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Abstract. In this paper we study a generalization of self-similar solutions.

We show that just as for the solutions to the Navier-Stokes equations these
supposedly singular solution reduce to the zero solution.

1. Introduction

Regularity, formation of turbulence and the possible construction of explicit
solutions, are some of the central question for many fluid equations. In this paper
we are are interested in studying a certain type of singular solutions for the Euler
equations, which we call pseudo-self-similar. This family of solutions contain the
usual self-similar ones. In the papers [5, 7] we investigated such solutions for the
Navier-Stokes equations and we showed that they do not exist, or more precisely
they just reduce to the zero solution. Here we will show that the same happens
for these type of solutions corresponding to the Euler equations. Specifically we
show that solutions with bounded L2 norms and expected to satisfy the Beale-Kato
Majda blow up condition for a time To > 0 reduce to the zero solutions.

In his pioneering 1934 paper [4], Jean Leray, discusses the possibility of having
breakdown of regularity by constructing a nonzero singular backwards self–similar
solution. Specifically the velocity and the pressure of Leray’s solutions have the
form

u(x, t) =
1√

2a(To − t)
U(

x√
2a(To − t)

),(1.1)

p(x, t) =
1

2a(To − t)
P (

x√
2a(To − t)

).

Here T ∈ R, a > 0 and U = (U1, U2, U3) is defined in R3. A simple calculation
shows that U satisfies the elliptic equation

aU + ayk
∂U

∂yk
− ν4U +∇P + Uk

∂U

∂yk
= 0(1.2)

divU = 0,

where the viscosity coefficient ν is strictly positive. An easy calculation shows that
if a non zero solution of the type (1.1) existed, then it would have a bounded L2

norm while the L2 norm of its gradient blows up at the finite time T.
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The first answer to Leray’s problem was given in [8] by J. Necas, M. Ruzicka, V.
Sverak. They showed that zero is the only possible Leray self–similar solutions to
the 3 dimensional Navier–Stokes equations for which U ∈ L3 ∩W 1,2

loc (Rn).
It is worthwhile to note that even the “negative” result that such self–similar

solutions are zero is very interesting interesting since it insures the nonexistence of
a certain class of possible singular solutions.

If solutions of the above type existed (under a different set of conditions) it would
solve in the positive the problem of blow-up for the 3D Navier–Stokes equations.
The work of [8] work was continued under more general conditions by Tai-Peng Tsai
[9]. The work in [8] was also extended in our paper [5] were we continued the work
started in [8] in two directions. First we found a much simpler proof of the result
in [8] using the slightly stronger, but natural, hypothesis that the U was in W 1,2.
Second we studied extensions of the solutions of the form (1.1) hoping to construct
a singular solution. We called these extensions pseudo-self-similar solutions and
defined them as

u(x, t) = µ(t)U(λ(t)x),(1.3)

p(x, t) = µ2(t)P (λ(t)x).

We note that as in the case of the solutions to the Navier-Stokes equations, one
could have chosen P to satisfy p(x, t) = γP (λ(t)x). It is easy to show that the only

choice possible for γ is γ(t) = µ(t)
2
. This follows by taking the divergence of the

Euler equation and noting since ∆p = −
∑3
i,j=1 ∂iuj∂jui yields

γλ2∆P = −µ2λ2
3∑

i,j=1

∂iUj∂jUi.

In the sequel the solutions (1.3) will be referred as (λ, µ)-solutions or pseudo–self–
similar solutions.

From our papers [5, 7] it follows that the only possible singular solution of the
type (1.3) for the Navier-Stokes equations was the zero solution. We now want
to investigate the non-existence of pseudo-self-similar (PSS) solutions for the Euler
equations. Specifically we will show that all pseudo-self-similar solutions with finite
L2 energy for the Euler equations, satisfying the Beale-Kato-Majda (BKM) blow up
criteria, reduce to zero. More precisely we will show that in most cases the finiteness
of the L2 norm is all what is needed, although in one particular case we will need
some other Sobolev norm to be also finite. In the case of the Euler equations,
the analysis of pseudo self-similar solutions is simpler then for the corresponding
solutions to the Navier-Stokes equations. They reduce in general to self-similar
solutions of the type studied in [2] and [3]. We note here that the conditions imposed
on the self similar solutions studied in [2, 3] are different from our conditions. More
details are given below.

