thus the fluid density becomes constant provided the Mach number tends to zero.
Similarly, relations (49), (51), and (53) yield

ess sup
t∈(0,T)

‖ϑε(t, ·)−ϑ‖L2(Ωε ) → 0 asε → 0. (61)

Next, in order to control the temperature deviations from the equilibrium stateϑ ,
we use (57), (58) to deduce that

Θε ≡
ϑε −ϑ

ε
→Θ weakly inL2(0,T;W1,2(Ω)). (62)

Moreover, by the same token,

uε → U weakly inL2(0,T;W1,2(Ω ;R3)), (63)

passing to subsequences if necessary. Here, we have assumed thatϑε , uε were ex-
tended to the whole domainΩ .

A short inspection of the scaled Navier-Stokes-Fourier system (11 - 13) reveals
the most difficult step, namely we need to show strong (pointwise) convergence of
the velocity in order to control the convective term. More specifically, we need to
show that

uε → U (strongly) inL2((0,T)×K;R3) for any compactK ⊂Ω . (64)

As a matter of fact, it is enough to prove that

ρεuε → ρU in L2(0,T;W−1,2(K)). (65)

Indeed, for anyϕ ∈C∞
c (Ω), we have

ρ

∫ T

0

∫
Ω

ϕ|uε |2 dx dt =
∫ T

0

∫
Ω

ϕ(ρ−ρε)|uε |2 dxdt +
∫ T

0

∫
Ω

ϕρεuε ·uε dx dt,
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where, by virtue of the previous estimates and the embedding relationW1,2(Ω) ↪→
L6(Ω), ∫ T

0

∫
Ω

ϕ(ρ−ρε)|uε |2 dx dt → 0,

while, as a consequence of (63), (65),∫ T

0

∫
Ω

ϕρεuε ·uε dx dt → ρ

∫ T

0

∫
Ω

ϕ|U|2 dx dt.

The final observation is that for (65) to hold it is enough to show that{
t 7→

∫
Ω

(ρεuε)(t, ·) ·ϕ dx
}

is precompact inL2(0,T) (66)

for any fixedϕ ∈C∞
c (Ω) since, as a consequence of (47), (48), and (50),

ess sup
t∈(0,T)

‖ρεuε‖L5/4(K;R3) ≤ c(K) for any compactK ⊂Ω

and the embeddingL5/4(K) ↪→ W−1,2(K) is compact. Accordingly, we fixϕ ∈
C∞

c (Ω) for the remaining part of this section and focus on proving (66).

2.5 Acoustic equation

As already pointed out, our main goal is to show (66) for any fixedϕ ∈C∞
c (Ω). To

this end, we rewrite the Navier-Stokes-Fourier system in the form

ε∂tRε +ωdivxVε = ε f 1
ε , (67)

ε∂tVε +∇xRε = εf2
ε , (68)

where we have set

Rε = A

(
ρε −ρ

ε

)
+B

(
ρεs(ρε ,ϑε)−ρs(ρ,ϑ)

ε

)
−ρG, Vε = ρεuε ,

f 1
ε = B

[
divx

(
ρε

s(ρ,ϑ)−s(ρε ,ϑε)
ε

uε

)
+divx

(
κ(ϑε)

ϑε

∇xϑε

ε

)
+

1
ε

σε

]
,

and

f2
ε =

1
ε

∇x

[
A

(
ρε −ρ

ε

)
+B

(
ρεs(ρε ,ϑε)−ρs(ρ,ϑ)

ε

)
−
(

p(ρε ,ϑε)− p(ρ,ϑ)
ε

)]
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−divx(ρεuε ⊗uε)+divxSε +
ρε −ρ

ε
∇xG,

and where the constantsA, B, ω are chosen so that

Bρ∂ϑ s(ρ,ϑ) = ∂ϑ p(ρ,ϑ), A+B∂ρ(ρs)(ρ,ϑ) = pρ(ρ,ϑ),

and

ω = pρ(ρ,ϑ)+
|pϑ (ρ,ϑ)|2

ρ
2sϑ (ρ,ϑ)

> 0.

System (67), (68) is usually termedacoustic equation, or,Lighthill’s acoustic anal-
ogy, see Lighthill [19], [20].

The inevitable presence of the measureσε in the forcing term f 1
ε may cause

discontinuities (in time) in solutions of the system (67), (68); therefore it seems
more convenient to use the time-liftingΣε of the measureσε introduced in Section
2.1. With the new variables

Sε = A

(
ρε −ρ

ε

)
+B

(
ρεs(ρε ,ϑε)−ρs(ρ,ϑ)

ε

)
−ρG+

B
ε

Σε , Vε = ρεuε , (69)

we may write the acoustic equation in the form

ε∂tSε +ωdivxVε = εF1
ε , (70)

ε∂tVε +∇xSε = εF2
ε , (71)

with

F1
ε = B

[
divx

(
ρε

s(ρ,ϑ)−s(ρε ,ϑε)
ε

uε

)
+divx

(
κ(ϑε)

ϑε

∇xϑε

ε

)]
, (72)

and

F2
ε =

1
ε

∇x

[
A

(
ρε −ρ

ε

)
+B

(
ρεs(ρε ,ϑε)−ρs(ρ,ϑ)

ε

)
(73)

−
(

p(ρε ,ϑε)− p(ρ,ϑ)
ε

)]
−divx(ρεuε ⊗uε)+divxSε +

ρε −ρ

ε
∇xG+

B
ε2 ∇xΣε ,

supplemented with the homogeneous Neumann boundary condition

Vε ·n|∂Ωε
= 0. (74)

Of course, system (69 - 74) should be understood in the weak sense as specified in
the following section.
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2.5.1 Boundedness of the data in the acoustic equation

As suggested by the previous discussion, the system (70), (71) will describe the be-
havior of the velocity field or rather the momentumVε , while the remaining quan-
tities appearingF1

ε , F2
ε are given. Using the uniform bounds established in Section

2.3, we estimate the forcing terms as well as the initial data in the acoustic equation.
To begin write, using the decomposition introduced by (46)

ρε −ρ

ε
=

ρε − ρ̃ε

ε
+

ρ̃ε −ρ

ε
=
[

ρε − ρ̃ε

ε

]
ess

+
[

ρε − ρ̃ε

ε

]
res

+
ρ̃ε −ρ

ε
,

where, in accordance with (48), (50), and (51), we have

ess sup
t∈(0,T)

