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Abstract. In this paper we study the large time behavior of solutions to a

nematic liquid crystals system in the whole space R3. The fluid under consid-
eration has constant density and small initial data.

1. Introduction

In this paper we consider the asymptotic behavior of solutions to the simplified
model of nematic liquid crystals (LCD) with constant density:

ut + u · ∇u+∇p = ν4u−∇ · (∇d⊗∇d),

dt + u · ∇d = 4d− f(d),

∇ · u = 0.

(1.1)

The equations are considered in R3 × (0, T ). Here p : R3 × [0, T ] → R is the fluid
pressure, u : R3 × [0, T ] → R3 is the fluid velocity and d : R3 × [0, T ] → R3 is
the direction field representing the alignment of the molecules. The constant ν > 0
stands for the viscosity coefficient. Without loss of generality, by scaling, we can set
ν = 1. The force term ∇d⊗∇d in the equation of the conservation of momentum
denotes the 3× 3 matrix whose ij-th entry is given by “∇id · ∇jd” for 1 ≤ i, j ≤ 3.
This force ∇d ⊗ ∇d is the stress tensor of the energy about the direction field d,
where the energy is given by:

1

2

∫
R3

|∇d|2dx+

∫
R3

F (d)dx

where

F (d) =
1

4η2
(|d|2 − 1)2, f(d) = ∇F (d) =

1

η2
(|d|2 − 1)d,

for a constant η in this paper. We note that F (d) is the penalty term of the
Ginzburg-Landau approximation of the original free energy of the direction field
with unit length.

In this paper we consider the following initial conditions:

(1.2) u(x, 0) = u0(x), ∇ · u0 = 0,

(1.3) d(x, 0) = d0(x), |d0(x)| = 1,

and

(1.4) u0 ∈ H1(R3), d0 − w0 ∈ H2(R3),

with a fixed vector w0 ∈ S2, i.e., |w0| = 1.
1
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The flow of nematic liquid crystals can be treated as slow moving particles where
the fluid velocity and the alignment of the particles influence each other. The
hydrodynamic theory of liquid crystals was established by Ericksen [7, 8] and Leslie
[16, 17] in the 1960’s. As Leslie points out in his 1968 paper: “liquid crystals are
states of matter which are capable of flow, and in which the molecular arrangements
give rise to a preferred direction”. There is a vast literature on the hydrodynamic
of liquid crystal systems. For background we list a few, with no intention to be
complete: [9, 13, 14, 19, 20, 18, 1, 2, 3, 4, 28, 22, 12]. In particular, the asymptotic
behavior of solutions to the flow of nematic liquid crystals was studied for bounded
domains in [19, 28]. It was shown in [28] that, with suitable initial conditions, the
velocity converges to zero and the direction field converges to the steady solution
to the following equation

(1.5)

{
−∆d+ f(d) = 0, x ∈ Ω

d(x) = d0(x), x ∈ ∂Ω.

In [28], Lemma 2.1 the  Lojasiewicz-Simon inequality is used to derive the con-
vergence when Ω is a bounded domain. Lack of compactness considerations do not
allow us to use similar arguments in the whole space R3.

In this paper we consider the asymptotic behavior of the solutions to (1.1) in
the whole space R3. subject to the additional condition on the direction field which
insures that the direction tends to a constant unit vector w0, as the space variable
tends to infinity:

(1.6) lim
|x|→∞

d0(x) = w0.

This simplifies the situation and allows us to obtain the stability without need-
ing the Liapunov reduction and  Lojasiewicz-Simon inequality, since w0 is a non-
degenerate steady solution to (1.5).

We start from the basic energy estimates (2.16) and Ladyzhenskaya estimates
(2.17) [15, 6] (see the extension to the whole space in appendix of this paper) for
the system (1.1). We then establish the convergence of the direction field d to
the constant steady solution w0 based on Gagliardo-Nirenberg interpolation tech-
niques. More precisely, the convergence obtained is in Lp(R3) for any p > 1, with

an algebraic decay rate of (1 + t)−
3
2 (1−

1
p ). We then focus on the conservation of

momentum equation in (1.1). We apply the Fourier splitting technique [23, 24, 27]

to obtain the decay of the velocity u with an algebraic decay rate of (1 + t)−
1
4 in

L2(R3) norm. This rate coincides with the decay rate of solutions to Navier-Stokes

equations with a force decaying at a rate of (1 + t)−
3
4 [23].

The existence of global regular solutions of (1.1) with the initial and bounadry
conditions has been established in [19] (in [6] for nonconstant density) provided
that the viscosity constant is large enough or initial data are small enough. Based
on the arguments in [6] the existence of global regular solutions of (1.1), for small
initial data, is established in the appendix as follows:

Theorem 1.1. Let u0 and d0 satisfy (1.2)-(1.4). Assume that u0 ∈ H1(R3) and
d0 −w0 ∈ H2(R3) ∩L1(R3) for a unit vector w0. There is a positive small number
ε0 such that if

(1.7) ‖u0‖2H1(R3) + ‖d0 − w0‖2H2(R3) ≤ ε0,
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then the system (1.1) has a classical solution (u, p, d) in the time period (0, T ), for
all T > 0. That is, for some α ∈ (0, 1)

u ∈ C1+α/2,2+α((0, T )× R3)

∇p ∈ Cα/2,α((0, T )× R3)

d ∈ C1+α/2,2+α((0, T )× R3).

(1.8)

And the solution (u, p, d) satisfies the following basic energy estimate and higher
order energy estimate (also called Ladyzhenskaya energy estimate in [6] and [19])∫

R3

|u|2 + |∇d|2 + 2F (d)dx+ 2

∫ T

0

∫
R3

|∇u|2 + |∆d− f(d)|2dxdt(1.9)

≤ ‖u0‖2L2(R3) + ‖∇d0‖2L2(R3)

∫
R3

|∇u|2 + |∆d|2dx+

∫ T

0

∫
R3

|∆u|2 + |∇∆d|2dxdt(1.10)

≤ C(‖u0‖2H1(R3) + ‖d0 − w0‖2H2(R3)).

Furthermore, the solution d satisfies

(1.11)

∫
R3

|d(t)− w0|dx ≤ (C0t+

∫
R3

|d0 − w0|dx)eCt

with the constants C0 and C depending only on initial data and on η, respectively.

For the smooth solution obtained in Theorem 1.1, our main asymptotic result
is:

Theorem 1.2. Let (u, p, d) be smooth solution obtained in Theorem 1.1. Assume
additionally u0 ∈ L1(R3) and d0 − w0 ∈ Lp(R3), for any p ≥ 1 and a unit vector
w0. There exists a small number ε0 > 0 such that if

(1.12) ‖u0‖2H1(R3) + ‖d0 − w0‖2H2(R3) ≤ ε0,

then

(1.13) ‖d(·, t)− w0‖Lp(R3) ≤ C‖d0 − w0‖Lp(R3)(1 + t)−
3
2 (1−

1
p ),

(1.14) ‖∇(d(·, t)− w0)‖2L2(R3) ≤ C(1 + t)−
3
4 ,

(1.15) ‖u(·, t)‖2L2(R3) ≤ C(1 + t)−
1
2 ,

where the various constants C only depend on initial data.