2. Backwards pseudo-self–similar solutions for the Euler equations

The approach to study the (PSS) will be similar to the one used for the PSS
solutions to the Navier–Stokes equations. The absence of diffusion will make the
analysis quite different from the one for the Navier-Stokes equations. We recall the
incompressible Euler equations
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ut + (u · ∇)u+∇p = 0,(2.4)

divu = 0.

Local existen for the Euler equation in Rn, n ≥ 3 is well known. For complete-
ness we recall the following theorem:

Theorem 2.1. Let the initial velocity u0 ∈ Hs, s ≥ 3. Suppose ‖uo‖s ≤ M , with
M > 0. Then there exist T∗ > 0 where T∗ = T∗(M) depends only on M, so that the
Euler equations (2.4) have a solution u satisfying

u ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−1)

for some T ≥ T∗(M).

Proof: see [6, 10]
�

Due to this local existence theorem it makes sense to look for solutions such that
u ∈ C([0, To);H

s) ∩ C1([0, To;H
s−1). More precisely we can work with smooth

solutions for t < To, where To is the first possible time where the BKM blow
up criteria holds. An easy calculations shows that the pseudo-self-similar (PSS)
solutions will satisfy the following nonlinear partial differential equation:

µ′

µ2λ
U +

λ′

µλ2
(y · ∇)U = −(u · ∇)U +∇P )(2.5)

divU = 0

The plan is to look for solutions satisfying (2.5) with smooth functions λ and µ
in the interval [0, To) , To the BKM possible blow up time and, show that solutions
of this type with finite energy (1.3) are all zero. We first will need to exclude one
class of such functions λ(t), for which we will need and additional condition. We
define the following set of functions

(2.6) A =

{
(λ(t), µ(t)) ∈ C1(−∞, To), (λ, µ) 6=

(
a1

(To − t)2/5
,

a2
(To − t)3/5

)}
where ai, i = 1, 2 are arbitrary constants. We will first show the non existence of
pseudo-self-similar solutions to Euler equations provided (λ, µ) ∈ A. We then will
analyze the case when (λ, µ) /∈ A, where we will need an additional hypothesis.
The next theorem shows that for there are no nonzero pseudo self-similar solutions
that satisfy the Beale-Kato-Majda blow up condition if (λ, µ) ∈ A.

Theorem 2.2. There are no pseudo-self-similar solutions u ∈ C([0, To);H
3) ∩

C1([0, To);H
2) of the incompressible 3D-Euler equations (1.3), for t ∈ [0, To),with

(λ(t), µ(t)) ∈ A, which satisfy

ess sup0<t<To‖u(·, t)‖L2(R3) <∞,(2.7)

lim
t→T−o

∫ To

0

‖ω(·, t)‖L∞(R3) =∞.(2.8)

where ω = curl u, where To is the first such time.
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Proof: We note that the solutions for t < To are smooth. From the second
condition above it follows that lim supt→T−o ω(t) = ∞. From the definition of
pseudo-self-similar solutions it follows that if Ω = curl U

ω(x, t) = λ(t)µ(t)Ω(xλ(t)),

which in turn yields that

(2.9) lim
t→T−

λ(t)µ(t) =∞.

We note now that the right hand side of (2.5) is independent of time, in order for
the left hand side to be also independent of time, there are two possible scenarios.

Case 1 The functions µ and λ are chosen so that the coefficients are constant.
That is

µ′

µ2λ
= C1(2.10)

λ′

µλ2
= C2

In this case we have that

µ′

µ
= C1µλ =

C1

C2

λ′

λ

Let α = C1

C2
.

lnµ = lnλα +K

In other words

µ = eKλα = Koλ
α.

We note here that by the first in the hypothesis of the theorem it follows that

(2.11) ‖u(·, t)‖L2(R3) =
µ2

λ3
‖U‖22 <∞.

From(2.9) and the relation between λ and µ yields that α > −1. Suppose α ≤ −1.
We can immediately rule out α = −1 since then limt→To λ

α+1 = 1, contradicting
the second condition in the hypothesis. Suppose α > −1, then if limt→To λ

α+1 =∞
it would require that limt→To λ = 0, but this would imply that limt→To λ

2α−3 =∞
contradicting (2.11). Hence

• Since α > −1 we have limt→T−o λ =∞.

