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Asymptotic Behavior of Solutions to
the Three-Dimenstonal
Navier-Stokes Equations

MARIA E. SCHONBEK

1. Introduction. We consider the asymptotic behavior of solutions to the
Navier-Stokes equations in three space dimensions

u+u-Vu+ Vp = Auy,
(N-5)
divu=0.

This paper is a continuation of work started in [9] where we established
lower bounds to the solutions in two spatial dimensions and non-uniform lower
bounds for solutions in three spatial dimensions to the Navier-Stokes equations.
The purpose of this paper is to show that solutions to the three-dimensional
Navier-Stokes equations also have uniform lower bounds of rates of decay.

More precisely, it is shown that if u(z,f) is a Leray-Hopf solution to the
three-dimensional Navier-Stokes equations in the sense of Cafarelli, Kohn and
Nirenberg [1] with zero average initial data outside a class of functions of radially
equidistributed energy, then there exist constants Cp and Cy depending only on
norms of the initial data such that

Co(t+1)75/2 < |lu(-,t)||Z2 < Crlt+1)7%2,

We recall that in [7, 8] we showed that for non-zero average initial data there
exist constants Ca, C3 depending only on the L? and L! norms of the initial data
such that

Cz(t + 1)_3/2 < ”'U.( ,t)"iz < Ca(t+ 1)_3/2.

For initial data which have radially equidistributed energy, an extension of
an example suggested by A. Majda for the two-dimensional Navier-Stokes shows
that solutions can be constructed which decay exponentially, showing that the
condition of radially equidistributed energy on the data is necessary.

In Section 2 standard notation is recalled and some theorems which were
proved in {9] are stated. In Section 3 it is shown that the solutions to the thre-
dimensional Navier-Stokes equations admit an algebraic uniform lower bound
rate of decay.
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It is interesting to note that this uniform phenomenon of slow rate decay is
not present at the level of the solutions to the heat equations. The presence of
the nonlinear terms seems to produce some mixing of the Fourier modes creating
long waves which eventually will introduce some extra dissipation slowing down
the decay process. As a result, even highly oscillating data will produce solutions
decaying at most at algebraic rate.

We expect that the proofs presented here can be extended to sclutions in n
space dimensions with n > 3, using the techniques introduced by Kayikisa and
Miyakawa [4] and Wiegner [10].

2. Notation and some earlier results. In this section several theorems
which will be needed in the remainder of the paper are stated. The proof of
these theorems can be found in [9] and will be omitted. First some notation is
given:

V(IR®) = CP(R")N{u:V-u=0}
H = H(R™) = closure of V in L?.
The following weighted spaces will be used:

W;={u:f |z|2lu[da:<oo}, Wg{u:/ ixllu[zdx<oo},
R® R?

1/2
e, = f 12 [0l doy  [tlu, (j o] |u|2da:) .
R™ R"»

Note that if u € W1 NW,N L2, then [ || |u| dz < oo, since
[ lelas=[ ol luldz+ [
R= lz|<1

jz| ju| dx
fe[>1

<[ (el dot [ (o fulda
J2|<1 Jzl=1

< 00.

The choice of weighted spaces ensures that the data has at least two Fourier
derivatives in L. Let u € R*, m;; € fnn uiu; dz, define M = {u : matrix
(my; is scalar},

. to
a_?(to, u) = Mg — My4 ds,
a
. to
Bl{to,u) = [ my; ds, i#
0

The next theorem and corollary give estimates on decay rate for solutions
to the heat equations. Specifically, these results describe a class of initial data
D for which solutions to the heat equation admit an algebraic lower bound on
the L? decay rate.
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Theorem 2.1, Let vo € L*(R™). Let v be a solution to the heat equation
with data vo. Suppose that there exist functions £ and h, such that the Fourier
transform of vy for |€} < 6, § > 0, admils the representation

Bo(€) = £-£(6) + h(¢), £=(l,....4),

where £ and h satisfy the following conditions:
(D) |h(&)| < Mol€)?, for some My > 0;
(ii) £ is homogeneous of degree zero;
(i) a1 = iy |w - £w)] dw > 0.
Let
M, = sup [£4(3)],
lyl=1
My= sup [Ve(y)|,
§/2<yl<1
K= max(Mo,M]_,Mg).

Then there exrists constants Cy and C; such that
Colt+1)~"/2+D < |u(-,1)[7, < Cu(t+1)~ /2D,

where Co and Cy both depend on n, Mo, M, 6, and [vy|r2 and Cy also depends
on K and a.

Proof. See [9]. a
Corollary 2.2, Let v be a solution to the heat equation with data vy €

L%(R™} where vy has the Fourier representation described in Thereom 2.1 and £
and h satisfy (i), (ii). If, in addition, £ satisfies

(1) wo-&(wo) = a #0, for some wp € §™71,
(2) &-4(¢) € C*(R™\ {0}),
then the conclusion of Theorem 2.1 holds.