The paper is organized as follows: in Section 2 we establish the decay for the
difference d−w0, using the basic energy estimate (1.9) and the Ladyzhenskaya en-
ergy estimate (1.10). Combining the decay of d−w0 and Fourier splitting technique
[23], in Section 3 we obtain an algebraic decay for the velocity u in L2(R3). In the
appendix, we sketch a proof for the existence theorem 1.1.
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2. Convergence of the direction field

In this section we study the Lp decay of the direction field d−w0 and the decay
for the first derivative. The first step is to derive a uniform estimate of d − w0 in
L2(R3). This yields a uniform estimate for d−w0 in Lp(R3) for any p ≥ 1. This Lp

estimate, is the basis to establish the decay results. For ease of reading we state the
basic energy estimate and Ladyzhenskaya energy estimate satisfied by the smooth
solution (u, p, d) (see appendix for details),

‖u‖2L2 + ‖∇d‖2L2 + ‖F (d)‖L1 + 2

∫ T

0

‖∇u‖2L2 + ‖∆d− f(d)‖2L2dt(2.16)

≤ ‖u0‖2L2 + ‖∇d0‖2L2

(2.17) ‖∇u‖2L2 +‖∆d‖2L2 +

∫ T

0

‖∆u‖2L2 +‖∇∆d‖2L2dt ≤ C(‖u0‖2H1 +‖d0−w0‖2H2).

In the sequel we need to use a Gagliardo-Nirenberg interpolation inequality. For
completeness we recall from [11] the inequality here

Proposition 2.1. [11] Let w ∈Wm,p(Rn)∩Lq(Rn), for 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞.
Then

(2.18) ‖Dkw‖Lr(Rn) ≤ C‖Dmw‖aLp(Rn)‖w‖
1−a
Lq(Rn)

for any integer k ∈ [0,m− 1], where

(2.19)
1

r
=
k

n
+ a(

1

p
− m

n
) + (1− a)

1

q

with a ∈ [ km , 1], either if p = 1 or p > 1 and m−k− n
p /∈ N ∪{0}, while a ∈ [ km , 1),

if p > 1 and m− k − n
p ∈ N ∪ {0}.

2.1. Uniform estimate of d − w0 in L2(R3). In this part, we show that the in-
tegrals ∫

R3

|d(x, t)− w0|2dx and

∫ T

0

∫
R3

|∇(d(x, t)− w0)|2dxdt

are uniformly bounded by the initial data, applying estimates for the solutions
obtained in Theorem 1.1. We have the following lemma,

Lemma 2.2. Let d be the solution obtained in Theorem 1.1. There exists ε0 suffi-
ciently small so that if ‖u0‖L2(R3) + ‖∇d0‖L2(R3) ≤ ε0. Then

(2.20)

∫
R3

|d(x, t)− w0|2dx+

∫ T

0

∫
R3

|∇(d(x, t)− w0)|2dxdt ≤ C,

where the constant C depends on the initial data and the norm ‖d0 − w0‖L2(R3).

Proof: Since |w0| = 1 and f(w0) = 1
η2 (|w0|2 − 1)w0 = 0, the second equation in

(1.1) can be expressed as

(2.21) (d− w0)t + u · ∇(d− w0) = ∆(d− w0)− f(d) + f(w0).
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Applying the mean value theorem for vector valued functions, we have

(2.22) f(d)− f(w0) =

(∫ 1

0

Df(w0 + s(d− w0))ds

)
· (d− w0),

where Df denotes the Jacobian matrix of f . Multiplying (2.21) by d− w0 yields

1

2

d

dt

∫
R3

|d− w0|2dx(2.23)

= −
∫
R3

[u · ∇(d− w0)](d− w0)dx

+

∫
R3

∆(d− w0) · (d− w0)dx

−
∫
R3

(d− w0)T
(∫ 1

0

Df(w0 + s(d− w0))ds

)
(d− w0)dx,

≡ −I4 + I5 + I6.

The three terms I4, I5 and I6 are estimated as follows:

|I4| = | lim
R→∞

∫
BR

[u · ∇(d− w0)](d− w0)dx|(2.24)

= | lim
R→∞

1

2

∫
∂BR

|d− w0|2u · ndσ|

≤ C lim
R→∞

(∫
∂BR

|d− w0|4dσ
)1/2(∫

∂BR

|u|2dσ
)1/2

≤ C lim
R→∞

(∫
∂BR

|d− w0|dσ
)1/2(∫

∂BR

|u|2dσ
)1/2

.

Denote the set A =
{
R :

∫
∂BR
|d− w0|dσ ≥M

}
, for a certain constant M > 0. A

is closed and its complement Ac is open. Write∫
R3

|d(t)− w0|dx =

∫ ∞
0

∫
∂BR

|d(t)− w0|dσdR.

Recall that by Theorem (1.1) the last expression is bounded by the initial data, for
any fixed time t > 0. Thus by Chebyshev’s inequality we have

(2.25) µ {A} ≤ C

M
where µ denotes the measure of a set, and C denotes a constant depending only on
the initial data. Since the energy estimate (2.16) implies that∫

R3

|u|2dx =

∫ ∞
0

∫
∂BR

|u|2dσdR

is bounded by initial data, there exists a sequence {Ri}∞i=1 ⊂ Ac with Ri →∞ such
that

(2.26)

∫
∂BRi

|u|2dσ → 0

Combining the inequalities (2.24), (2.25) and (2.26), yields for all t > 0,

(2.27) I4 = 0.
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For I5, we have

(2.28) I5 = lim
R→∞

[

∫
∂BR

∂(d− w0)

∂n
· (d− w0)dσ −

∫
BR

|∇(d− w0)|2dx]

The boundary term is estimated as follows:

∫
∂BR

∂(d− w0)

∂n
· (d− w0)dσ(2.29)

≤
(∫

∂BR

|∇(d− w0)|2dσ
)1/2(∫

∂BR

|d− w0|2dσ
)1/2

≤ C
(∫

∂BR

|∇(d− w0)|2dσ
)1/2(∫

∂BR

|d− w0|dσ
)1/2

From Theorem 1.1, we have that ‖∇(d − w0)‖L2(R3) is uniformly bounded for any
fixed t > 0, ‖d(t) − w0‖L1(R3) has a time dependent bound. For the inequality
(2.29), we apply a similar argument used to derive (2.27) and obtain the existence
of a sequence Ri approaching infinity satisfying

lim
Ri→∞

∫
∂BRi

∂(d− w0)

∂n
· (d− w0)dσ → 0

It follows then that

(2.30) I5 = −
∫
R3

|∇(d− w0)|2dx.