• By (2.11) and the last observation it follows that 2α− 3 ≤ 0.

Combining (2.11) and (2.9) with the relation derived between λ and µ yields
α ∈ (−1, 3/2]. Recalling the definition of α, when α ∈ [0, 3/2] it turns out that
either Ci > 0, for i = 1, 2 or Ci > 0, for i = 1, 2. We are only analyzing the first
case when the constants are both positive. When the constants are negative works
in similar fashion and as such is omitted . In the case that α ∈ (−1, 0) either C1

or C2 will be strictly positive. If C2 > 0 we do the analysis with the equations for
λ, if C1 > 0 the analysis is similar, but we have to work with equations for µ. We
only will do the case for C2 > 0, that is we work with the equations corresponding
to λ, and we suppose C2 > 0
Let Co = KoC2, by (2.10) it follows that

λ′ = Coλ
α+2.
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Integrating over (to, t), for any t < T , yields

−(α+ 1)λ(t)−(α+1) = −Kot+M.

By (2.9) if we let t→ T− in the last equality the left hand side tends to zero, hence
M = KoT . From the last equality we have that

(2.12) λ(t) = [(α+ 1)Co(To − t)]
−1
α+1 ,

and

(2.13) µ(t) = Ko [(α+ 1)αCαo (To − t)]
−α
α+1 .

The solutions corresponding to these λ(t) are actually the usual self-similar solu-
tions for which D. Chae [2] has obtained non existence under conditions, somewhat
different from ours. Our range of ”α”s is more restricted. In [2], the non existence
of such self-similar solutions is established provided

• For all t ∈ (0, T ) the particle trajectory mapping X(·, t) generated by the
classical solution u ∈ C([0, T );C1(R3;R3)) is a C1 diffeomorphism from R3

onto itself.
• The vorticity satisfies Ω = curlU 6= 0, and there exists p1 > 0 such that

Ω ∈ Lp(R3) for all p ∈ (0, p1) .

In the case of [2] Chae needs conditions on the vorticity that we are not requiring.
Our results also complement the results in [3].

We return now to the proof of Theorem 2. Note first that if α = 3/2, then (λ, µ) /∈
A, since then

λ′

λ2µ
=

λ′

λ7/2

hence

(λ, µ) = (a1(To − t)−2/5, a2(To − t)−3/5) /∈ A.
This case will be dealt in the next theorem with an additional hypothesis.
Let α ∈ (−1, 3/2). Multiply equation (2.5) by U and integrate in space,

(2.14) C1

∫
|U |2dx+ C2

∫
U(y·)∇Udx =

∫
UU(·∇)Udx+

∫
U∇Pdx

Since div U = 0 it follows that the right hand side of the last equation vanishes.
We analyze first the case when α ∈ [0, 3/2), that is sign C1 = sign C2, (otherwise
multiply the equation by −1), hence without loss of generality we can take both
constants to be positive. Integrating by parts the left hand side and reordering
yields ∫

|U |2dx
[
C1 −

3

2
C2

]
= 0

It is clear that if α = C1

C2
6= 3/2 we have ‖U‖22 = 0 and hence U = 0. In the second

case when sign C1 = −sign C2 , it follows immediately from (2.14) that U = 0.
This concludes Case 1.

Case 2
Now we suppose that neither µ′

µ2λ nor λ′

µλ2 are constants. Then the sum of the first

and second term on the left hand side of (2.5) needs to add up to a function which
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depends solely of the variable x. To analyze this case we multiply the equation
(2.5) by U

(2.15)
µ′

µ2λ

∫
|U |2dx+

λ′

µλ2

∫
U(y·)∇Udx =

∫
UU(·∇)Udx+

∫
U∇Pdx

Here again, the Right hand Side vanishes, due to the divergence free condition.
Integrating by parts yields

(2.16)

∫
|U |2dx

[
µ′

λµ2
− 3

2

λ′

λ2µ
dx

]
= 0

Hence either U = 0 and we are done, or the functions λ(t) and µ(t), satisfy

(2.17)
µ′

λµ2
− 3

2

λ′

λ2µ
= 0

From where it follows that
µ = KoΛ

3/2

and hence as before (λ, µ) = (a1(To − t)−2/5, a2(To − t)−3/5) /∈ A, where a1, is

an arbitrary constant and, a2 + Koa
3/2
! . As stated before for this case we need

an additional hypothesis. This concludes the second case and the proof of the
Theorem.

