Math 205 HW5:

1. a. Show that if 0 Then the reverse Hölder inequality holds. b. Use the reverse Hölder to show that the reverse Minkoswski inequality holds.

2. Let μ be a finite Borel measure on $[0,\infty)$ such that

- $\mu \ll \lambda$, and
- $\mu(B) = a\mu(aB)$ for each $a \ge 1$ and for each Borel set $B \in [0, \infty)$, where $aB = \{ab : b \in B\}$

If the Radon -Nikodym derivative $\frac{d\mu}{d\lambda}$ is a continuous function, show that there exists a constant $c \ge 0$ such that $\frac{d\mu}{d\lambda}(x) = \frac{c}{x^2}$ for each $x \ge 1$

- 3. Verify the following properties of signed measures
- a. $\mu_1 \perp \mu_2$ then $|\mu_1| \perp |\mu_2|$ b. $\nu \ll \mu$ and $\mu \ll \omega$ then $\nu \ll \omega$ c. $0 \le \nu \le \mu$ then $\nu \ll \mu$ d. $\mu \ll 0$ then $\mu = 0$