∥∥∥∥[ρε − ρ̃ε

ε

]
ess

∥∥∥∥
L2(Ωε )

≤ c, ess sup
t∈(0,T)

∥∥∥∥[ρε − ρ̃ε

ε

]
res

∥∥∥∥
L1(Ωε )

≤ εc, (75)

and, moreover, using (38), (39) it follows that∥∥∥∥ ρ̃ε −ρ

ε

∥∥∥∥
(L∞∩Lq)(R3)

≤ c for anyq > 3,

∥∥∥∥∇x

(
ρ̃ε −ρ

ε

)∥∥∥∥
L2(R3;R3)

≤ c, (76)

The next step is to write

ρεs(ρε ,ϑε)−ρs(ρ,ϑ)
ε

=
ρεs(ρε ,ϑε)− ρ̃εs(ρ̃ε ,ϑ)

ε
+

ρ̃εs(ρ̃ε ,ϑ)−ρs(ρ,ϑ)
ε

=
[

ρεs(ρε ,ϑε)− ρ̃εs(ρ̃ε ,ϑ)
ε

]
ess

+
[

ρεs(ρε ,ϑε)− ρ̃εs(ρ̃ε ,ϑ)
ε

]
res

+
ρ̃εs(ρ̃ε ,ϑ)−ρs(ρ,ϑ)

ε
,

where, in accordance with the uniform bounds established in Section 2.3,

ess sup
t∈(0,T)

∥∥∥∥[ρεs(ρε ,ϑε)− ρ̃εs(ρ̃ε ,ϑ)
ε

]
ess

∥∥∥∥
L2(Ωε )

≤ c,

ess sup
t∈(0,T)

∥∥∥∥[ρεs(ρε ,ϑε)− ρ̃εs(ρ̃ε ,ϑ)
ε

]
res

∥∥∥∥
L1(Ωε )

≤ εc,

and ∥∥∥∥ ρ̃εs(ρ̃ε ,ϑ)−ρs(ρ,ϑ)
ε

∥∥∥∥
(L∞∩Lq)(R3)

≤ c for all q > 3,

∥∥∥∥∇x

(
ρ̃εs(ρ̃ε ,ϑ)−ρs(ρ,ϑ)

ε

)∥∥∥∥
L2(R3;R3)

≤ c.

Furthermore, by virtue of (54),
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ess sup
t∈(0,T)

∥∥∥∥Σε(t, ·)
ε

∥∥∥∥
M +(Ω ε )

≤ εc,

therefore we may write
Sε(t) = S1

ε(t)+S2
ε(t)+S3

ε ,

with

ess sup
t∈(0,T)

‖S1
ε‖M +(Ω ε ) ≤ εc, ess sup

t∈(0,T)
‖S2

ε‖L2(Ωε ) ≤ c, ‖S3
ε‖D1,2(R3) ≤ c,

where the symbolD1,2 denotes the homogeneous Sobolev space - a completion of
compactly supported smooth functions with respect to theL2-norm of their gradi-
ents.

Next, writing
Vε = [ρεuε ]ess+[ρεuε ]res,

we have, in agreement with (47), (50), (53),

ess sup
t∈(0,T)

‖[ρεuε ]ess‖L2(Ωε ;R3) ≤ c,ess sup
t∈(0,T)

‖[ρεuε ]res‖L1(Ωε ;R3) ≤ εc. (77)

Other terms appearing inF1
ε , F2

ε can be treated in a similar manner. We focus
only on the most complicated expression:

A

(
ρε −ρ

ε2

)
+B

(
ρεs(ρε ,ϑε)−ρs(ρ,ϑ)

ε2

)
−
(

p(ρε ,ϑε)− p(ρ,ϑ)
ε2

)

= A

(
ρε − ρ̃ε

ε2

)
+B

(
ρεs(ρε ,ϑε)− ρ̃εs(ρ̃ε ,ϑ)

ε2

)
−
(

p(ρε ,ϑε)− p(ρ̃ε ,ϑ)
ε2

)
+A

(
ρ̃ε −ρ

ε2

)
+B

(
ρ̃εs(ρ̃ε ,ϑ)−ρs(ρ,ϑ)

ε2

)
−
(

p(ρ̃ε ,ϑ)− p(ρ,ϑ)
ε2

)
Seeing that

A+B∂ρ(ρs)(ρ,ϑ)−∂ρ p(ρ,ϑ) = 0,

the quantity

A

(
ρε − ρ̃ε

ε2

)
+B

(
ρεs(ρε ,ϑε)− ρ̃εs(ρ̃ε ,ϑ)

ε2

)
−
(

p(ρε ,ϑε)− p(ρ̃ε ,ϑ)
ε2

)
contains only quadratic terms proportional toρε − ρ̃ε , ϑ −ϑ and as such may be
estimated in terms of (48 - 53). Similarly,∥∥∥A

(
ρε − ρ̃ε

ε2

)
+B

(
ρεs(ρε ,ϑε)− ρ̃εs(ρ̃ε ,ϑ)

ε2

)
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−
(

p(ρε ,ϑε)− p(ρ̃ε ,ϑ)
ε2

)∥∥∥
(L∞∩Lq)(R3)

≤ c for all q > 3/2.

Summing up the previous estimates we may write down a weak formulation of
the acoustic equation in the form:

ε

∫ T

0
< Sε(t, ·),∂tϕ > dt +ω

∫ T

0

∫
Ωε

Vε ·∇xϕ dx dt (78)

=−ε < S0,ε ,ϕ(0, ·) > +ε

∫ T

0

∫
Ωε

(
H1

ε ·∇xϕ +H2
ε ·∇xϕ

)
dx dt,

for anyϕ ∈C1
c([0,T)×Ω ε),

ε

∫ T

0

∫
Ωε

Vε ·∂tϕ dx dt +
∫ T

0
< Sε(t, ·),divxϕ > dt (79)

=−ε

∫
Ωε

V0,ε ·ϕ(0, ·) dx+ ε

∫ T

0
< G1

ε(t, ·),∇xϕ > dt

+ε

∫ T

0

∫
Ω

G2
ε : ∇xϕ dx dt + ε

∫ T

0

∫
Ω

G3
ε ·ϕ dx dt

for anyϕ ∈C1
c([0,T)×Ω ε ;R3), ϕ ·n|∂Ω = 0, where

Sε = S1
ε +S2

ε +S1,2
ε ,

ess sup
t∈(0,T)

‖S1
ε(t, ·)‖M 1(Ω ε ) ≤ εc, ess sup

t∈(0,T)
‖S2

ε(t, ·)‖L2(Ω ε ) +‖S1,2
ε ‖D1,2(R3) ≤ c,

(80)
S0,ε = S1

0,ε +S2
0,ε +S1,2

ε ,

‖S1
0,ε‖M 1(Ω ε ) ≤ εc, ‖S2

0,ε‖L2(Ωε ) ≤ c, (81)

and, moreover,
Sε ∈Cweak−(∗)([0,T];M +(Ω ε)).