With respect to I6, let d̃ = w0 + s(d−w0) and z = d−w0. Using the definition
of f(d) = 1

η2 (|d|2 − 1)d, a straightforward calculation yields

(d− w0)T
(∫ 1

0

Df(w0 + s(d− w0))ds

)
(d− w0) = zT

∫ 1

0

Df(d̃)dsz

=

∫ 1

0

[(2d̃21 + |d̃|2 − 1)z21 + (2d̃22 + |d̃|2 − 1)z22 + (2d̃23 + |d̃|2 − 1)z23

+ 4d̃1d̃2z1z2 + 4d̃1d̃3z1z3 + 4d̃2d̃3z2z3]ds

=

∫ 1

0

[2d̃21z
2
1 + 2d̃22z

2
2 + 2d̃23z

2
3 + 4d̃1d̃2z1z2 + 4d̃1d̃3z1z3

+ 4d̃2d̃3z2z3] + (|d̃|2 − 1)(z21 + z22 + z23)ds

=

∫ 1

0

2[d̃1z1 + d̃2z2 + d̃3z3]2 + (|d̃|2 − 1)|z|2ds

=

∫ 1

0

2[d̃ · z]2 + (|d̃|2 − 1)|z|2ds.
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In the above equation, the third and forth equality comes from regrouping terms
and completing a perfect square. Thus, I6 can be written as

I6 = − 1

η2

∫
R3

∫ 1

0

2[(w0 + s(d− w0)) · (d− w0)]2(2.31)

+ (|w0 + s(d− w0)|2 − 1)|d− w0|2dsdx

= − 1

η2

∫
R3

2[w0 · (d− w0)]2 + 3w0 · (d− w0)|d− w0|2 + |d− w0|4dx

= − 1

η2

∫
R3

2[w0 · (d− w0) +
3

4
|d− w0|2]2 − 1

8
|d− w0|4dx

≤ 1

8η2

∫
R3

|d− w0|4dx.

Combining (2.23) and the inequalities (2.27), (2.30), and (2.31) gives

(2.32)
1

2

d

dt

∫
R3

|d− w0|2dx+

∫
R3

|∇(d− w0)|2dx ≤ 1

8η2

∫
R3

|d− w0|4dx.

The right hand side of the inequality (2.32) can be estimated as∫
R3

|d− w0|4dx ≤ (

∫
R3

|d− w0|2dx)1/2(

∫
R3

|d− w0|6dx)1/2

≤ C(

∫
R3

|d− w0|2dx)1/2(

∫
R3

|∇(d− w0)|2dx)3/2

≤ C
∫
R3

|d− w0|2dx
(∫

R3

|∇(d− w0)|2dx
)2

+
1

2

∫
R3

|∇(d− w0)|2dx.

Gagliardo-Nirenberg interpolation inequality (Proposition 2.1) yields

‖∇(d− w0)‖2L2(R3) ≤ C‖d− w0‖L2(R3)‖∆(d− w0)‖L2(R3).

Combining the last two inequalities with (2.32) gives

d

dt

∫
R3

|d− w0|2dx+

∫
R3

|∇(d− w0)|2dx(2.33)

≤ C
(∫

R3

|d− w0|2dx
)2 ∫

R3

|∆(d− w0)|2dx.

Denote φ(t) =
∫
R3 |d(t)− w0|2dx. Then

dφ

φ2
≤ C

∫
R3

|∆(d− w0)|2dxdt.

Integrating the last inequality over [0, t] yields

− 1

φ(t)
+

1

φ(0)
≤ C

∫ t

0

∫
R3

|∆(d− w0)|2dxdt.

Thus,

φ(t) ≤ φ(0)

1− Cφ(0)
∫ t
0

∫
R3 |∆(d− w0)|2dxdt

.
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From the basic energy estimate (2.16), and the hypothesis we have∫ t

0

∫
R3

|∆(d− w0)|2dxdt ≤ ‖u0‖2L2 + ‖∇d0‖2L2 ≤ ε0.

Assume that ε is so small that Cε0φ(0) < 1/2, then

Cφ(0)

∫ t

0

∫
R3

|∆(d− w0)|2dxdt < 1

2
.

Hence for any t > 0,

φ(t) ≤ 2φ(0),

that is,

(2.34)

∫
R3

|d(t)− w0|2dx ≤ 2

∫
R3

|d0 − w0|2dx.

Due to the estimates (2.34) and (2.33), we have

d

dt

∫
R3

|d− w0|2dx+

∫
R3

|∇(d− w0)|2dx ≤ C
∫
R3

|∆(d− w0)|2dx,

where the constant C only depends on the initial data. Integrating over [0, t], by
the basic energy inequality (2.16) it follows that∫

R3

|d(t)− w0|2dx+

∫ t

0

∫
R3

|∇(d− w0)|2dxdt

≤
∫
R3

|d0 − w0|2dx+ C

∫ t

0

∫
R3

|∆(d− w0)|2dxdt

≤ C.

Thus,

(2.35)

∫ t

0

∫
R3

|∇(d− w0)|2dxdt ≤ C,

where the constant C only depends on initial data. This completes the proof of the
lemma.

�

The following auxiliary estimate shows that, provided the initial data is small
enough, the norm ‖d(·, t)−w0‖L∞(R3) will be as small as necessary. This smallness
yields that |d| will be close to 1, for all time.

Lemma 2.3. Let d be the solution obtained in Theorem 1.1. Then

(2.36) ‖d(·, t)− w0‖L∞(R3) ≤ C‖∇d(t)‖1/2L2(R3)‖∆d(t)‖1/2L2(R3),

where C is an absolute constant.



ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE LIQUID CRYSTALS SYSTEM IN R3 9

Proof: Let F denote the Fourier transform. By Lemma 2.2, we can take the
Fourier transform of d− w0

‖d(·, t)− w0‖L∞(R3) ≤
∫
R3

|F(d− w0)|dξ

(2.37)

=

∫
|ξ|≤λ

F(d− w0)|dξ +

∫
|ξ|≥λ

|F (d− w0)|dξ

=

∫
|ξ|≤λ

1

|ξ|
· |ξ||F (d− w0)|dξ +

∫
|ξ|≥λ

1

|ξ|2
· |ξ2||F(d− w0)|dξ

≤ (

∫
|ξ|≤λ

1

|ξ|2
dξ)

1
2 (

∫
|ξ|≤λ

|ξ||F(d− w0)|2dξ) 1
2 + (

∫
|ξ|≥λ

1

|ξ|4
dξ)

1
2 (

∫
|ξ|≥λ

|ξ2F(d− w0)|2dξ) 1
2

≤ C(

∫
r≤λ

r2

r2
dr)

1
2 (

∫
R3

|∇(d− w0)|2dx)
1
2 + C(

∫
r≥λ

r2

r4
dr)

1
2 (

∫
R3

|∆(d− w0)|2dx)
1
2

≤ Cλ 1
2 ‖∇d(t)‖L2(R3) + Cλ−

1
2 ‖∆d(t)‖L2(R3).

To find a λ that minimizes the right hand side of the last inequality, take the
derivative in λ and set the right hand side equal to zero:

λ
1
2 ‖∇d(t)‖L2(R3) = λ−

1
2 ‖∆d(t)‖L2(R3),

yielding

λ = ‖∆d(t)‖L2(R3)/‖∇d(t)‖L2(R3).

Thus using this λ in (2.37) gives inequality (2.36), and the proof of the Lemma is
complete.

�

Corollary 2.4. Suppose the initial data ‖u0‖H1 + ‖d0 −w0‖H2 are small enough.
Then, |d(x, t)| ≥ 1

2 .

