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NORM INFLATION FOR INCOMPRESSIBLE
MAGNETO-HYDRODYNAMIC SYSTEM IN Ḃ−1,∞

∞

Mimi Dai, Jie Qing, and Maria E. Schonbek
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(Submitted by: Yoshikazu Giga)

Abstract. Based on the construction of Bourgain and Pavlović [1] we
show that the solutions to the Cauchy problem for the three-dimensional
incompressible magneto-hydrodynamics (MHD) system can develop dif-

ferent types of norm inflations in Ḃ−1,∞
∞ . In particular the magnetic

field can develop norm inflation in a short time even when the veloc-
ity remains small and vice versa. Efforts are made to present a very
expository development of the ingenious construction of Bourgain and
Pavlović in [1].

1. Introduction

In this paper we consider the three-dimensional incompressible magneto-
hydro-dynamics (MHD) system:

ut −4u+ u · ∇u− b · ∇b+∇p = 0,
bt −4b+ u · ∇b− b · ∇u = 0, (1.1)
∇ · u = 0, ∇ · b = 0,

with the initial conditions

u(x, 0) = u0(x), b(x, 0) = b0(x), (1.2)

where x ∈ R3, t ≥ 0, u is the fluid velocity, b is the magnetic field. The
initial data u0 and b0 are divergence free. When the magnetic field b(x, t)
vanishes, the incompressible MHD system is reduced to the incompressible
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Navier-Stokes equations. The solutions to the MHD system share the same
scaling properties of solutions to the Navier-Stokes equations; that is,

uλ(x, t) = λu(λx, λ2t), bλ(x, t) = λb(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t)

solves the MHD system (1.1) with initial data

u0λ = λu0(λx), b0λ = λb0(λx),

if u(x, t) and b(x, t) solve the MHD system (1.1) with initial data u0(x) and
b0(x). The spaces that are invariant under the above scaling are called the
critical spaces. Examples of critical spaces in three dimension are

Ḣ
1
2 ↪→ L3 ↪→ BMO−1 ↪→ Ḃ−1,∞

∞

(see [2], for example, for the discussions of the embeddings).
The study of solutions to the Navier-Stokes equations as well as of the

MHD system in critical spaces has been one of the foci of research activities
since the pioneering work of Kato [5]. In case of the Navier-Stokes equations,
Koch and Tataru [6] in 2001 established global well posedness of the Navier-
Stokes equations with small initial data in the space BMO−1. Recently,
Bourgain and Pavlović [1] showed ill posedness for Navier-Stokes equations in
Ḃ−1,∞
∞ . More precisely, Bourgain and Pavlović constructed some arbitrarily

small initial data in Ḃ−1,∞
∞ and produced so-called norm inflation in the sense

that the solution becomes arbitrarily large in Ḃ−1,∞
∞ after an arbitrarily short

time.
In a recent work [8], Miao, Yuan and Zhang established the existence of

a global mild solution in BMO−1 for small initial data and the uniqueness
of such solutions in C([0,∞);BMO−1). It is then an interesting problem to
study the solutions to the MHD system with initial data in the space Ḃ−1,∞

∞ .
In this paper, we discuss different cases of norm inflation phenomena for the
MHD system in Ḃ−1,∞

∞ . We construct arbitrarily small initial data (u0, b0) in
Ḃ−1,∞
∞ × Ḃ−1,∞

∞ . This data when evolved in time through the MHD system
give rise to “norm inflation” in Ḃ−1,∞

∞ for the corresponding solutions (u, b).
One particularly interesting scenario is that the magnetic field b shows norm
inflation while the velocity u remains small. Namely, we show the following.

Theorem 1.1. For any δ > 0 there exists a solution (u, b, p) to the MHD
system (1.1) with data u0 ∈ S and b0 ∈ S which satisfy

‖u(0)‖
Ḃ−1,∞
∞

. δ, ‖b(0)‖
Ḃ−1,∞
∞

. δ,
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such that for some 0 < T < δ

‖b(T )‖
Ḃ−1,∞
∞

& 1
δ

but for any 0 < t < T < δ

‖u(t)‖
B−1,∞
∞

. δ.

Remark 1.2. We refer the reader to the beginning of the section of prelim-
inaries for the definition of the symbol ..

Our proof follows the methods introduced by Bourgain and Pavlović in
[1]. Efforts are made to give a very expository development of the ingenious
ideas of Bourgain and Pavlović in [1].

We now recall some auxiliary concepts related to plane waves, which are
necessary in the sequel:

• The “diffusion” of a plane wave v sin(k · x) in R3 is given by

e∆tv sin(k · x) = e−|k|
2tv sin(k · x).

Thus the magnitude of the diffusion of a plane wave dies down in
time in the scale that is measured by the square of the magnitude of
the wave vector k.
• It is easy to see that u = b = e−|k|

2tv sin(k ·x) solves the MHD system
when the wave vector k is orthogonal to the amplitude vector v.
• The nonlinear interaction of two such diffusions in the MHD system

can be captured, and it only produces a slower diffusion if the two
wave vectors are close.

We note that these observations are the basis of the original argument of
Bourgain and Pavlović in [1]. We will use them to construct a combination of
such “diffusions” with minimum nonlinear interactions yet producing enough
slower “diffusions” to cause the norm inflation in short time.