Furthermore,
Vε = V1

ε +V2
ε ,

ess sup
t∈(0,T)

‖V1
ε‖L1(Ωε ;R3) ≤ εc, ess sup

t∈(0,T)
‖V2

ε‖L2(Ωε ;R3) ≤ c, (82)

‖V0,ε‖(L∞∩L2)(Ωε ;R3) ≤ c, (83)

and
Vε ∈Cweak([0,T];L1(Ωε)).

Finally, ∫ T

0

(
‖H1

ε‖2
L1(Ωε ;R3) +‖H2

ε‖2
L2(Ωε ;R3)

)
dt ≤ c, (84)
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0

(
‖G1

ε‖2
M +(Ωε ;R3×3) +‖G2

ε‖2
L2(Ωε ;R3×3)

)
dt ≤ c, (85)

and
ess sup

t∈(0,T)
‖G3

ε(t, ·)‖L5/3(R3;R3) ≤ c, (86)

where all constants are independent ofε.

2.5.2 Reduction to smooth solutions

With the notation introduced in the previous section, the desired relation (66) reads:{
t 7→

∫
Ω

Vε(t, ·) ·ϕ dx
}

is precompact inL2(0,T) for anyϕ ∈C∞
c (Ω ;R3). (87)

In order to see (87), it is more convenient to deal with the classical (smooth) so-
lutions of acoustic equation (78), (79). Sinceϕ ∈C∞

c (Ω ;R3) is fixed, the idea is to
replace the data in (78), (79) by smooth ones in such a way that the resulting smooth
solution of (78), (79) is close toVε at least on the support ofϕ. To this end, fixing
ε > 0 for a moment, we consider

Si
0,ε,δ ∈C∞

c (Ωε), i = 1,2,3, ‖S1
0,ε,δ‖L1(Ω) +‖S2

0,ε,δ‖L2(Ω) +‖S3
0,ε,δ‖D1,2(R3) ≤ c,

(88)
such that

S1
0,ε,δ → S1

0,ε weakly-(*) in M +(Ω ε), Sj
0,ε,δ → Sj

0,ε in L2(Ωε), j = 2,3, for δ → 0.

Similarly, take

V i
0,ε,δ ∈C∞

c (Ωε ;R3), i = 1,2, ‖V1
0,ε,δ‖L1(Ω ;R3) +‖V2

0,ε,δ‖L2(Ω ;R3) ≤ c,

V1
0,ε,δ → V0,ε in L1(Ωε ;R3), V2

0,ε,δ → V0,ε in L2(Ωε ;R3) asδ → 0, (89)

and, finally,
H i

ε,δ ∈C∞
c ((0,T)×Ωε ;R3), i = 1,2,

‖H1
ε,δ‖L2(0,T;L1(Ω ;R3)) +‖H2

ε,δ‖L2(0,T;L2(Ω ;R3)) ≤ c,

H1
ε,δ → H1

ε in L2(0,T;L1(Ωε ;R3)), H2
ε,δ → H2

ε in L2(0,T;L2(Ωε ;R3)) asδ → 0
(90)

with
Gi

ε,δ ∈C∞
c ((0,T)×Ωε ;R3×3), i = 1,2,

‖G1
ε,δ‖L2(0,T;L1(Ω ;R3×3)) +‖G2

ε,δ‖L2(0,T;L2(Ω ;R3×3)) ≤ c,

G1
ε,δ →G1

ε weakly-(*) in L2(0,T;M +(Ωε ;R3×3)), (91)

G2
ε,δ →G2

ε in L2(0,T;L2(Ωε ;R3×3)) asδ → 0, (92)
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G3
ε,δ ∈C∞

c (Ωε ;R3), ‖G3
ε,δ‖L5/3(Ω ;R3) ≤ c,

G3
ε,δ →G3

ε in L5/3((0,T)×Ωε ;R3) asδ → 0. (93)

Assume thatSε,δ , Vε,δ is the (unique) classical solution of the acoustic equation
(78), (79), with the initial data and the forcing terms replaced by theirδ− approxi-
mations specified in (88 - 93). Keeping (87) in mind we will show that

ess sup
t∈(0,T)

∣∣∣∣∫
Ωε

(
Vε,δ (t, ·)−Vε(t, ·)

)
·ϕ dx

∣∣∣∣≤ ε wheneverδ is small enough, (94)

for any fixedε > 0. Consequently, it follows from (94) that it is enough to show (87)
for Vε,δ (ε). In other words, we may assume that all the quantities appearing in the
acoustic equation are smooth and all the data is compactly supported inΩε .

To see (94), we fixε and write the functionϕ in terms of itsHelmholtz decom-
position,

ϕ = H[ϕ]+H⊥[ϕ],

where
H⊥[ϕ] = ∇xψ, ∆ψ = divxϕ in Ωε , ∇xψ ·n|∂Ωε

= 0.

TakingH[ϕ] as a test function in (79) we easily deduce that

sup
t∈(0,T)

∣∣∣∣∫
Ωε

(
Vε,δ (t, ·)−Vε(t, ·)

)
·H[ϕ] dx

∣∣∣∣≤ ε (95)

wheneverδ = δ (ε) is small enough.
Now, let{ψn}∞

n=0 be an orthonormal system of eigenfunctions of the Laplace op-
erator inΩε endowed with the homogeneous Neumann boundary conditions, specif-
ically,

−∆ψn = λnψn in Ωε , ∇xψn ·n|∂Ωε
= 0, n = 0,1, . . . .