Proof: It follows combining (2.16), (2.17), (2.36) since |w0| = 1.
�

2.2. Uniform estimate of d−w0 in Lp with any p ≥ 1. Here we show provided
the data is small enough, all the Lp norms of d− w0 are bounded.

Lemma 2.5. Let d be the solution obtained in Theorem 1.1. There exist λp, de-
pending on p, so that if ‖u0‖2H1(R3) + ‖d0 − w0‖2H2(R3) ≤ λp, then for p > 1

1

p

∫
R3

|d(x, t)− w0|pdx+
2(p− 1)

p2

∫ T

0

∫
R3

|∇|d(x, t)− w0|p/2|2dxdt(2.38)

≤ Cp
∫
R3

|d0 − w0|pdx,

where the constant Cp depends on p and λp. And for p = 1 we have∫
R3

|d− w0|dx ≤
∫
R3

|d0 − w0|dx+

∫ T

0

∫
R3

|∇(d− w0)|2 + |∆(d− w0)|2dxdt

≤ C.
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Proof: Recall that since f(w0) = 0, we have that the direction equation can be
rewritten as

(d− w0)t + u · ∇(d− w0) = ∆(d− w0)− f(d) + f(w0).

Multiplying the last equation by (d−w0)|d−w0|p−2, for any p ≥ 2 (or alternatively
by (d− w0)/(|d− w0|+ ε)2−p, when p ∈ [1, 2), and letting ε→ 0) yields

1

p

d

dt

∫
R3

|d− w0|pdx(2.39)

= −
∫
R3

[u · ∇(d− w0)](d− w0)|d− w0|p−2dx

+

∫
R3

∆(d− w0)(d− w0)|d− w0|p−2dx

−
∫
R3

2[w0 · (d− w0) +
3

4
|d− w0|2]2|d− w0|p−2 −

1

8
|d− w0|p+2dx

≡ I7 + I8 + I9,

where the I9 was obtained similarly as in the previous calculation for I6. We
estimate I7, I8 and I9 as follows:
Integrating by parts over ball BR gives

I7 = lim
R→∞

[

∫
∂BR

|d−w0|pu ·ndσ− (p− 1)

∫
BR

[u · ∇(d−w0)](d−w0)|d−w0|p−2dx].

It implies that

pI7 = lim
R→∞

∫
∂BR

|d− w0|pu · ndσ(2.40)

≤ lim
R→∞

(∫
∂BR

|d− w0|2dσ
)1/2(∫

∂BR

|u|2dσ
)1/2

for any p ≥ 1, where we used that |d− w0| ≤ C.
By Lemma 2.2 we know that

∫
R3 |d−w0|2dx is bounded, and

∫
R3 |u|2dx is bounded

from the energy estimate (2.16). Thus, for the inequality (2.40), using arguments
similar to the ones applied to derive the convergence (2.27), will yield∫

∂BRi

|d− w0|pu · ndσ → 0

for an appropriate sequence Ri →∞, for any p ≥ 1. Thus,

(2.41) I7 = 0.

For I8, integrating by parts over BR yields

I8 = lim
R→∞

[

∫
∂BR

∂(d− w0)

∂n
· (d− w0)|d− w0|p−2dσ(2.42)

−
∫
BR

|∇(d− w0)|2|d− w0|p−2dx

− (p− 2)

∫
BR

|∇(d− w0) · (d− w0)|2|d− w0|p−4dx]

≡ lim
R→∞

(K1 −K2 −K3).



ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE LIQUID CRYSTALS SYSTEM IN R3 11

The boundary term K1 is estimated as

K1 =

∫
∂BR

∂(d− w0)

∂n
· (d− w0)|d− w0|p−2dσ(2.43)

≤
∫
∂BR

|∇(d− w0)||d− w0|p−1dσ

≤
∫
∂BR

|∇(d− w0)|dσ

where we used that |d− w0|p−1 ≤ C for any p ≥ 1.
In Proposition (2.1), let k = 1, m = 2, r = 1, p = 2 and q = 1. For a = 2

7 the
inequality (2.18) yields∫

R3

|∇(d(t)− w0)|dx

≤ C
(∫

R3

|∆(d(t)− w0)|dx
)1/7(∫

R3

|d(t)− w0|dx
)5/7

≤ C0(C(t))5/7,

where we used Ladyzhenskaya estimate (1.10) and the estimate (1.11), C0 is a
constant depending on initial data and C(t) is the time dependent function in
(1.11). Thus, for any fixed t > 0,∫

∂BRi

|∇(d− w0)|dσ → 0

for a sequence Ri →∞. Hence, from (2.43), we have

(2.44) lim
R→∞

K1 = 0.

Since

−|∇(d− w0)|2|d− w0|2 ≤ −|∇(d− w0) · (d− w0)|2,

we have

−|∇(d− w0)|2|d− w0|p−2 ≤ −|∇(d− w0) · (d− w0)|2|d− w0|p−4,

which implies from (2.42) that

−K2 −K3 ≤ (p− 1)

∫
BR

−|∇(d− w0) · (d− w0)|2|d− w0|p−4dx(2.45)

= −4(p− 1)

p2

∫
BR

|∇|d− w0|
p
2 |2dx.

Combining (2.42), (2.44) and (2.45) yields

(2.46) I8 ≤ −
4(p− 1)

p2

∫
R3

|∇|d− w0|
p
2 |2dx

for any p ≥ 1. Slightly modifying the process to estimate I6 gives

(2.47) I9 ≤
1

8η2

∫
R3

|d− w0|p+2dx.



12 MIMI DAI, JIE QING, AND MARIA SCHONBEK

Combining (2.39) with inequalities (2.41), (2.46), and (2.47) yields

1

p

d

dt

∫
R3

|d− w0|pdx+ (p− 1)

∫
R3

|∇(d− w0)|2|d− w0|p−2dx(2.48)

≤ C
∫
R3

|d− w0|p+2dx.

Denote v = |d− w0|p/2. Then (2.48) can be rewritten as

(2.49)
1

p

d

dt

∫
R3

|v|2dx+
4(p− 1)

p2

∫
R3

|∇v|2dx ≤ C
∫
R3

|v|2|d− w0|2dx.

Applying Hölder inequality and Sobolev inequality to the right hand side yields∫
R3

|v|2|d− w0|2dx ≤
(∫

R3

|v|6dx
)1/3(∫

R3

|d− w0|3dx
)2/3

≤ C
∫
R3

|∇v|2dx
(∫

R3

|d− w0|2dx
)2/3

‖d− w0‖2/3L∞(R3)

From Lemma 2.2 and Lemma 2.3, when p > 1, we can choose initial data small
enough so that

(2.50) C

(∫
R3

|d− w0|2dx
)2/3

‖d− w0‖2/3L∞(R3) ≤
2(p− 1)

p2
.

It follows from (2.49) that

(2.51)
1

p

d

dt

∫
R3

|v|2dx+
2(p− 1)

p2

∫
R3

|∇v|2dx ≤ 0.

The inequality (2.38), for p > 1, can be obtained integrating (2.51) over [0, T ] .