Remark 1.3. It is interesting to observe that even though the initial velocity
is zero the velocity can be triggered to develop norm inflation while the
magnetic field stays under control. More precisely we can show that, for
any δ > 0, there exists a solution (u, b, p) to the MHD system (1.1) with
vanishing initial velocity and some b0 ∈ S which satisfies

‖b(0)‖
Ḃ−1,∞
∞

. δ

and for some 0 < T < δ

‖u(T )‖
Ḃ−1,∞
∞

& 1/δ,
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while for all 0 < t < T < δ

‖b(t)‖
B−1,∞
∞

. δ.

Remark 1.4. We also note that due to the interaction between the velocity
and the magnetic field, if initially they are the same, they may restrain each
other from norm inflations.

In our paper, we present our results in T3. But, as pointed out in [1], the
proof can be modified to R3.

2. Preliminaries

2.1. Notation. We denote by A . B an estimate of the form A ≤ CB with
some constant C, and by A ∼ B an estimate of the form C1B ≤ A ≤ C2B
with some constants C1, C2. For completeness we recall the defining norms
for the Besov space Ḃ−1,∞

∞ and the BMO−1 space

‖f‖
Ḃ−1,∞
∞

= sup
t>0

t1/2‖et4f‖L∞ ; (2.1)

‖f‖BMO−1 = sup
x0∈R3,R>0

( 1
|B(x0,

√
R)|

∫ R

0

∫
B(x0,

√
R)
|et4f(y)|2 dy dt

) 1
2
. (2.2)

We will also work with the so-called inhomogeneous Besov space B−1,∞
∞ with

the norm
‖f‖

B−1,∞
∞

= sup
0<t<1

√
t‖et∆f‖L∞ . (2.3)

Clearly,
‖f‖

B−1,∞
∞

≤ ‖f‖
Ḃ−1,∞
∞

and ‖f‖
B−1,∞
∞

≤ ‖f‖L∞ ,
since ‖et∆f‖L∞ ≤ ‖f‖L∞ .

2.2. The well-posedness result of the incompressible MHD system
in BMO−1. We recall the well-posedness result of C. Miao, B. Yuan and
B. Zhang in BMO−1 in [8]. For this we introduce the spaces XT and the
corresponding norm.

Definition 2.1. Let u(x, t) be a measurable function on R3×[0, T ) for T > 0
and let

‖u(·, ·)‖XT = sup
0<t<T

t1/2‖u(·, t)‖L∞ (2.4)

+ sup
x0∈R3,0<R<T

( 1
|B(x0,

√
R)|

∫ R

0

∫
B(x0,

√
R)
|u(y, t)|2 dy dt

) 1
2
.



Norm inflation for incompressible magneto-hydrodynamic system 5

Then the space-time space XT is defined by

XT = {f(x, t) ∈ L2(0, T ;L2(R3)) : ‖f‖XT <∞}

It is worth mentioning that, for each t ∈ (0, T ],

‖f(·, t)‖L∞ ≤
1√
t
‖f‖XT .

In [8], Miao, Yuan and Zhang proved the following existence theorem.

Theorem 2.2. (Miao, Yuan, and Zhang) Let (u0(x), b0(x)) ∈ BMO−1 ×
BMO−1 with ∇·u0 = 0 and ∇·b0 = 0. Then, there exists a positive constant
ε such that if ‖(u0, b0)‖BMO−1 < ε, then the MHD system has a unique global
mild solution (u(x, t), b(x, t)) ∈ XT ×XT satisfying

‖(u(x, t), b(x, t))‖XT×XT ≤ 2ε for all T > 0.

2.3. Bilinear operators. Let P denote the projection on divergence-free
vector fields, which acts on a function φ as

P(φ) = φ+∇ · (−4)−1divφ.

As shown in [6, 8] the bilinear operator

B(u, v) =
∫ t

0
e(t−τ)4P(u · ∇v) dτ

maps XT ×XT into XT continuously. More precisely we have

‖B(u, v)‖XT . ‖u‖XT ‖v‖XT . (2.5)

2.4. Rewriting the MHD system. Following ideas from [1] we rewrite
the MHD system (1.1) introducing the expression

u = et4u0 − u1 + y (2.6)

b = et4b0 − b1 + z, (2.7)
where

u1(x, t) = B(et4u0(x), et4u0(x))− B(et4b0(x), et4b0(x)), (2.8)

b1(x, t) = B(et4u0(x), et4b0(x))− B(et4b0(x), et4u0(x)). (2.9)
An easy calculation shows that

yt −4y +G0 +G1 +G2 = 0, (2.10)
zt −4z +K0 +K1 +K2 = 0,

where

G0 = P[(et4u0 · ∇)u1 + (u1 · ∇)et4u0 + (u1 · ∇)u1]
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− P[(et4b0 · ∇)b1 + (b1 · ∇)et4b0 + (b1 · ∇)b1]

G1 = P[(et4u0 · ∇)y + (u1 · ∇)y + (y · ∇)et4u0 + (y · ∇)u1]

− P[(et4b0 · ∇)z + (b1 · ∇)z + (z · ∇)et4b0 + (z · ∇)b1]

G2 = P[(y · ∇)y]− P[(z · ∇)z]

and

K0 = P[(et4u0 · ∇)b1 + (u1 · ∇)et4b0 + (u1 · ∇)b1]

− P[(et4b0 · ∇)u1 + (b1 · ∇)et4u0 + (b1 · ∇)u1]

K1 = P[(et4u0 · ∇)z + (u1 · ∇)z + (y · ∇)et4b0 + (y · ∇)b1]

− P[(et4b0 · ∇)y + (b1 · ∇)y + (z · ∇)et4u0 + (z · ∇)u1]

K2 = P[(y · ∇)z]− P[(z · ∇)y].