�
We now need to analyze the case we have left out in the last theorem

Theorem 2.3. There are no pseudo-self-similar solutions u ∈ C([0, To);H
3) ∩

C1([0, To);H
2) of the 3D-Euler equations (1.3), that satisfy (2.7) in Theorem 2

where
(λ, µ) = (a1(To − t)−2/5, a2(To − t)−3/5),

where ai, i = 1, 2, and one of the additional conditions

(1) ess sup0<t<To‖u(·, t)‖Lp(R3) <∞, for at least one p > 5.

(2) limt→To
∫ t
0
‖∇u(x, t)‖2ds <∞,

holds.

Proof: We note that(∫
|u(x, t)|pdx

)1/p

= µ(t)λ−3/p
(∫
|U(x)|pdx

)1/p

=
C

(To − t)(3/5−3/p)

Since p > 5, the right hand side of the last equation tends to infinity as T → To
contradicting the first condition in the hypothesis, hence no such solutions can
exist.
We note that the second condition is a natural one for solutions to the Navier-
Stokes equations. It turns out that the combination of this condition with the
BKM conditions yields only zero pseudo-self-similar solutions. The second condition
yields

lim
t→To

∫ t

0

‖∇u(x, t)‖2ds = lim
t→To

∫ t

0

µ(t)λ(t)‖∇U‖2ds.

Since µ(t)λ(t) = Ko(To − t)−1, which is not integrable on [0, To], contradicting the
second condition. The conclusion of the Theorem follows.

�
In the next theorem we show that the pseudo-self-similar solutions which belong

to two different Lp spaces turn out to be of self-similar solutions of the type found
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in [2]. They reduce to the zero solution if we suppose BKL and the second condition
of last Theorem.

Theorem 2.4. There are no pseudo-self-similar solutions u ∈ C([0, To);H
3) ∩

C1([0, To);H
2) of the 3D-Euler equations (1.3), that satisfy (2.8) in Theorem 2

and the second condition in Theorem 2.3 and, which in addition belong to  Lp ∩Lq,
with p 6= q.

Proof: We are going to suppose neither p or q are equal to one or two. If one
of the two is equal to it follows from the two last Theorems. For p = 1 (or q = 1)
it follows simply multiplying by sign u and integrating by parts and then by the
same process as for Theorems 2 and 2.3. Now suppose that u ∈ Lp(R3) ∩ Lq(R3)
with p, q 6= 1, 2. Let Cm = (

∫
R3 |U |m−2U∇Pdx)(‖U‖m)−m,m = p, q. Multiply the

Euler equations (1.3) by |U |m−2U first with m = q, then with m = p. An easy
computation yields

(2.18)
µ′

λµ2
− 3

q

λ′

λ2µ
= Cq,

(2.19)
µ′

λµ2
− 3

p

λ′

λ2µ
= Cp.

From the last two equationsit follows that

λ′

λ2µ
=
pq(Cq − Cp)

3(p− q)
= K1,

µ′

λµ2
=

(qCq − pCp)
p− q

= K2,

hence it is easy to show that

µ(t) = Kλβ , with β =
K2

K1
.

Replacing this µ in equation (2.18) yields

λ′

λβ+2
= Cpq,

where C is a constant that depends on p and q. Integrating this, using (2.8) yields

λ = Cp,q(T − t)−(β+1).

Hence it follows that

µ(t) = C̃p.q(T − t)
−β
β+1 .

Since µ(t)λ(t) = C(T − t)−1, it follows that the second condition of Theorem 2.3
does not hold. Hence the solutions reduce to the zero solution.

�

Remark 2.5. The case were we had to add an extra hypothesis is considered by
the results in [2], where the extra hypothesis needed is that the curl U belongs to
all Lp(R3) spaces for p ∈ (0, p1) some p1 > 0. It would be interesting to show
that these self-similar solutions do not exist with just the conditions supposed in
Theorem 2. Or show that they do not exist using similar methods as the one used
in [2], but requiring the condition on the vorticity for p ∈ [1, p1) with p1 > 1.
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