When p = 1, we have from (2.48)

d

dt

∫
R3

|d− w0|dx ≤ C
∫
R3

|d− w0|3dx

≤ C
∫
R3

|d− w0|2dx‖d− w0‖L∞(R3)

≤ C
∫
R3

|∇d|2 + |∆d|2dx

where we used Lemma 2.2 and Lemma 2.3. Integrating over time [0, T ] yields∫
R3

|d− w0|dx

≤
∫
R3

|d0 − w0|dx+ C

∫ T

0

∫
R3

|∇d|2 + |∆d|2dxdt ≤ C

where we used the energy estimate (2.16). This completes the proof of the lemma.
�
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2.3. Decay of d − w0 and ∇(d − w0). We first establish that d − w0 decays in

Lp(R3), for p > 1 at the rate (1 + t)−
3
2 (1−

1
p ).

Theorem 2.6. Let d be the solution obtained in Theorem 1.1. Assume d − w0 ∈
Lp(R3), p ≥ 1. Assume the initial data satisfies the conditions of Lemma 2.5. Then
for any 1 < p <∞, t > 0

(2.52) ‖d(·, t)− w0‖Lp(R3) ≤ C(1 + t)−
3
2 (1−

1
p ),

where the constant C depends on λp as defined in Lemma 2.5.

Proof: Note that as p → ∞ the constants λp in Lemma 2.5 will tend to zero,
hence we cannot pass to the limit as p → ∞. Therefore this result does not give
the decay for the L∞ norm.
We proceed by induction for k with p = 2k. The other powers p follow by interpo-
lation. When k = 0 the theorem follows by Lemma 2.5. Suppose it holds for s = k,
then we have

(2.53) ‖d(·, t)− w0‖L2k (R3)
≤ C(1 + t)−

3
2 (1−

1

2k
),

Let v = |d(·, t)− w0|2
k

.
Recall the inequality (2.51) ( which holds provided the data satisfies (2.50))

(2.54)
d

dt

∫
R3

|v|2dx+ Cp
2(p− 1)

p

∫
R3

|∇v|2dx ≤ 0,

By Gagliardo-Nirenberg we have∫
R3

|v|2dx ≤ C
(∫
|∇v|2dx

)3/5(∫
|v|dx

)4/5

Hence using the inductive hypothesis on the last integral on the right hand side we
have

−
∫
|∇v|2dx ≤ −C

(∫
R3

|v|2dx
)5/3

(1 + t)2(2
k−1)

Combining the last inequality with (2.54) yields

d

dt

∫
R3 |v|2dx(∫

R3 |v|2dx
)5/3 ≤ −(1 + t)2(2

k−1)

Integrating and reordering terms yields∫
R3

|v|2dx ≤
[

v0

(1 + (1 + t))2(2k−1)+1

]3/2
Since 3

2 (2(2k − 1) + 1) = 3
2 (2k+1 − 1) the induction step is obtained, establishing

the conclusion of the theorem.
�

As a consequence of the last theorem, we derive the decay of ∇(d− w0).

Corollary 2.7. Let d be the solution to system (1.1) obtained in Theorem 1.1.
Then

‖∇(d− w0)‖2L2 ≤ C(1 + t)−
3
4 ,

where C depends on initial data.
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Proof: Take p = 2 in Theorem 2.6,

(2.55) ‖d(·, t)− w0‖L2(R3) ≤ C‖d0 − w0‖L2(R3)(1 + t)−
3
4 .

Gagliardo-Nirenberg inequality (2.18) yields∫
R3

|∇(d− w0)|2dx ≤ C
(∫

R3

|d− w0|2dx
) 1

2
(∫

R3

|∆(d− w0)|2dx
) 1

2

≤ C
(∫

R3

|d− w0|2dx
) 1

2

≤ C(1 + t)−
3
4 ,

where in the last two steps we used Ladyzhenskaya energy estimate (2.17) and
(2.55), respectively. The constant C depends on initial data. It completes the
proof.

�

3. Decay of Velocity

An application of the Fourier Splitting method [23] is used to establish L2 decay
of velocity u.

Theorem 3.1. Let u be the solution obtained in Theorem 1.1. If additionally
u0 ∈ L1(R3), then

‖u(·, t)‖2L2 ≤ C(1 + t)−
1
2 ,

where C depends on initial data, the L1 and L2 norm of u0.

Proof: Multiplying the Navier-Stokes equation in system (1.1) by u and inte-
grating by parts yields

(3.56)
d

dt

∫
R3

|u|2 + 2

∫
R3

|∇u|2dx = 2

∫
R3

∇u(∇d⊗∇d)dx.

Hölder and Cauchy Schwartz inequalities yield

2

∫
R3

∇u(∇d⊗∇d)dx ≤
∫
R3

|∇u|2dx+ C

∫
R3

|∇d⊗∇d|2dx.

Thus, we derive from (3.56)

d

dt

∫
R3

|u|2 +

∫
R3

|∇u|2dx ≤ C
∫
R3

|∇d⊗∇d|2dx.

The right hand side of above inequality can be estimated as∫
R3

|∇d⊗∇d|2dx =

∫
R3

(∇d⊗∇d)(∇d⊗∇d)dx

= −3

∫
R3

(d− w0) ∆d ∇d⊗∇d

≤ 1

2

∫
R3

|∇d⊗∇d|2dx+ C

∫
R3

|d− w0|2|∆d|2dx,
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from which it follows∫
R3

|∇d⊗∇d|2dx ≤ C
∫
R3

|d− w0|2|∆d|2dx

≤ C
(∫

R3

|d− w0|pdx
) 2
p
(∫

R3

|∆d|
2p
p−2 dx

) p−2
p

= C‖d− w0‖2Lp(R3)

(∫
R3

|∆d|2+
4
p−2 dx

) p−2
p

≤ C‖d− w0‖2Lp(R3),

for p ≥ 2, where the last step followed from Ladyzhenskaya estimate (2.17) and
the fact that ‖∆d‖L∞(R3×[0,T ]) is bounded since d is regular in the sense stated in
Theorem 1.1. Thus, it follows from Theorem 2.6 that∫

R3

|∇d⊗∇d|2dx ≤ C(1 + t)−3(1−
1
p ),

for any p ≥ 2. Therefore,

(3.57)
d

dt

∫
R3

|u|2dx+

∫
R3

|∇u|2dx ≤ C(1 + t)−3(1−
1
p ).

Applying Plancherel’s theorem to (3.57) gives

(3.58)
d

dt

∫
R3

|û|2dξ +

∫
R3

|ξ|2|û|2dξ ≤ C(1 + t)−3(1−
1
p ).