Here G0 and K0 are constants and G1 and K1 are linear, while G2 and K2

are quadratic in terms of y and z.

Remark 2.3. Note that although the second equation in the MHD system
(1.1) has no pressure, since u and b are both divergence free, the term u ·
∇b − b · ∇u is automatically divergence free. Hence the projector P acting
on this term does not change the second equation and hence we can write
b1 and the Ki’s as described above.

3. Interactions of plane waves

In this section we show how the diffusions of plane waves interact in MHD
system. These interactions are the basis for the constructions of initial data
which will evolve into the different cases of velocity and magnetic field norm
inflations .

3.1. Diffusion of a plane wave. As a first step, we consider the same
initial data for velocity and the magnetic field using one single plane wave.
Suppose k ∈ R3, v ∈ S2 and k · v = 0. Let

u0 = b0 = v cos(k · x).

Then ∇ · u0 = 0,∇ · b0 = 0, and

et4v cos(k · x) = e−|k|
2tv cos(k · x). (3.1)

In fact the “diffusions” (et∆v cos(k · x), et∆v cos(k · x)) of a plane wave
solve the MHD system with vanishing pressure. It is important to notice
that
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• ‖v cos(k · x)‖
Ḃ−1,∞
∞

∼ 1
|k| ,

• ‖et∆v cos(k · x)‖XT . 1
|k| ,

which says that the size of a plane wave in the space Ḃ−1,∞
∞ is reciprocal

to the magnitude of its wave vector, and in XT it is bounded by this same
reciprocal.

3.2. Interaction of plane waves. Now we consider different plane wave
initial data for the velocity and magnetic field. Suppose ki ∈ R3, vi ∈ S2

and ki · vi = 0, for i = 1, 2. Let

u0 = cos(k1 · x)v1, b0 = cos(k2 · x)v2.

Using the decomposition given in Section 2.4,

u = et∆u0, b = et∆b0 − b1 + z,

solve the MHD system with vanishing pressure. To simplify our calculations
we assume that

k2 · v1 = 0, and k1 · v2 = 1
2 ,

which eliminates the term et∆u0 · ∇(et∆b0) and gives

et4b0 · ∇(et4u0) = −e−(|k1|2+|k2|2)tv1 sin(k1 · x) cos(k2 · x)(k1 · v2)

= −1
4e
−(|k1|2+|k2|2)tv1(sin((k1 − k2) · x) + sin((k1 + k2) · x)).

Hence

b1 =
1
4
v1 sin((k1 − k2) · x)

∫ t

0
e−(|k1|2+|k2|2)τe−|k1−k2|

2(t−τ)dτ

+
1
4
v1 sin((k1 + k2) · x)

∫ t

0
e−(|k1|2+|k2|2)τe−|k1+k2|2(t−τ)dτ

= b1,0 + b1,1,

where

b1,0 =
1
4
v1 sin((k1 − k2) · x)

−e−(|k1|2+|k2|2)t + e−|k1−k2|
2t

2k1 · k2

and

b1,1 =
1
4
v1 sin((k1 + k2) · x)

e−(|k1|2+|k2|2)t − e−|k1+k2|2t

2k1 · k2
.

Therefore, if we can manage to control z in light of the continuity of the
bilinear operator B in XT , then the interaction of two plane waves is small
in Ḃ−1,∞

∞ if neither the sum nor the difference of their wave vectors is small
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in magnitude. In the meantime, the interaction is sizable in Ḃ−1,∞
∞ if either

the sum or the difference of their wave vectors is small in magnitude.

4. Proof of theorem 1.1

In this section we will follow the idea from [1] to construct initial data to
produce norm inflation for solutions to MHD systems. From the discussions
in the previous sections we know that the interaction of two plane waves is
not enough to show the norm inflation. We need to build interactions of more
plane waves. The construction in [1] depends on the rather sophisticated
choices of plane waves. We will use a similar scheme.

4.1. Construction of initial data for the MHD system. For a fixed
small number δ > 0 we will specify later the following initial data:

u0 =
Q√
r

r∑
s=1

|ks|vs cos(ks · x) (4.1)

and

b0 =
Q√
r

r∑
s=1

|k′s|v′s cos(k′s · x). (4.2)

We expect, for each s, that the interaction of the two plane waves vs cos(ks·x)
and v′s cos(k′s · x) is sizable in Ḃ−1,∞

∞ , while the interactions of plane waves
of different s is small, as demonstrated in Section 3.2. Hence we have the
following.

• Wave vectors: The wave vectors ks ∈ R3 are parallel to a given vector
k0 ∈ R3. The modulo |k0| will be taken to be large, depending on Q.
The magnitude of ks is defined by,

|ks| = 2s|k0||ks−1|, s = 1, 2, 3, ..., r. (4.3)

The wave vectors k′s ∈ R3 are defined by

ks − k′s = η (4.4)

for a given vector η ∈ S2.
• Amplitude vectors: The amplitude vectors vs, v′s ∈ S2 satisfy

ks · vs = k′s · v′s = 0 (4.5)

to ensure the initial data are divergence free.
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• Auxiliary assumptions: We also require that

η · vs = 0, η · v′s = 1
2 (4.6)

to simplify our calculations. In fact we will choose vs = v a fixed
vector.