Taking the quantitiesφ(t)ψn(x), φ(t)∇xψn, φ ∈C∞
c (0,T) as test functions in (78),

(79), respectively, we obtain a system of two ordinary differential equations:

ε∂t

∫
Ωε

V(t, ·) ·∇xψn dx−λn < S(t, ·),ψn >= ε f 1
n ,

ε∂t < S(t, ·),ψn > +
∫

Ωε

V(t, ·) ·∇xψn dx = ε f 2
n

for the unknown functions of time:{
t 7→

∫
Ωε

V(t, ·) ·∇xψn dx

}
, {t 7→< S(t, ·),ψn >} ,

where the initial data as well as the forcing termsf 1
n , f 2

ε can be evaluated in terms
of the (ε,δ )-quantities. Consequently, we infer that for givenε > 0, N > 0, there
existsδ = δ (N,ε) > 0 such that
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sup
t∈(0,T)

∣∣∣∣∫
Ωε

(
Vε,δ (t, ·)−Vε(t, ·)

)
·∇xψn dx

∣∣∣∣≤ ε wheneverδ ≤ δ (N,ε) (96)

for anyn≤ N.
Finally, sinceVε admits the bound (82), we have

sup
t∈(0,T)

∣∣∣∣∫
Ωε

Vε ·∇x
(
∆
−1
N divxϕ−PM[∆−1

N divxϕ]
)

dx

∣∣∣∣≤ ε for all M > M(ϕ), (97)

wherePM denotes the orthogonal projection onto span{ψ1, . . . ,ψM}. Moreover,∫
Ωε

Vε,δ ·∇x
(
∆
−1
N divxϕ−PM[∆−1

N divxϕ]
)

dx

=
∫

Ωε

∇xΨε,δ ·∇x
(
∆
−1
N divxϕ−PM[∆−1

N divxϕ]
)

dx

=−
∫

Ωε

Ψε,δ

(
divxϕ−PM[divxϕ]

)
dx,

whereΨε,δ solves a wave equation

ε∂tSε,δ +ω∆Ψε,δ = εdivx

(
H1

ε,δ +H2
ε,δ

)
, (98)

ε∂tΨε,δ +Sε,δ = ε∆
−1
N

[
divxdivx

(
G1

ε,δ +G2
ε,δ

)]
+ ε∆

−1
N [divxG3

ε,δ ], (99)

supplemented with the boundary conditions

∇xΨε,δ ·n|∂Ωε
= 0. (100)

Thus in view of the uniform bounds (88 - 93), we can findM = M(ε) > 0 such that

sup
t∈(0,T)

∣∣∣∣∫
Ωε

Vε,δ ·∇x
(
∆
−1
N divxϕ−PM[∆−1

N divxϕ]
)

dx

∣∣∣∣< ε for all M > M(ε), δ > 0.

(101)
Combining the estimates (95 - 101) we obtain the desired conclusion (94). Con-
sequently, we may assume that all quantities appearing in the acoustic equation are
smooth, with the data compactly supported in(0,T)×Ωε . Accordingly, the acoustic
equation reads:

ε∂tSε +ωdivxVε = εdivx

(
H1

ε +H2
ε

)
, (102)

ε∂tVε +∇xSε = εdivx

(
G1

ε +G2
ε

)
+ εG3

ε , (103)

supplemented with the boundary conditions

Vε ·n|∂Ωε
= 0, (104)



On the Oberbeck-Boussinesq approximation on unbounded domains 23

and the initial conditions

Sε(0, ·) = S1
0,ε +S2

0,ε +S3
0,ε , Vε(0, ·) = V1

0,ε +V2
ε , (105)

where
‖S1

0,ε‖L1(Ω) +‖S2
0,ε‖L2(Ω) +‖S3

0,ε‖D1,2(R3) ≤ c, (106)

‖V1
0,ε‖L1(Ω ;R3) +‖V2

0,ε‖L2(Ω ;R3) ≤ c, (107)

and
‖H1

ε‖L2(0,T;L1(Ω ;R3)) +‖H2
ε‖L2(0,T;L2(Ω ;R3)) ≤ c, (108)

‖G1
ε‖L2(0,T;L1(Ω ;R3×3)) +‖G2

ε‖L2(0,T;L2(Ω ;R3×3)) ≤ c, (109)

‖G3
ε‖L∞(0,T;L5/3(Ω ;R3)) ≤ c. (110)

2.5.3 Finite speed of propagation

System (102), (103) admits a finite speed of propagation proportional to
√

ω/ε,
specifically, if the initial data for two solutions coincide on the set

BT
√

ω/ε = {x∈Ω | |x|< R+T
√

ω/ε} ⊂Ωε ,

and the forcing terms are the same on the space-time cylinder(0,T)×BT
√

ω/ε , then
the two solutions are the same on the cone{

(t,x) | t ∈ (0,T),x∈ BT
√

ω/ε ,dist[x,∂BT
√

ω/ε ] > t
√

ω/ε

}
.

Since we are interested only in the local behavior of solutions, specifically we want
to show{

t 7→
∫

Ω

Vε(t, ·) ·ϕ dx
}

is precompact inL2(0,T) for anyϕ ∈C∞
c (Ω ;R3), (111)

we may assume that the acoustic system (102), (103) is satisfied on the whole set
(0,T)×Ω and that its solutions have compact support in[0,T]×Ω .

2.5.4 Compactness of the solenoidal component

A short inspection of (103) implies that the family{
t 7→

∫
Ω

Vε ·H[ϕ] dx

}
is precompact inC[0,T]

for any ϕ ∈ C∞
c (Ω ;R3). Consequently, writing the fieldVε in the form of its

Helmholtz decomposition inΩ :
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Vε = H[Vε ]+∇xΨε ,

we can see that (87) follows as soon as we show{
t 7→

∫
Ω

∇xΨε ·ϕ dx

}
→ 0 in L2(0,T) (112)

for anyϕ ∈C∞
c (Ω ;R3), whereΨε is the acoustic potential.

2.6 Acoustic equation - abstract formulation

In order to show (112), we introduce an abstract formulation of the acoustic equation
in terms of theNeumann Laplacean∆N,

∆Nv = ∆v in Ω , ∇xv·n|∂Ω = 0, v∈C∞
c (Ω).

It is standard that∆N can be extended as a self-adjoint operator on the Hilbert space
L2(Ω). As a consequence of Rellich’s theorem, the point spectrum of∆N is empty.
Moreover, the spectrum of−∆N is absolutely continuous and coincides with[0,∞),
see Leis [18].