The idea is to decompose the frequency domain R3 in integral
∫
R3 |ξ|2|û|2dξ into two

time-dependent subdomains. The time dependent subdomains are a 3-dimensional
sphere, S(t), centered at the origin with an appropriate time dependent radius and
its complement. For this we rewrite (3.58) as

d

dt

∫
R3

|û|2dξ ≤ −
∫
S(t)c

|ξ|2|û|2dξ −
∫
S(t)

|ξ|2|û|2dξ + C(1 + t)−3(1−
1
p ),

where S(t) is the ball

S(t) = {ξ ∈ R3 : |ξ| ≤ r(t) = (
k

1 + t
)1/2}

for a certain k, which will be determined below. Hence

d

dt

∫
R3

|û|2dξ ≤ − k

1 + t

∫
S(t)c

|û|2dξ −
∫
S(t)

|ξ|2|û|2dξ + C(1 + t)−3(1−
1
p )

= − k

1 + t

∫
R3

|û|2dξ +

∫
S(t)

(
k

1 + t
− |ξ|2)|û|2dξ + C(1 + t)−3(1−

1
p )

and

(3.59)
d

dt

∫
R3

|û|2dξ +
k

1 + t

∫
R3

|û|2dξ ≤ k

1 + t

∫
S(t)

|û|2dξ + C(1 + t)−3(1−
1
p ).

The following estimate, which will be established later, is needed

(3.60) |û(ξ, t)| ≤ C|ξ|−1
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for ξ ∈ S(t), where C is a constant only depending on the initial data. Combining
the inequalities (3.59) and (3.60) yields

d

dt

∫
R3

|û|2dξ +
k

1 + t

∫
R3

|û|2dξ ≤ C

1 + t

∫
S(t)

|ξ|−2dξ + C(1 + t)−3(1−
1
p ).

Multiplying by the integrating factor (1 + t)k yields

d

dt

[
(1 + t)k

∫
R3

|û|2dξ
]
≤ C(1 + t)k−1

∫
S(t)

|ξ|−2dξ + C(1 + t)k−3(1−
1
p ).

Since p ≥ 2 and ∫
S(t)

|ξ|−2dξ ≤ C
∫ r(t)

0

r2r−2dr ≤ C(1 + t)−1/2,

it follows that
d

dt

[
(1 + t)k

∫
R3

|û|2dξ
]
≤ C(1 + t)k−

3
2 .

Integrating in time yields

(1 + t)k
∫
R3

|û|2dξ ≤
∫
R3

|û(ξ, 0)|2dξ + C[(1 + t)k−
1
2 − 1].

Thus, ∫
R3

|û|2dξ ≤ (1 + t)−k
∫
R3

|û(ξ, 0)|2dξ + C[(1 + t)−
1
2 − (1 + t)−k].

Since u0 ∈ L2, it follows that û(0) ∈ L2 from Plancherel’s theorem. Hence∫
R3

|û|2dξ ≤ C(1 + t)−
1
2 ,

Hence ∫
R3

|u|2dx ≤ C(1 + t)−
1
2 .

To complete the proof we need to establish the inequality (3.60). Taking the
Fourier transform of Navier-Stokes equation in system (1.1) yields

(3.61) ût + |ξ|2û = G(ξ, t)

where

G(ξ, t) = −F(u · ∇u)−F(∇p)−F(∇ · (∇d⊗∇d)),

and F indicates the Fourier transform. Multiplying (3.61) by the integrating factor

e|ξ|
2t yields

d

dt
[e|ξ|

2tû] = e|ξ|
2tG(ξ, t).

Integrating in time gives

(3.62) û(ξ, t) = e−|ξ|
2tû0 +

∫ t

0

e−|ξ|
2(t−s)G(ξ, s)ds.

We assume for the moment the following auxiliary estimate, which we will prove
below,

(3.63) |G(ξ, t)| ≤ C|ξ|.
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Combining (3.62) and (3.63) yields

(3.64) |û(ξ, t)| ≤ e−|ξ|
2t|û0|+

∫ t

0

e−|ξ|
2(t−s)|ξ|ds.

Since u0 ∈ L1, we have |û0| ≤ C for all ξ and some constant C.Performing integra-
tion in (3.64) gives

|û(ξ, t)| ≤ Ce−|ξ|
2t +

C

|ξ|
(1− e−|ξ|

2t) ≤ C|ξ|−1

for ξ ∈ S(t). To finish the proof we need to establish (3.63). For this purpose we
analyze each term in G(ξ, t) separately. We have

|F(u · ∇u)| = |F(∇ · (u⊗ u))| ≤
∑
i,j

∫
R3

|uiuj ||ξj |dx.

Since u ∈ L∞(L2) by the basic energy estimate, we have

|F(u · ∇u)| ≤ C|ξ|.

By the basic energy inequalities (2.16, 2.17) we have ∇d ∈ L∞(L2) proceeding
similarly as for the last inequality we have

|F(∇ · (∇d⊗∇d))| ≤ C|ξ|.

Taking divergence of Navier-Stokes equation in system (1.1) gives that

∆p = −
∑
i,j

∂2

∂xi∂xj
(uiuj)−

∑
i,j

∂2

∂xi∂xj
(∇di∇dj).

Taking the Fourier transform then yields

|ξ|2F(p) = −
∑
i,j

ξiξjF(uiuj)−
∑
i,j

ξiξjF(∇di∇dj).

Since F(uiuj) ∈ L∞ and F(∇di∇dj) ∈ L∞, it follows that

F(p) ≤ C,

and thus F(∇p) ≤ C|ξ|. It completes the proof of (3.63) and hence completes the
proof of theorem.

�
Combining Theorem 2.6, Corollary 2.7 and Theorem 3.1 yields the proof of the

main Theorem 1.2.
�

Remark 3.2. The decay rate for the velocity u in L2 obtained in [28], for the

bounded domain case, is (1 + t)−
θ

1−2θ where θ ∈ (0, 12 ). When θ is close to 0,

then − θ
1−2θ would be very small, meaning the decay is very slow. In this paper,

we obtained the decay rate for velocity u in L2 with (1 + t)−
1
4 , a fixed constant

algebraic rate. The advantage comes from the fact that we work on the whole space
R3 where we can apply the Fourier splitting method.



18 MIMI DAI, JIE QING, AND MARIA SCHONBEK

Remark 3.3. It was pointed out in the first section that there is an essential
difficulty to apply  Lojasiewicz-Simon approach in whole space R3. However, in
weighted Sobolev spaces of R3, the compactness is recovered. Thus, we expect
there is hope to construct certain  Lojasiewicz-Simon type inequality in weighted
Sobolev spaces and proceed with the method in [28] to derive the decay of solutions
to the LCD system in weighted Sobolev spaces.

Appendix A. Existence of Classical Solutions in R3

In this section we sketch a brief proof of the existence Theorem 1.1, Section 1.
As mentioned in the introduction, for bounded domains in R3, the existence of
global regular solutions to the flow of nematic liquid crystals with constant density
has been established in [19] provided the viscosity is large enough. The existence
of global regular solutions to the flow of nematic liquid crystals with non-constant
density has been established in [6] provided the initial data is small enough. In
both of the above papers, a Ladyzhenskaya energy estimate (higher order deriva-
tive estimate) was derived and hence a relatively standard bootstrapping argument
yielded a regular solution.