We first point out the following simple facts to further motivate the choices
of the magnitudes of ks.

Lemma 4.1. ∑
l<s

|kl| ∼ |ks−1| and
∑
l<s

|k′l| ∼ |k′s−1|; (4.7)

r∑
s=1

|ks|e−|ks|
2t .

1√
t

and
r∑
s=1

|k′s|e−|k
′
s|2t .

1√
t
; (4.8)

vi · kj = vi · k′j = vi · η = 0, ∀ i, j = 1, 2, . . . , r; (4.9)
r∑
i=1

|ki|e
− |ki|

2

|k0|2 . 1, and
r∑
i=1

|k′i|e
− |k

′
i|

2

|k0|2 . 1. (4.10)

Proof of Lemma. By the definition (4.3), it is clear that |kl−1| < 1
2 |kl|,

which easily implies the first statement. For the second statement, again
due to the definition (4.3), we know that |ks| ∼ |ks| − |ks−1|. Thus,

r∑
s=1

|ks|e−|ks|
2t ∼

r∑
s=1

(|ks| − |ks−1|)e−|ks|
2t,

while the later one can be considered as a finite Riemman sum of the function
e−x

2t. Therefore,
r∑
s=1

|ks|e−|ks|
2t .

∫ ∞
0

e−x
2tdx =

1√
t

∫ ∞
0

e−x
2td(x

√
t) =

√
π

2
√
t
.

For the third statement, we note that the ks are parallel to the given vector
k0 for all s and vs = v is a fixed vector by the above choice. Hence, by (4.5)

vi · kj = 0, for all i, j = 1, 2, ..., r.

On the other hand, from (4.4) and (4.6), we have

vi · k′j = vi · (kj − η) = vi · kj − vi · η = 0.

The forth statement in the lemma follows from the second one with an
appropriate choice of k0. This completes the proof of the lemma. �

Next we calculate the norm of our initial data.
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Lemma 4.2. For u0 and b0 given in (4.1) and (4.2), we have

‖u0‖Ḃ−1,∞
∞

.
Q√
r
, ‖b0‖Ḃ−1,∞

∞
.

Q√
r
. (4.11)

Proof of Lemma. For the given initial data u0, we have, due to(3.1),

eτ4u0 =
Q√
r

r∑
s=1

|ks|vs cos(ks · x)e−|ks|
2τ . (4.12)

Hence by Lemma 4.1

‖u0‖Ḃ−1,∞
∞

∼ Q√
r

sup
t>0

√
t

r∑
s=1

|ks|e−|ks|
2t .

Q√
r
. (4.13)

The bound for ‖b0‖Ḃ−1,∞
∞

follows in a similar way. �

Lemma 4.3. For u0 and b0 given in (4.1) and (4.2), we have

‖et∆u0‖XT . Q, ‖e
t∆b0‖XT . Q. (4.14)

Proof of Lemma. We only need to verify one of the two.

‖et∆u0‖XT .
Q√
r

(
1 + sup

t∈[0,T ]

(∫ t

0

( r∑
i=1

|ki|e−|ki|
2τ
)2
dτ
) 1

2
)
,

where ( r∑
i=1

|ki|e−|ki|
2τ
)2
.

r∑
i=1

|ki|2e−2|ki|2τ + 2
r∑
i=1

|ki|e−|ki|
2τ
∑
j<i

|kj |

.
r∑
i=1

|ki|2e−|ki|
2τ .

Hence, ∫ t

0

( r∑
i=1

|ki|2e−|ki|
2τ
)2
dτ .

r∑
i=1

(1− e−|ki|2t) . r,

which implies

‖et∆u0‖XT .
Q√
r

+Q.

This completes the proof of the lemma. �

Finally we note the following.
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Lemma 4.4. For t ∈ [0,+∞),

‖et∆u0‖Ḃ−1,∞
∞

.
Q√
r
e−|k0|

2t, ‖et∆b0‖Ḃ−1,∞
∞

.
Q√
r
e−|k0|

2t. (4.15)

4.2. Analysis of u1. As demonstrated in Section 3.2 we consider the de-
composition

u = et∆u0 − u1 + y, b = et∆b0 − b1 + z.

We want to handle u1 first. Recall the definition (2.8)

u1 = B(et∆u0, e
t∆u0)− B(et∆b0, et∆b0).

By our discussions in Section 3.2 the interactions should be small. By the
fact that vi · kj = 0 it is immediately seen that

et4u0 · ∇et4u0 = 0.