Since all quantities in the acoustic equation (102), (103) are smooth,Vε ·n|∂Ω =
0, and the dataGi

ε , i = 1,2, G3
ε are compactly supported, we deduce that∇xSε ·

n|∂Ω = 0. In particular, system (102), (103) converts to awave equation:

ε∂tSε +ω∆NΨε = εdivx

(
H1

ε +H2
ε

)
, (113)

ε∂tΨε +Sε = ε∆
−1
N divxdivx

(
G1

ε +G2
ε

)
+ ε∆

−1
N divxG3

ε , (114)

supplemented with the homogeneous Neumann boundary conditions

∇xΨε ·n|∂Ω = 0, (115)

and the initial conditions

Sε(0, ·) = S0,ε , Ψε(0, ·) = ∆
−1
N divxV0,ε , (116)

where∇xΨε = H⊥[Vε ] is the gradient component of the Helmholtz decomposition
of Vε .

Our goal is to rewrite system (113), (114) solely in terms of the operator∆N

and functions ranging in the Hilbert spaceL2(Ω). To this end, observe first that the
expression divxdivx(G1

ε + G2
ε)(t, ·) may be viewed as a continuous linear form on

D((−∆N)2)∩D((−∆N)1/2) for any fixedt. Indeed it is enough to show that if

h∈D((−∆N)2)∩D((−∆N)1/2),
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thenh possesses second derivatives bounded and continuous inΩ , and, in addition,

∇xh∈ L2(Ω ;R3), ∇2
xh∈ L2(Ω ,R3×3).

SinceD((−∆N)1/2) = D1,2(Ω), we immediately get∇xh∈ L2(Ω ;R3), h∈ L6(Ω).
Next, takingψ ∈C∞(Ω), supp[ψ]⊂Ω , ψ ≡ 1 outside some ball, we get

∆(ψh) = ψ∆h+2∇xψ ·∇xh+∆ψh in R3,

where the right-hand side is bounded inL2(R3). We conclude, by means of the well-
known regularity properties of∆ on R3, that ∇2

xh ∈ L2(Ω ;R3×3), in particular,h
is Hölder continuous and bounded inΩ . Finally, since∆h ∈ L2(Ω), and∆ 2[h] ∈
L2(Ω), we have∆h Hölder continuous, and the standard elliptic theory provides the
desired conclusion.

Estimating the remaining terms in a similar fashion, we arrive at the following
system:

ε∂tSε +ω∆NΨε = ε

(
(−∆N)2[h1

ε ]+h2
ε

)
, (117)

ε∂tΨε +Sε = ε

(
(−∆N)[g1

ε +g3
ε ]+ (−∆N)−1/2[g2

ε +g4
ε ]
)
, (118)

supplemented with the initial data

Sε(0) = (−∆N)2[s1
0,ε ]+ (−∆N)−1/2[s2

0,ε ], (119)

Ψε(0) = ∆N[v1
0,ε ]+∆

−1
N [v2

0,ε ], (120)

with

{hi
ε}ε>0, i = 1,2,{g j

ε}ε>0, j = 1, . . . ,4 bounded inL2(0,T;L2(Ω)), (121)

{si
0,ε}ε>0, i = 1,2, {v j

0,ε}ε>0 j = 1,2, bounded inL2(Ω). (122)

2.6.1 Variation-of-constants formula

In accordance with (117 - 122), the acoustic potentialΨε is determined through
variation-of-constants formula, specifically,

Ψε(t) =
1
2

exp
(

i
t
ε

√
−ω∆N

)[
(−∆N)[v1

0,ε + is1
0,ε ]+

1
(−∆N)

[v2
0,ε + is2

0,ε ]
]

(123)

+
1
2

exp
(
−i

t
ε

√
−ω∆N

)[
(−∆N)[v1

0,ε − is1
0,ε ]+

1
(−∆N)

[v2
0,ε − is2

0,ε ]
]

+
1
2

∫ t

0
exp

(
i
t−s

ε

√
−ω∆N

)[
(−∆N)[g1

ε +g3
ε ]+

1√
(−∆N)

[g2
ε +g4

ε ]
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+i(−∆N)3/2[h1
ε ]+ i

1√
−∆N

[h2
ε ]
]

ds

+
1
2

∫ t

0
exp

(
−i

t−s
ε

√
−ω∆N

)[
(−∆N)[g1

ε +g3
ε ]+

1√
(−∆N)

[g2
ε +g4

ε ]

−i(−∆N)3/2[h1
ε ]− i

1√
−∆N

[h2
ε ]
]

ds.

2.6.2 Strong convergence of velocities

We are ready to show (112), specifically,{
t 7→

∫
Ω

Ψε(t, ·)divxϕ dx
}
→ 0 in L2(0,T) asε → 0 (124)

for any fixedϕ ∈C∞
c (Ω ;R3).

First of all, observe that it is enough to show{
t 7→

∫
Ω

χH(−∆N)[Ψε(t, ·)] dx
}
→ 0 in L2(0,T) (125)

for any fixed χ ∈ C∞
c (Ω), H ∈ C∞

c (0,∞). Indeed, takingχ ∈ C∞
c (Ω) such that

χ|supp[ϕ] = 1, we have ∫
Ω

Ψεdivxϕ dx =
∫

Ω

χΨεdivxϕ dx

=
∫

Ω

χ

(
Id−H(−∆N)

)
[Ψε ]divxϕ dx+

∫
Ω

χdivxϕH(−∆N)[Ψε ] dx,

where, as stated in (125),{
t 7→

∫
Ω

χdivxϕH(−∆N)[Ψε(t, ·)] dx
}
→ 0 in L2(0,T) asε → 0.

On the other hand,∫
Ω

χ

(
Id−H(−∆N)

)
[Ψε ]divxϕ dx =

∫
Ω

(
Id−H(−∆N)

)
[Ψε ]divxϕ dx (126)

=
∫

Ω

(
Id−H(−∆N)

)
[divxϕ]Ψε dx.

Taking a family of functionsH(λ )↗ 1, in particular,

(H(−∆N)− Id)[h]→ 0 for any fixedh∈ L2(Ω),

we observe that the integral (126) is small, uniformly with respect tot ∈ (0,T) for
a suitable choice ofH, as soon as we can show that
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(−∆N)3/2[divxϕ],
1

(−∆N)
[divxϕ] ∈ L2(Ω) (127)

sinceΨε is given by (123). To see (127), it is enough to observe that

∆N[h] = divxϕ implies∇xh∈ Lq(Ω ;R3) for anyq > 1;

whence, by virtue of Sobolev’s theoremh∈ L2(Ω).
In view of the previous discussion, the proof of strong (a.a. pointwise) conver-

gence of velocities reduces to showing (125). This will be done in the following
section.