The proof of Theorem 1.1 will be given through four steps. In the first step, on
a sequence of balls BRn with radius Rn, centered at the origin, we obtain the ex-
istence of a Galerkin approximated solution (un,m, dn,m) for the system (1.1) with
modified initial data, for each m = 1, 2, 3, .... In the second step, we establish an
estimate of dn,m − w0 in L1(BRn) for any fixed time t > 0. In the third step, we
take the limit m → ∞. In the forth step, we take the limit Rn → ∞. In fact, we
are able to show that all the estimates in Ladyzhenskaya energy method in step one
are independent of the domain size. Thus we can take a subsequence of solutions
on balls BRn which converge to a limit in R3 when Rn goes to infinity.

Lemma A.1. Assume u0 ∈ H1(R3) and d̃0 ≡ d0(x)−w0 ∈ H2(R3) ∩L1(R3) with
|w0| = 1. There exists a sequence of functions {(un0 , dn0 )}∞n=1 and a sequence of real
numbers {Rn}∞n=1 with Rn →∞ as n→∞ such that,

(A.65) un0 ∈ H1
0 (BRn), with un0 → u0 in H1(R3) as n→∞

(A.66) d̃n0 ∈ H2
0 (BRn), with d̃n0 → d̃0 in H2(R3) as n→∞

where d̃n0 = dn0 − w0. Moreover,

(A.67) ‖d̃n0‖L1(BRn )
≤ C‖d̃0‖L1(R3),

and |dn0 | ≤ 1.

Proof: Such a sequence of functions can be constructed easily as follows. Let
ζn be a sequence of smooth functions such that

ζn(x) =

{
1, in BRn
0, in B2Rn
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and |ζn(x)| ≤ 1 for all x ∈ R3.

Define un0 = ζnu0 and d̃n0 = ζnd̃0. Let dn0 = d̃n0 + w0. These ζn can be chosen such
that (A.65), (A.66) and (A.67) are satisfied. In addition, we have

|dn0 | = |ζnd0 + (1− ζn)w0| ≤ ζn + (1− ζn) = 1.

�
For the sequel we assume as initial conditions

(A.68)

{
u(x, 0) = un0 (x),

d(x, 0) = dn0 (x),
, in BRn × [0, T ),

where un0 and dn0 are as obtained in Lemma A.1, and the boundary conditions

(A.69)

{
u(x, t) = 0,

d(x, t)− w0 = 0,
, on ∂BRn × [0, T ).

We have the following existence of solutions to system (1.1) with (A.68) and
(A.69) on each ball BRn .

Theorem A.2. Let BRn be the ball centered at origin with radius Rn in R3. As-
sume that u0 ∈ H1(R3) and d0 − w0 ∈ H2(R3). The system (1.1) with initial and
boundary conditions (A.68) and (A.69) has a smooth solution (un,m, pn,m, dn,m)
for each m = 1, 2, 3, ... satisfying, for any T > 0

un,m ∈ L2(0, T ;H1
0 (BRn)) ∩ L∞(0, T ;L2(BRn))

d̃n,m ∈ L2(0, T ;H2
0 (BRn)) ∩ L∞(0, T ;H1

0 (BRn))

with d̃n,m = dn,m − w0 and |dn,m| ≤ 1. Moreover, it satisfies the energy inequality

d

dt

∫
BRn

1

2
|un,m|2 +

1

2
|∇dn,m|2 + F (dn,m)dx(A.70)

+

∫
BRn

|∇un,m|2 + |∆dn,m − f(dn,m)|2dx ≤ 0.

Proof: The existence proof is obtained through the standard Galerkin approx-
imation method, see [19] and [6]. We only need to give a brief explanation on the
claim |dn,m| ≤ 1 by applying a maximum principle argument. Notice that the ap-
proximated initial data dn0 satisfies |dn0 (x)| ≤ 1 for all x ∈ R3. Suppose there exists
a point (x0, t0) in the interior of the domain BRn × [0, T ), such that |dn,m|2 attains
a maximum value at this point. Multiplying the equation

dn,mt + un,m · ∇dn,m = ∆dn,m − 1

η2
(|dn,m|2 − 1)dn,m

by dn,m yields

d

dt
|dn,m|2 + un,m · ∇|dn,m|2 · dn,m(A.71)

= 4|dn,m|2 − 2|∇dn,m|2 − 2

η2
(|dn,m|2 − 1)|dn,m|2.

At the maximum point (x0, t0), we have d
dt |d

n,m|2 = ∇|dn,m|2 = 0 and 4|dn,m|2 ≤
0. Thus, it follows from the equation (A.71) that, at the point (x0, t0)

(|dn,m|2 − 1)|dn,m|2 ≤ 0.
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This insures that |dn,m| ≤ 1 at any interior maximum point (x0, t0). Therefore,
|dn,m| ≤ 1 for all points in BRn × [0, T ).

�
For the solution (un,m, dn,m) obtained in the above theorem on BRn × [0, T ), we

define energy quantity

Φ2
n,m(t) = ‖∇un,m‖2L2(BRn )

+ ‖4(dn,m − w0)‖2L2(BRn )
.

With a slight modification of the proof of Theorem 3.1 in [6], we are able to show
that

Theorem A.3. Assume that u0 ∈ H1(BRn) and d0 ∈ H2(BRn), and ‖u0‖2H1(R3) +

‖d̃0‖2H2(R3) <∞. Let (un,m, dn,m) be solutions obtained in Theorem A.2. There is

a positive small number ε0 such that if

(A.72) ‖u0‖2H1(R3) + ‖d0 − w0‖2H2(R3) ≤ ε0,

then ∫
BRn

|∇un,m|2 + |∆(dn,m − w0)|2dx(A.73)

+

∫ T

0

∫
BRn

|∆un,m|2 + |∇∆(dn,m − w0)|2dx

≤ C(‖u0‖2H1(BRn )
+ ‖d0 − w0‖2H2(BRn )

),

for any T > 0, where the constant C is independent of domain size Rn and m.

There is no need to prove the theorem except that we need a brief explanation
on the last claim that constant C is independent of Rn. In the proof of Ladyzhen-
skaya energy estimate in [6], we only use the Gagliardo-Nirenberg interpolation
inequalities and standard elliptic inequalities. That is we use

‖un,m‖4L4 ≤ C‖un,m‖L2‖∇un,m‖3L2

‖∇(dn,m − w0)‖4L4 ≤ C‖∇(dn,m − w0)‖L2‖∆(dn,m − w0)‖3L2

and the elliptic estimate

‖D2un,m‖L2 ≤ C‖∆un,m‖L2

for un,m and dn,m − w0 vanishing on the boundary. In the above inequalities, the
various constants C are independent of the size of the domain. Thus the constant
C in (A.73) is independent of Rn.

For the second step, we derive a time dependent estimate of dn,m(t) − w0 in
L1(BRn).

Lemma A.4. Let dn,m be the solution obtained in Theorem A.2. In addition,
assume d0 − w0 ∈ L1(R3). Then

(A.74)

∫
BRn

|dn,m(t)− w0|dx ≤ (C0t+

∫
R3

|d0 − w0|dx)eCt

where the constant C0 only depends on initial data and constant C only depends on
η.
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Proof: By the second equation in (1.1) we have,

d

dt

∫
BRn

|dn,m(t)− w0|dx

(A.75)

=

∫
BRn

(dn,m(t)− w0) · dn,mt
|dn,m(t)− w0|

dx

=

∫
BRn

(dn,m(t)− w0) ·∆dn,m(t)

|dn,m(t)− w0|
dx−

∫
BRn

(dn,m(t)− w0) · [un,m · ∇dn,m(t)]

|dn,m(t)− w0|
dx

−
∫
BRn

(dn,m(t)− w0) · f(dn,m(t))

|dn,m(t)− w0|
dx

≡ I1 + I2 + I3.