Then a straightforward calculation shows

et4b0 ·∇et4b0 = −Q
2

r

r∑
i,j=1

|k′i||k′j |e
−(|k′i|2+|k′j |2)t(v′i · k′j)v′j cos(k′i · x) sin(k′j · x)

= −Q
2

2r

r∑
i,j=1

|k′i||k′j |e
−(|k′i|2+|k′j |2)t(v′i · k′j)v′j sin(k′i + k′j) · x

− Q2

2r

r∑
i,j=1

|k′i||k′j |e
−(|k′i|2+|k′j |2)t(v′i · k′j)v′j sin(k′j − k′i) · x

and

Pet4b0 · ∇et4b0 = −Q
2

2r

r∑
i,j=1

|k′i||k′j |e
−(|k′i|2+|k′j |2)t(v′i · k′j)uj sin(k′j + k′i) · x

− Q2

2r

r∑
i,j=1

|k′i||k′j |e
−(|k′i|2+|k′j |2)t(v′i · k′j)wj sin(k′j − k′i) · x

= E1 + E2,

where uj is the projection of v′j onto the orthogonal to k′j + k′i and wj is the
projection of v′j onto the orthogonal to k′j − k′i. Hence,

B((et∆b0, et∆b0) =
∫ t

0
e(t−τ)∆E1dτ +

∫ t

0
e(t−τ)∆E2dτ = F1 + F2.
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We give the estimate for F1 in detail. The bounds for F2 follow similarly
and as such are omitted.

F1 =
Q2

2r

r∑
i,j=1

|k′i||k′j |(v′i · k′j)uj sin(k′j + k′i) · x
e−(|k′i|2+|k′j |2)t − e−|k

′
i+k
′
j |2t

|k′i + k′j |2 − (|k′i|2 + |k′j |2)
.

By the fact that k′i ·v′i = 0 and since the function 1−e−x
x is bounded for x > 0,

we have

|eτ∆F1| .
Q2

r

r∑
j=1

∑
i<j

|k′i||k′j |2te
−(|k′i|2+|k′j |2)te−|k

′
i+k
′
j |2τ

and

|F1| .
Q2

r

r∑
j=1

∑
i<j

|k′i||k′j |2te
−(|k′i|2+|k′j |2)t.

Hence,

|F1| .
Q2

r

r∑
j=1

∑
i<j

|k′j |2te
− 1

4
|k′j |2t|k′i|e

− 1
4
|k′j |2t .

Q2

r

r∑
j=1

|k′j−1|e
− 1

4
|k′j |2t

and

|eτ∆F1| .
Q2

r

r∑
j=1

|k′j−1|e
− 1

4
|k′j |2te−

1
2
|k′j |2τ ,

where we use the fact that xe−x is bounded for x > 0 and Lemma 4.1.

‖F1‖XT .
Q2

r

r∑
j=1

|k′j−1| sup
t∈[0,T ]

√
te−

1
4
|k′j |2t

+ sup
t∈[0,T ]

(∫ t

0

( r∑
j=1

|k′j−1|e
− 1

4
|k′j |2τ

)2
dτ
) 1

2

where
r∑
j=1

|k′j−1| sup
t∈[0,T ]

√
te−

1
4
|k′j |2t .

r∑
j=1

|k′j−1|
|k′j |

. 1

and

sup
t∈[0,T ]

(∫ t

0

( r∑
j=1

|k′j−1|e
− 1

4
|k′j |2τ

)2
dτ
) 1

2
.
( r∑
j=1

|k′j−1|
|k′j |

) 1
2
. 1
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by the same argument as used in the proof of Lemma 4.3. Similarly

‖F1‖Ḃ−1,∞
∞

= sup
τ>0

√
τ‖eτ∆F1‖L∞ .

Q2

r

r∑
j=1

|k′j−1|
|k′j |

.
Q2

r
.

Therefore, we conclude the following.

Lemma 4.5.

‖u1‖Ḃ−1,∞
∞

.
Q2

r
, ‖u1‖XT .

Q2

r
. (4.16)

Proof. F2 can be handled just as we did F1. �

4.3. Analysis of b1. First we recall that from (2.9)

b1(x, t) = B(et4u0(x), et4b0(x))− B(et4b0(x), et4u0(x)).

Similar to the calculations in the previous section, first, due to the fact that
vi · k′j = 0, we have

eτ4u0 · ∇eτ4b0 = 0.

Also

eτ4b0 · ∇eτ4u0 = −Q
2

2r

r∑
i,j=1

|k′i||kj |e−(|k′i|2+|kj |2)t(v′i · kj)vj sin(kj + k′i) · x

− Q2

2r

r∑
i 6=j
|k′i||kj |e−(|k′i|2+|kj |2)t(v′i · kj)vj sin(kj − k′i) · x

− Q2

2r

r∑
i=1

|ki||k′i|e−(|ki|2+|k′i|2)t(v′i · ki)vi sin(ki − k′i) · x.

We will write

eτ4u0 · ∇eτ4b0 − eτ4b0 · ∇eτ4u0 = b̃1,0 + b̃1,1,

where

b̃1,0 =
Q2

2r

r∑
i=1

|ki||k′i|e−(|ki|2+|k′i|2)t sin(ki − k′i) · x(v′i · ki)vi

=
Q2

4r
sin(η · x)

r∑
i=1

|ki||k′i|e−(|ki|2+|k′i|2)tvi,



14 Mimi Dai, Jie Qing, and Maria E. Schonbek

due to our choices of wave vectors and amplitude vectors in Section 4.1. We
then set b̃1,1 = d̃1,1 + ẽ1,1, where

d̃1,1 =
Q2

2r

r∑
i=1

|ki||k′i|e−(|ki|2+|k′i|2)t sin(ki + k′i) · x(v′i · ki)vi

=
Q2

4r

r∑
i=1

|ki||k′i|e−(|ki|2+|k′i|2)tvi sin(ki + k′i) · x.