2.6.3 Spectral measures

Our goal in this section is to show (125). SinceΨε is given by (123), it is sufficient
to check that(∫ T

0

∣∣∣〈exp
(

i
√
−∆N

t
ε

)
H(−∆N)[h],ϕ

〉∣∣∣2 dt

)1/2

≤ ω(ε,H,ϕ)‖h‖L2(Ω) (128)

for anyh∈ L2(Ω), with

ω(ε,H,ϕ)→ 0 asε → 0 for any fixedϕ, H,

where<,> denotes the standard (complex) scalar product inL2(Ω). Uniformity
with respect toh is needed when handling the time integrals in (123).

The integrand in (128) may be written byspectral theorem(see Reed and Simon
[27, Chapter VIII]) as follows〈

exp
(

i
√
−∆N

t
ε

H(−∆N)
)

[h],ϕ
〉

=
∫ ∞

0
exp
(

i
√

λ
t
ε

)
H(λ )h̃(λ ) dµϕ(λ ), (129)

whereµϕ is the spectral measure associated to the functionϕ, and

h̃∈ L2(Ω ;dµϕ), ‖h̃‖L2
µϕ

(Ω) ≤ ‖h‖L2(Ω).

Following Last [17], we obtain∫ T

0

∣∣∣〈exp
(

i
√
−∆N

t
ε

)
H(−∆N)[h],ϕ

〉∣∣∣2 dt (130)

=
∫ T

0

∫ ∞

0

∫ ∞

0
exp
(

i
(√

x−√y
) t

ε

)
H(x)h̃(x) H(y)h̃(y) dµϕ(x) dµϕ(y) dt

≤ c(H)
∫ ∞

0

∫ ∞

0

(∫ ∞

−∞
exp
(
−(t/T)2)exp

(
i
(√

x−√y
) t

ε

)
dt

)
×
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×H(x)h̃(x)H(y)h̃(y) dµϕ(x) dµϕ(y)

≤ c(T,H)
√

π

∫ ∞

0

∫ ∞

0
|h̃(x)||h̃(y)|exp

(
−

T2|
√

x−√y|2

4ε2

)
dµϕ(x) dµϕ(y).

Consequently, by virtue of the Cauchy-Schwartz inequality,∫ T

0

∣∣∣〈exp
(

i
√
−∆N

t
ε

)
H(−∆)[h],ϕ

〉∣∣∣2 dt ≤ c(H)ω2(ε,ϕ)‖h‖2
L2(Ω), (131)

where

ω(ε,ϕ) =
√

2

(∫ ∞

0

∫ ∞

0
exp

(
−

T2|
√

x−√y|2

2ε2

)
dµϕ(x) dµϕ(y)

)1/4

.

Now, it is easy to check thatω(ε,H,ϕ) → 0 asε → 0 provided the spectral
measureµϕ does not charge points in[0,∞), in other words, as long as the point
spectrum of the operator∆N is empty. As a matter of fact, the rate of convergence
is independent of the specific choice ofH. Thus we have proved (125) yielding the
desired conclusion

uε → U in L2((0,T)×K;R3) for any compact setK ⊂Ω . (132)

2.7 Convergence to the limit system - part II

Since we have shown strong pointwise (a.a.) convergence of the family of the ve-
locity fields{uε}ε>0 it is a routine matter to letε → 0 in the weak formulation of
the primitive system to deduce that

ρε −ρ

ε
→ r weakly-(*) in L∞(0,T;L5/3(K)) for any compactK ⊂Ω ,

ϑε −ϑ

ε
→Θ weakly inL2(0,T;W1,2(Ω)),

uε → U weakly inL2(0,T;W1,2(Ω ;R3)),

and
uε → U in L2((0,T)×K) for any compactK ⊂Ω ,

whereU, Θ , r is a weak solution of the Oberbeck-Boussinesq approximation (1 -
4), together with the boundary conditions

U ·n|∂Ω = 0, [S(∇xU)n]×n|∂Ω = 0, ∇xΘ ·n|∂Ω = 0.

More specifically, we have
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divxU = 0 a.a. on(0,T)×Ω ,∫ T

0

∫
Ω

(ρ(U ·∂tϕ +(U⊗U) : ∇xϕ)) dx dt, (133)

=−
∫

Ω

ρU0 ·ϕ dx+
∫ T

0

∫
Ω

S : ∇xϕ− r∇xG dx dt

for any test functionϕ ∈ C∞
c ([0,T)×Ω ;R3), divxϕ = 0, ϕ · n|∂Ω = 0, where we

have set
S = µ(ϑ)(∇xU+∇t

xU).

Furthermore,

ρcp(ρ,ϑ)
[
∂tΘ +divx(ΘU)

]
−κ∆Θ −ρϑα(ρ,ϑ)divx(GU) = 0 a.a. in(0,T)×Ω ,

(134)
∇xΘ ·n|∂Ω = 0,Θ(0, ·) = Θ0,

and
r +ρα(ρ,ϑ)Θ = 0 a.a. in(0,T)×Ω .

We remark that the uniform bounds established above yield

Θ ∈ L∞(0,T;L2(Ω)),

while
U ∈ L∞(0,T;L2(Ω ;R3)),

in particular, the standard maximal regularity theory of the heat equation justifies
validity of (134) a.a. in(0,T)×Ω .

It is interesting to note that the initial conditions for the velocity are determined
through

u0,ε → U0 weakly inL2(Ω ;R3),

while the initial valueΘ0 reads

Θ0 =
ϑ

cp(ρ,ϑ)

(
∂s(ρ,ϑ)

∂ρ
ρ

(1)
0 +

∂s(ρ,ϑ)
∂ϑ

ϑ
(1)
0 +α(ρ,ϑ)G

)
, (135)

where
ρ

(1)
0,ε → ρ

(1)
0 , ϑ

(1)
0,ε → ϑ

(1)
0 weakly inL2(Ω).

Moreover, we can check ifρ(1)
0 , ϑ

(1)
0 satisfy a compatibility condition

∂ p(ρ,ϑ)
∂ρ

ρ
(1)
0 +

∂ p(ρ,ϑ)
∂ϑ

ϑ
(1)
0 = ρG,

where the expression on the left-hand side is nothing other than the linearization of

the pressure at the constant state(ρ,ϑ) applied to the vector[ρ(1)
0 ,ϑ

(1)
0 ], relation
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(135) reduces to
Θ0 = ϑ

(1)
0 .