There is no need to worry about the singular points of (dn,m −w0)−1 in the above

equation, since each term on the right hand side contains dn,m−w0

|dn,m−w0| . We deal with

the three terms I1, I2 and I3 in the following way.
Since dn,m(t) − w0 = 0 on the boundary ∂BRn . Replacing dt by its value in the
direction equation and integration by parts yields

I1 = −
∫
BRn

|∇(dn,m(t)− w0)|2

|dn,m(t)− w0|
dx(A.76)

+

∫
BRn

|(dn,m(t)− w0) · ∇(dn,m(t)− w0)|2|dn,m(t)− w0|−3dx

≤ 0,

since |(dn,m(t)− w0) · ∇(dn,m(t)− w0)|2 ≤ |(dn,m(t)− w0)|2|∇(dn,m(t)− w0)|2.
By Hö lder inequality we have

|I2| ≤
∫
BRn

|un,m||∇(dn,m − w0)|dx(A.77)

≤ C

(∫
BRn

|un,m|2dx

)1/2(∫
BRn

|∇dn,m|2dx

)1/2

≤ C0,

where we used the energy estimate (A.70), and the constant C0 only depends on
the initial data.
Recall that by definition f(dn,m) = 1

η2 (|dn,m|2 − 1)dn,m, and |dn,m| ≤ 1 from

Theorem A.2 and |w0| = 1, hence

|I3| ≤
1

η2

∫
BRn

|f(dn,m)|dx(A.78)

≤ C
∫
BRn

|dn,m − w0||dn,m + w0||dn,m|dx ≤ C
∫
BRn

|dn,m − w0|dx,

where the constant C depends on η. Combining the inequalities (A.75), (A.76),
(A.77) and (A.78) yields

d

dt

∫
BRn

|dn,m(t)− w0|dx ≤ C
∫
BRn

|dn,m(t)− w0|dx+ C0.
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Integrating over [0, t], and Gronwall’s inequality (see [10]) gives,∫
BRn

|dn,m(t)− w0|dx ≤ (C0t+

∫
BRn

|dn0 − w0|dx)eCt,

for any t > 0. Inequality (A.74) now follows from the last estimate in Lemma A.1.
This concludes the second step.

In the third step, we take the limit of the Galerkin approximating solutions
(un,m, dn,m) as m→∞. By the estimates (A.70) and (A.73), there exists (un, dn)
for each n = 1, 2, 3, ... such that, taking subsequence if necessary,

un,m ⇀ un weakly in L2(0, T ;H1
0 (BRn)),

un,m → un strongly in L∞(0, T ;L2(BRn)),

dn,m ⇀ dn weakly in L2(0, T ;H2(BRn)),

dn,m → dn strongly in L2(0, T ;H1(BRn)) with dn = w0 on ∂BRn .

It follows easily from the above convergence that (un, dn) is a weak solution to
the system (1.1) with initial condition (A.68) and boundary condition (A.69) on
BRn × [0, T ). Moreover, the solutions (un, dn) satisfy the basic energy inequality

d

dt

∫
BRn

1

2
|un|2 +

1

2
|∇dn|2 + F (dn)dx(A.79)

+

∫
BRn

|∇un|2 + |∆dn − f(dn)|2dx ≤ 0,

and the higher order energy inequality∫
BRn

|∇un|2 + |∆(dn − w0)|2dx(A.80)

+

∫ t

0

∫
BRn

|∆un|2 + |∇∆(dn − w0)|2dx

≤ C(‖u0‖2H1(BRn )
+ ‖d0 − w0‖2H2(BRn )

),

for any t > 0, where the constant C is independent of domain size Rn. In addition,
from Lemma A.4 it follows that dn satisfies the estimate

(A.81)

∫
BRn

|dn(t)− w0|dx ≤ (C0t+

∫
R3

|d0 − w0|dx)eCt

where the constant C0 only depends on initial data and constant C only depends
on η.

In the forth step, we extend the solutions (un, dn) on BRn to the whole space
R3 by taking limit Rn →∞. With the estimates (A.79) and (A.80) we can extract

a subsequence
{

(u1k, d1k)
}∞
k=1

from (un, dn) for n ≥ 1 such that

u1k ⇀ u(1) in L2(0, T ;H1(BR1
))

u1k → u(1) in L∞(0, T ;L2(BR1))

d1k ⇀ d(1) in L2(0, T ;H2(BR1))

d1k → d(1) in L2(0, T ;H1(BR1
))
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and the limit (u(1), d(1)) satisfies system (1.1) in distribution sense and the estimates
(A.79) (A.80) on BR1

× [0, T ).

On BR2× [0, T ), we take subsequence
{

(u2k, d2k)
}∞
k=1

from
{

(u1k, d1k)
}∞
k=1

such

that
{
u2k
}∞
k=1

,
{
p2k
}∞
k=1

and
{
d2k
}∞
k=1

converge to u(2) and d(2) respectively in
the same convergence sense as above. And we have that

u(2)|B1 = u(1), d(2)|B1 = d(1).

Repeating the process on eachBRn×[0, T ), we can take subsequence
{

(unk, dnk)
}∞
k=1

from the sequence
{

(u(n−1)k, d(n−1)k)
}∞
k=1

, such that
{
unk
}∞
k=1

and
{
dnk
}∞
k=1

con-
verge to u(n) and d(n) respectively. And we have that

u(n)|Bn−1 = u(n−1), d(n)|Bn−1 = d(n−1).

Then we take the diagonal sequence
{

(ukk, dkk)
}∞
k=1

and let k →∞. This sequence

(if necessary, take a subsequence of it) converges to (u, d), in R3× [0, T ). The limit
(u, d) satisfies the system (1.1) in the sense of distributions and satisfies the energy
estimates ∫

R3

|u|2 + |∇d|2 + 2F (d)dx+ 2

∫ T

0

∫
R3

|∇u|2 + |∆d− f(d)|2dxdt(A.82)

≤
∫
R3

|u0|2 + |∇d0|2dx

∫
R3

|∇u|2 + |∆d|2dx+

∫ T

0

∫
R3

|∆u|2 + |∇∆d|2dxdt(A.83)

≤ C(‖u0‖2H1(R3) + ‖d0 − w0‖2H2(R3)).

In addition, the solution d satisfies the estimate∫
R3

|d(t)− w0|dx ≤ (C0t+

∫
R3

|d0 − w0|dx)eCt

with constant C0 only depending on initial data and constant C only depending on
η.

Estimates (A.82) and (A.83) allow us to apply the “bootstrapping argument”
as used in [6] and [19], and prove that the limit (u, p, d) is a classical solution to
system (1.1) satisfying the desired estimates in Theorem 1.1. This completes the
proof of Theorem 1.1.
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