By the choices of k′i, which behave more or less like ki for each i when |k0|
is very large, we conclude that ẽ1,1 can be handled just as we did E1 in the
previous section. We then have

d1,1 =
∫ t

0
e∆(t−τ)Pd̃1,1(τ)dτ

=
Q2

4r

r∑
i=1

|ki||k′i|vi sin(ki + k′i) · x
e−(|ki|2+|k′i|2)t − e−|ki+k′i|2t

|ki + k′i|2 − (|ki|2 + |k′i|2)

which gives

|d1,1| .
Q2

r

r∑
i=1

|ki|2te−
1
2
|ki|2t .

Q2

r

r∑
i=1

e−
1
4
|ki|2t

and

|eτ∆d1,1| .
Q2

r

r∑
i=1

e−
1
4
|ki|2te−

1
2
|ki|2τ .

Hence it is even easier to handle d1,1 than it is to handle F1 in the previous
section. Now, if we denote

b1,1 =
∫ t

0
e∆(t−τ)Pb̃1,1(·, τ)dτ,

we may conclude the following.

Lemma 4.6.

‖b1,1‖Ḃ−1,∞
∞

.
Q2

r
, ‖b1,1‖XT .

Q2

r
. (4.17)

The focus is now on

b1,0 =
∫ t

0
e∆(t−τ)Pb̃1,0(·, τ)dτ (4.18)

=
Q2

4r
e−t sin(η · x)v

r∑
i=1

|ki||k′i|
∫ t

0
e(1−(|ki|2+|k′i|2)τdτ
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=
Q2

4r
sin(η · x)v

r∑
i=1

|ki||k′i|
e−t − e−(|ki|2+|k′i|2)t

|ki|2 + |k′i|2 − 1

since vi = v is fixed. Therefore we have the following.

Lemma 4.7. Suppose 1
|k1|2 � T � 1. Then

‖b1,0(·, T )‖
B−1,∞
∞

= sup
τ∈(0,1)

√
τ‖eτ∆b1,0‖L∞ ∼ Q2, ‖b1,0‖XT .

√
TQ2. (4.19)

Proof. By (4.18), it follows that

b1,0 ∼ Q2 sin(η · x)v, (4.20)

for 1
|k1|2 � T � 1. Indeed, T � 1 insures e−t ∼ 1, for t ≤ T ; 1

|k1|2 � T

insures e−(|ks|2+|k′s|2)t ∼ 0. And, since |k1| is very large, |ks| ∼ |k′s| for every
s by (4.4). Thus,

‖b1,0‖B−1,∞
∞

∼ Q2 sup
0<t<1

√
t‖et4 sin(η · x)‖L∞ (4.21)

∼ Q2 sup
0<t<1

√
te−|η|

2t ∼ Q2.

Also

‖b1,0‖XT ∼ Q
2 sup

0<t<T

√
t‖ sin(η · x)‖L∞ (4.22)

+Q2 sup
x0,0<R<T

( 1
|B(x0,

√
R)|

∫ R

0

∫
B(x0,

√
R)
| sin(η · x)|2dxdt

) 1
2

.
√
TQ2. �

4.4. Analysis of y and z. In this section we analyze the parts y and z of
the solution. The idea is to control y and z using the boundedness of the
bilinear operator B in the space XT . Naively one would hope that nonlinear
terms turn out to be even smaller. But the trouble is at the linear term G1

and K1 since

‖et∆u0‖XT . Q, and ‖et∆b0‖XT . Q,
by Lemma 4.3, which is the best we can have. The problem is the plane waves
should not be lumped together in one single time scale. Plane waves that
have much bigger wave vectors diffuse much quicker. Therefore it makes
sense to analyze how y and z evolve in different time scales and see how
different plane waves contribute. In [1], Bourgain and Pavlović very skillfully
designed time steps to group appropriately the plane waves. We will use the
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same idea. We now introduce the time step division as used in [1]. Let
0 < T1 < T2 < · · · < Tβ, where β = Q3 and Tα = |krα |−2, rα = r − αQ−3r,
α = 1, 2, . . . . In particular, rβ = 0 and Tβ = |k0|−2. The following are the
key estimates for the time step design in [1].

Lemma 4.8. Suppose that r is sufficiently large for a fixed large number Q.
Then

‖(et4u0)χ[Tα,Tα+1](t)‖XTα+1
. Q−1/2, ‖(et4b0)χ[Tα,Tα+1](t)‖XTα+1

. Q−1/2.

Proof. The proof is the same as in [1]. For the convenience of the reader
we outline the proof showing the design of the time steps. First use the
decomposition

(et4u0)χ[Tα,Tα+1](t) ≈ L1 + L2 + L3,

where

L1 =
Q√
r

∑
s<rα+1

|ks|vs cos(ks · x)e−|ks|
2tχ[Tα,Tα+1](t)

L2 =
Q√
r

rα∑
s=rα+1

|ks|vs cos(ks · x)e−|ks|
2tχ[Tα,Tα+1](t)

L3 =
Q√
r

∑
rα<s≤r

|ks|vs cos(ks · x)e−|ks|
2tχ[Tα,Tα+1](t).

The first group are those plane waves whose sizes are small. Provided Q√
r
.