The reader may consult [14, Chapter 5, Section 5.5] for other aspects of the “data
adjustment” problem related to incompressible limits.

Summarizing the arguments of this section we have proved the following result:

Theorem 2.2 Under the hypotheses of Theorem 2.1, let{ρε ,ϑε ,uε}ε>0 be
a family of weak solutions to the Navier-Stokes-Fourier system on the set
(0,T)×Ωε , whereΩε are given by (34), and the initial{ρ0,ε ,ϑ0,ε ,u0,ε}ε>0

data satisfy (40 - 43), with

ρ
(1)
0,ε → ρ

(1)
0 , ϑ

(1)
0,ε → ϑ

(1)
0 weakly in L2(Ω),

u0,ε → U0 weakly in L2(Ω ;R3).

Then, extracting a suitable subsequence, yields

ρε → ρ in L∞(0,T;L5/3(K)),

ϑε −ϑ

ε
→Θ weakly in L2(0,T;W1,2(K)),

and

uε → U weakly in L2(0,T;W1,2(K;R3)) and, strongly in L2((0,T)×K;R3)

for any compact K⊂ Ω , whereU, Θ is a weak solution of the Oberbeck-
Boussinesq approximation in(0,T)×Ω in the sense specified in (133), (134),
and the initial data (135) and

U(0, ·) = H[U0].

Note that dispersive (Strichartz’ estimates) for the wave equation considered in
the whole spaceR3 were used by Desjardins and Grenier [8] in order to eliminate the
acoustic waves in the low Mach number limit for the compressible Navier-Stokes
system. Similar technique was used by Alazard [1] and Isozaki [15] in the context of
Euler equations.Weakconvergence of the convective term could be also established
by a “local” method developed by Lions and Masmoudi [21](see also a nice survey
by Masmoudi [23]).
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3 Oberbeck-Boussinesq approximation

In the remaining part of the paper, we examine the Oberbeck-Boussinesq approxi-
mation written in the form introduced in (7 - 9), specifically,

divxU = 0, (136)

∂tU+divxU⊗U+∇xP = ∆U−θ∇xG, (137)

∂tθ +divx(θU)−∆θ = 0, (138)

where, for the sake of simplicity, all physical constants have been set to one. As
we have seen in Section 2, the system (136 - 137), modulo an obvious change of
variables specified in Section 1, can be identified as a singular limit of the full
Navier-Stokes-Fourier system, where the Mach and Froude numbers tend to zero.
In contrast with Section 2, where the boundary∂Ω was supposed to beacoustically
hard (cf. (19)), we consider the more common no-slip boundary condition

U|∂Ω = 0, (139)

supplemented with a similar homogeneous Dirichlet boundary condition for the
temperature deviation

θ |∂Ω = 0. (140)

Let us remark that (139), (140) could be justified by similar arguments as in Section
2, provided (19) was replaced by more general “penalized” boundary conditions in
the spirit of [10].

In addition to (136 - 140), we suppose that the (weak) solutions satisfy theenergy
inequality

‖U(τ)‖2
L2(Ω ;R3) +2

∫
τ

s
‖∇xU‖2

L2(Ω ;R3×3) dt ≤‖U(s)‖2
L2(Ω ;R3)−

∫
τ

s

∫
Ω

θ∇xG·u dx dt

(141)
for anyτ > 0 and a.a.s≤ τ includings= 0. If the velocity fieldU is smooth, formula
(141) follows easily by multiplying (137) byU and integrating by parts.

Similarly, a formal manipulation of (138) yields∫
Ω

H(θ(τ)) dx+
∫

τ

s

∫
Ω

H ′′(θ)|∇xθ |2 dx dt ≤
∫

Ω

H(θ(s)) dx (142)

for anyτ > 0 and a.a.s≤ τ includings= 0 for any smooth convexH.
The interested reader may consult [14, Section 5.5.4, Chapter 5] for a rigorous

derivation of the energy inequalities (141), (142) via a singular limit process.
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3.1 Suitable weak solutions

We consider the initial data for system (136 - 138) in the form

U(0, ·) = U0 ∈ L2(Ω), θ(0, ·) = θ0 ∈ L1∩L∞(Ω). (143)

Motivated by the previous discussion, we shall say thatU, θ is asuitable weak
solutionto problem (136 - 140), supplemented with the initial data (143) if

U ∈Cweak([0,T];L2(Ω ;R3))∩L2(0,T;W1,2
0 (Ω ;R3));

θ ∈Cweak([0,T];L2(Ω))∩L∞(0,T;Lp(Ω)) for any 1≤ p≤ ∞,

θ ∈ L2(0,T;W1,2
0 (Ω));

divxU = 0 a.a. in(0,T)×Ω ;

the integral identity ∫ T

0

∫
Ω

(
U ·∂tϕ +U⊗U : ∇xϕ

)
dx dt

=
∫ T

0

∫
Ω

(
∇xU : ∇xϕ +θ∇xG·ϕ

)
dx−

∫
Ω

U0 ·ϕ(0, ·) dx

holds for anyϕ ∈C∞
c ([0,T)×Ω ;R3), divxϕ = 0;

∂tθ +divx(θU)−∆θ = 0 a.a. in(0,T)×Ω ;

the energy inequalities (141), (142) are satisfies for a.a.τ ∈ [0,T].

Remark 3.1
Given the anticipated regularity ofU, θ enforced by (141), (142), we may use the

maximal regularity theory for the heat equation (138) in order to conclude that∂tθ ,
∆θ ∈ Lq(0,T;Lq(Ω)) for a certain q> 1.

Given thea priori bounds induced by (141), (142), theexistenceof suitable weak
solutions can be proved, besides a rather complicated undirect proof in the spirit of
Section 2, by means of nowadays standard methods, see the monograph by Sohr
[29]. In the last part of this study, we examine the asymptotic behavior of suitable
weak solutions to the Oberbeck-Boussinesq approximation fort → ∞.
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4 Long-time behavior of solutions to the Oberbeck-Boussinesq
approximation

We conclude the present study of the Oberbeck-Boussinesq system by investigating
the asymptotic behavior of solutions for large times. In contrast with [4], we show
that the physically relevant choice of the forcing term∇xG yields strong conver-
gence to zero of the total energy associated to system (136 - 140). Our approach
is based on the available results by Miyakawa and Sohr [24] for the forced Navier-
Stokes system. More precisely, we derive suitable decay estimates for the tempera-
ture deviationθ resulting from the “entropy” inequality (142) and then use the fact
that, in accordance with (5), (6),

∇xG∈ Lp∩L∞(Ω ;R3) for p > 3/2, (144)

in particular, the forcing term in the Navier-Stokes system decays to zero sufficiently
fast for|x| → ∞.