Q−
1
2 we have

‖L1‖XTα+1
.

Q√
r

√
Tα+1|krα+1−1|+

Q√
r

(Tα+1|krα+1−1|2)
1
2 .

Q√
r
. Q−

1
2 .

The second group is the group of active plane waves in the time scale
[Tα, Tα+1]. But, by the design, the number of plane waves in this group
is small:

‖L2‖XTα+1
.

Q√
r

+
Q√
r

(rα − rα+1)
1
2 =

Q√
r

+
Q√
r

(Q−3r)
1
2 . Q−1/2,

if Q√
r
. Q−

1
2 . The last group of plane waves are those that have diffused too

much and become small in size:

‖L3‖XTα+1
.

Q√
r

sup
t<Tα+1

r∑
s=rα+1

|ks|
√
te−|ks|

2t
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+
Q√
r

sup
t<Tα+1

(∫ t

0

∣∣∣ r∑
s=rα+1

|ks|2e−|ks|
2tχ[Tα,Tα+1](τ)

∣∣∣dτ) 1
2
.

The first supremum of the last line is controlled by the integral∫ |kr|
|krα+1|

√
te−x

2tdx =
∫ |kr|√t
|krα+1|

√
t
e−y

2
dy ≤

∫ |kr|√t
|krα+1|

√
t
e−ydy

≤ e−|krα+1|
√
t ≤ e−|krα+1|/|krα | � 1,

where we used the fact that |krα+1|
√
t > 1 for t ∈ [Tα, Tα+1] with the second

step and the last step follows from (4.3).
The second supremum is controlled by( r∑

s=rα+1

e−|ks|
2Tα+1

)1/2
≤ (r − rα)e−|krα+1|2/|krα+1 |

2

. (αQ−3r)e−4r−αQ
−3r � 1.

In the same way one can show the same estimate for b0. The proof of the
lemma is complete. �

Lemma 4.9. For T > Tβ,

‖(et4u0)χ[Tβ ,T ](t)‖XT .
Q√
r
, (4.23)

‖(et4b0)χ[Tβ ,T ](t)‖XT .
Q√
r
. (4.24)

Proof. From Lemma 4.1 and (4.12), we see that

‖(et4u0)χ[Tβ ,T ](t)‖XT .
Q√
r

+
Q√
r

r∑
s=1

|ks|e
− |ks|

2

|k0|2 |(T − Tβ)
1
2 .

Q√
r
.

The second one follows in the same way. �

Recall the equations for y and z from Section 2.4:

yt −4y +G0 +G1 +G2 = 0,
zt −4z +K0 +K1 +K2 = 0.

Note that y(0) = z(0) = 0. Hence, t ∈ [Tα, Tα+1] and

y(t) = −
∫ t

0
e(t−τ)4G(τ)dτ (4.25)
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= −
∫ t

0
e(t−τ)4G(τ)χ[0,Tα](τ)dτ −

∫ t

0
e(t−τ)4G(τ)χ[Tα,Tα+1](τ)dτ,

where G = G0 +G1 +G2. So we can write

‖y‖XTα+1
≤ I1 + I2 (4.26)

to see how y develops in the time step [Tα, Tα+1].
Similarly for z, we have

‖z‖XTα+1
≤ ‖

∫ t

0
e(t−τ)4K(τ)χ[0,Tα]dτ‖XTα+1

(4.27)

+ ‖
∫ t

0
e(t−τ)4K(τ)χ[Tα,Tα+1]dτ‖XTα+1

= J1 + J2,

where K = K0 +K1 +K2. Now we are ready to estimate the increments of
y and z during the time scale [Tα, Tα+1].

Lemma 4.10. With appropriate choices of r and T , we have

‖y‖XTα+1
+ ‖z‖XTα+1

. Q3(
1
r

+
√
Tβ) +Q(‖y‖XTα + ‖z‖XTα ). (4.28)

Proof. Applying the bilinear estimate (2.5), estimates in the space XTα

from Lemma 4.3, (4.19), (4.17), and (4.16), we have

I1 . (Q+
Q2

r
+ ‖y‖XTα )‖y‖XTα (4.29)

+ (Q+Q2
√
Tα +

Q2

r
+ ‖z‖XTα )‖z‖XTα + (Q+

Q2

r
)
Q2

r

+ (Q+Q2
√
Tα +

Q2

r
)(Q2

√
Tα +

Q2

r
).

We next apply Lemma 4.8 and estimate

I2 . (Q−1/2 +
Q2

r
+ ‖y‖XTα+1

)‖y‖XTα+1
(4.30)

+ (Q−1/2 +Q2
√
Tα+1 +

Q2

r
+ ‖z‖XTα+1

)‖z‖XTα+1
+ (Q−1/2 +

Q2

r
)
Q2

r

+ (Q−1/2 +Q2
√
Tα+1 +

Q2

r
)(Q2

√
Tα+1 +

Q2

r
).

We choose r sufficiently large and T appropriately small such that

Q2

r
< Q−1/2, Q2

√
T < Q−1/2. (4.31)
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Hence we combine (4.26), (4.29) and (4.30) to arrive at

‖y‖XTα+1
. Q3(

1
r

+
√
Tβ) +Q(‖y‖XTα + ‖z‖XTα ) (4.32)

+Q−1/2(‖y‖XTα+1
+ ‖z‖XTα+1

) + ‖y‖2XTα+1
+ ‖z‖2XTα+1

.