4.1 Decay estimates for the temperature deviations

In this subsection we show that the solutions to the Oberbeck-Boussinesq system
decay inLp,1 < p≤ ∞ at the same rate as the solutions of the underlying linear
counterpart, namely the solutions to the heat equations.

Theorem 4.1 LetU(0, ·) = U0 ∈ L2(Ω), θ(0, ·) = θ0 ∈ L1∩L∞(Ω). Suppose
U, θ is a suitable weak solutionto problem (136 - 140), with the initial data
(U0,θ0), then

‖θ(t, ·)‖Lp(Ω) ≤ c(‖θ0‖L1∩L∞(Ω))t
− 3

2(1−1/p), 1≤ p≤ ∞, t > 0. (145)

where the constant c is independent of p.

Proof

We note first that by appropriate choices ofH, the estimate (142) yields

‖θ(t, ·)‖Lp(Ω) ≤ ‖θ0‖Lp(Ω) for anyt ≥ 0, 1≤ p≤ ∞. (146)

Following the well-known argument of Alikakos [2] (cf. also Cordoba, Cordoba
[5]), we multiply (138) by 2j|θ |2 j−2θ and integrate the resulting expression over
Ω , obtaining
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∂t

∫
Ω

|θ j |2 dx+
2 j(2 j−1)

j2

∫
Ω

|∇xθ
j |2 dx≤ 0,

in particular choosingj = 2k−1 yields

∂t

(
1
2

∫
Ω

∣∣∣|θ |2k−1
∣∣∣2 dx

)
≤−2k−1

2k−2

∫
Ω

∣∣∣∇x|θ |2
k−1
∣∣∣2 dx, k = 1,2, . . . (147)

By means of the standard Gagliardo-Nirenberg inequality (see Proposition 1.1), in-
terpolatingL2 betweenL1 andḢ1 we have∥∥∥|θ |2k−1

∥∥∥2

L2(Ω)
≤ c
∥∥∥∇x|θ |2

k−1
∥∥∥6/5

L2(Ω)

∥∥∥|θ |2k−1
∥∥∥4/5

L1(Ω)
. (148)

Let ms = 2s. We proceed by induction ons. For m0 the conclusion of the Theorem
follows by (146). Fors= k−1 we assume by induction that∫

Ω

|θ |2k−1
dx≤ bk−1t

− 3
2(2k−1−1). (149)

Let s= k, define

Φk =
∫

Ω

∣∣∣|θ |2k−1
∣∣∣2 dx,

Combining (147), (148) and (149) yields

∂tΦk ≤−Φ
5/3
k c−5/3b−4/3

k−1 t2k−2,

therefore, integrating in time over[0, t] and a simple reordering of the terms gives

Φk(t)≤
[

Φk(0)+
2
3

c−5/3b−4/3
k−1

1
2k−1

t2k−1
]−3/2

. (150)

By virtue of (146), we can take

b0 = ‖θ0‖L1(Ω), (151)

and, consequently, formula (150) yields, by induction and interpolation,

‖θ(t, ·)‖Lp(Ω) ≤ c(‖θ0‖L1∩L∞(Ω))t
− 3

2(1−1/p) for any 1≤ p < ∞, t > 0. (152)

The constant in (152) may, in principle, depend onp, however, a close inspection of
(150) reveals, similarly to Alikakos [2, Theorem 3.1] that

bk ≤ cb2
k−1, meaning,bk ≤CkM2k

for certainC,M > 0,

It follows from (151) that

Φ
1/2k
k ≤ c(‖θ0‖L1∩L∞(Ω))t

− 3
2(1−1/2k).
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Taking the limit ask tends to infinity extends the decay rate top = ∞, specifically,

‖θ(t, ·)‖L∞(Ω) ≤ c(‖θ0‖L1∩L∞(Ω))t
− 3

2 , t > 0.

This concludes the proof of the theorem.
ut

4.2 Decay estimates for the velocity

In view of the specific choice of the potentialG (cf. (144)), and the uniform decay
estimates of the temperature deviationθ established in (145), (152), the decay of
the velocity fieldU follows from the results of Miyakawa and Sohr [24]. Indeed it
is enough to check that (144), (152) imply that

θ∇xG∈ L1∩L∞(0,∞;L2(Ω ;R3)),

therefore, by virtue of [24, Theorem 1],

lim
t→∞

‖U(t)‖L2(Ω ;R3) = 0. (153)

Moreover, the velocity becomes ultimately more regular, specifically, there exists
T0 > 0 such that

U ∈ L2(T0,T0 +T;W2,2(Ω ;R3)), ∂tU ∈ L2(T0,T0 +T,L2(Ω ;R3)), for anyT > 0.
(154)

Let us summarize the results obtained in this section:

Theorem 4.2 Let Ω ⊂ R3 be an unbounded (exterior) domain with compact
boundary of class C2+ν . LetU, θ be a suitable weak solution to the Oberbeck-
Boussinesq approximation in(0,∞)×Ω specified in Section 3.1, emanating
from the initial data

U0 ∈ L2(Ω ;R3), θ0 ∈ L1∩L∞(Ω).

Then

U(t, ·)→ 0 in L2(Ω ;R3), θ(t, ·)→ 0 in Lp(Ω) for any1 < p≤ ∞ as t→ ∞.

Remark 4.1
Since G is a harmonic (regular) function inΩ , the nowadays standard ultimate

regularity results for the Navier-Stokes system (see e.g. the monograph by Sohr [29,
Chapter V, Theorem 4.2.2]), together with a simple bootstrap argument applied to



36 Eduard Feireisl and Maria E. Schonbek

the heat equation (138), could be used to deduce that the solutionU, θ becomes
regular if time is large enough. Similarly, decay in stronger Sobolev norms can be
shown.
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Birkhäuser Verlag, Basel, 2001.

30. R. Kh. Zeytounian.Asymptotic modeling of atmospheric flows. Springer-Verlag, Berlin, 1990.
31. R. Kh. Zeytounian. Joseph Boussinesq and his approximation: a contemporary view.C.R.

Mecanique, 331:575–586, 2003.
32. R. Kh. Zeytounian.Theory and applications of viscous fluid flows. Springer-Verlag, Berlin,

2004.