Similarly we can obtain

‖z‖XTα+1
. Q3(

1
r

+
√
Tβ) +Q(‖y‖XTα + ‖z‖XTα ) (4.33)

+Q−1/2(‖y‖XTα+1
+ ‖z‖XTα+1

) + ‖y‖XTα+1
‖z‖XTα+1

.

Therefore, adding (4.32) and (4.33), we have

‖y‖XTα+1
+ ‖z‖XTα+1

. Q3(
1
r

+
√
Tβ) +Q(‖y‖XTα + ‖z‖XTα )

+ (‖y‖XTα+1
+ ‖z‖XTα+1

)2.

So, for much larger r and |k0|, we have ‖y‖XTα+1
+ ‖z‖XTα+1

small and

‖y‖XTα+1
+ ‖z‖XTα+1

. Q3(
1
r

+
√
Tβ) +Q(‖y‖XTα + ‖z‖XTα ). �

By iterating (4.28) the following then follows easily.

Lemma 4.11.

‖y‖XTβ + ‖z‖XTβ . Q
β+2(

1
r

+
√
Tβ). (4.34)

Next, for T > Tβ, in light of Lemma 4.9, one may repeat the argument in
the proof of (4.28) and obtain the following.

Lemma 4.12. For appropriate choice of r and T ,

‖y‖XT + ‖z‖XT . 4Q4T. (4.35)

This implies that

‖y(·, T )‖
B−1,∞
∞

. ‖y(·, T )‖L∞ . T−1/2‖y‖XT . 4Q4
√
T (4.36)

and

‖z(·, T )‖
B−1,∞
∞

. ‖z(·, T )‖L∞ . T−1/2‖z‖XT . 4Q4
√
T . (4.37)
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4.5. Finishing the Proof. Now we are ready to complete the proof of
Theorem 1.1. Since (4.17) implies

‖b1,1(·, T )‖
B−1,∞
∞

. ‖b1,1(·, T )‖L∞ . T−
1
2 ‖b1,1‖XT .

Q2

r
√
T
, (4.38)

from (2.7) we combine (4.19), (4.38) and (4.37) to obtain

‖b(·, T )− eT4b0‖Ḃ−1,∞
∞

≥ ‖b(·, T )− eT4b0‖B−1,∞
∞

≥ ‖b1,0(·, T )‖
B−1,∞
∞

− ‖b1,1(·, T )‖
B−1,∞
∞

− ‖z(·, T )‖
B−1,∞
∞

& Q2 − ‖b1,1‖L∞ − ‖z‖L∞

& Q2(1− 1
r
√
T
− 4Q2

√
T ).

Therefore, in light of (4.15),

‖b(T )‖
Ḃ−1,∞
∞

& Q2.

On the other hand, from (2.6), we combine (4.15), (4.16), and (4.36) and
have, for any t ∈ [0, T ],

‖u(·, t)‖
B−1,∞
∞

.
Q√
r

+
Q2

r
+Q4

√
T (4.39)

and remains small in B−1,∞
∞ . Thus we proved Theorem 1.1.

Remark 4.13. We would like to note the following simple chart to indicate
how the choices of the several parameters are made.

δ −→ Q −→ T −→ |k0| −→ |ks|, Q −→ r.

5. Other scenarios of norm inflations

In this section, we consider other interesting norm inflation phenomena
for MHD systems. The essence of the construction introduced by Bourgain
and Pavlović in [1] and used in this paper is that the collisions of plane waves
with similar but large wave vectors can cause norm inflations in NSE as well
as in MHD systems. More precisely we see that the collisions in the quadratic
terms trigger the norm inflations. Hence we can arrange the initial data to
have collisions of plane waves with similar wave vectors either in u1 or in b1 to
produce various norm inflation modes for MHD systems. For example, even
the initial velocity is zero, if the initial magnetic field contains enough plane
waves to collide, we can produce the scenario where the velocity develops
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norm inflation in Ḃ−1,∞
∞ while the magnetic field remains small in the space

B−1,∞
∞ . Namely, we have the following.

Theorem 5.1. Let u0 ≡ 0 and

b0 =
Q√
r

r∑
i=1

(|ki|vi cos(ki · x) + |k′i|v′i cos(k′i · x)).

Then, for any δ > 0, there exists a solution (u, b, p) to the MHD system (1.1)
with initial data u0 and b0 as in the above satisfying

‖b(0)‖
Ḃ−1,∞
∞

. δ,

such that for some 0 < T < δ

‖u(T )‖
Ḃ−1,∞
∞

& 1/δ,

while for any 0 < t < T < δ

‖b(t)‖
B−1,∞
∞

. δ.

The proof will be more or less the same as the proof in [1] in light of our
discussions in the previous section. Another interesting case mentioned in
Remark 1.4 is that when the initial velocity and the initial magnetic field are
the same, although they both include many plane waves that are to collide,
the collisions cancel each other in the evolution of the MHD system and
produce no norm inflations.

Remark 5.2. Finally we would like to mention that, in [3], Cheskidov and
Shvydkoy introduced a different construction of initial data to prove the
ill posedness of NSE in certain Besov spaces. There are two more works
about the ill-posedness results for Navier-Stokes equations by Germain [4]
and Yoneda [9].
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