Proof. See [9]. O

The next theorems show that for initial data in some weighted spaces and
outside a set of radially equidistributed energy, the Fourier transform of the cor-
responding solution to the Navier-Stokes equations will take the form described
in Theorem 2.1 after a short time ¢ = t; > 0. Hence the solution of the heat
equation, starting with data u(z,tp), will have a lower bound of rate of decay.
More precisely, there are two cases:

(i) the Fourier transform of initial data has a zero at the origin of order one,
(ii) the zero at the origin is of order greater than one.
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Theorem 2.3. Let g€ HNWiNW(R™), n = 2,3. If § has a zero order
at the origin, then there exists § > 0 such that for |€] < &,

g(€) = £~ 4¢&) +£(8),

where £ and h satisfy the hypothesis of Theorem 2.1, with Mo = sup|;<s |V“’5-§(£)1
and a depending only on 6?0(0).

Proof. See [9]. O

The case when the data g has a zero of order greater than one in Fourier
space will be treated in Section 3.

The next theorem gives a comparison between decay rates of solutions to
the Navier-Stokes equations and solutions to the heat equation.

Theorem 2.4. Let up € L*NWyNH(R™), n = 2,3. Let v be a solution to
the heat equation with data ug. Suppose

Co(1+18)~ (/21 < |u(-,t)|i, < C1(1+8)~(r/241),

For n =2, let u(-,t) be a solution to the Navier-Stokes equations with data uo.
Then there exists constants My and M, such that

(1) Mo(1+8)~/24D < u(- )3, < My(1+1)~ /24D

where My and M, depend on Cy, n and the L' and L? norms of up and My
depends also on Cy and W3 norm of ue.

For n = 3; u(z,t) is a Leray-Hopf solution in the sense of Caffarelli, Kohn
and Nirenberg. .

Proof. See [9]. O

We note that in [9] we only got the lower bound for almost all ¢. The reason
being that the proof was applied to the approximating solution constructed by
Caffarelli, Kohn and Nirenberg [1] and then passing to the limit and from the
construction in [1] it is only apparent that the approximating solutions converge
strongly to a Leray [3], Galdi [2], and Wiegner [11].

3. Radially equidistributed solutions and lower bounds. Here we
show that solutions with smooth data g which are not radially equidistributed,
ie., g € M, will be such that o (t,u} # 0 or 8] (t,u) # 0 at least for a short
time 2.

Inn order to show this, recall that if g € H*, then for a short time u(z,t) will
belong to H'.
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Theorem 3.1. Let g € H'. Let u(z,t) be a solution of the Navier-Stokes
equations with data g. Then there exists a tg > 0 such that

Ivu(- 0z < C.

Proof. The proof can be found in several textbooks; see [5, 6]. For com-
pleteness we include a well-known formal outline, which can be made rigorous
by applying it to approximating solutions and passing to the limit. This version
of the proof was mentioned to he by E. Titi.

Multiply the Navier-Stokes equations Aw and integrate in space. After some
integration by parts it follows that

d/ |Vu|2d:c+[ |Ay|? d:c=f (uVu)Au dz;
dt a R3

hence

d , \ 1/2 \ 1/2
—|Vul*de+ | |Au|®dz < (uVu)Au dz |Au|? dx .
dt R3 Rs R3

Recall that by Agmon’s inequality
[u(- 5] oo < Cllull 5" flAu]j75"

Hence

d 1/2 1/2
—f, |Vu|2d.1:+/ IVul? do < e (f Va2 d.r) (/ Va2 d:::)
dt Jqe Rs 3 R®

< Clull Al 1ule
By Young’s inequality for a, b > 0

r
b<(€a) +(E) l l+l=1
r e/ ¢ r v

7/4 1/4
Let a = “AullL/n , b= C” ” ! "VH‘"LZ' Let p = %! p’ =8, K= C4|Iu0||L2/14'
Here we used that [[u]|zz < |jugl|ra. Then the two inequalities yield

4
f |Vu)? dz:+f [VuPdz < = j |Vu)? da:+K(/ |Vul? dm) .
R?

Let w(t) = |Vu|?. Hence
%w < Kuwt.
Standard ODE results imply that there exist tp such that for ¢ < ¢

=[ |Vul? < M;
R?

moreover, to can be chosen to be [Kw(0)32] _1, then M = 2w(0)3. o
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Lemma 3.2. Let uj = (u},ud,ud) € MSnNH(R®)NH. Let u(z,t) be a

Leray-Hopf solution to the Navier-Stokes equations in the sense of Caffareili,
Kohn and Nirenberg with data uy. Then:

(i) if for some i, j o = Jps [ubl? — [Wd? dz # 0, then there exists ty such that

T j
_[ f wil? — [ug]? dzdt]| > (%—-)T
0 R?

for all T < ty, ty depending only on the H' norm of the gradient of ug.

(i) if for some i, j, B = Jaa el dx # 0, then there ezists ty such that

[ [ s e = ()

for all T < g, to depending only on the H' norm of the data.

Proof. Without loss of generality suppose a? > 0. Let a = a?. Let F(f) =

Jrs 11 f? = lua|® dz.

-d-F(t)‘ <c f (Vul? dz.
dt a3

Multiply by 4, the equation of the first component of the Navier-Stokes equation

and the second by u;. Subtract and integrate in space. Hence

3
./RS iy Zu.-a,-ul —u;Op+uidwy dz

i=1

(3.1) ‘%F(t) <

3
——f Ug Zu,ﬁluz — tathp + usAus dr
“S

=1

5c(/m|\7u|2dx+[m|u|4dx+/“a|p|2dx).

Note that since ug € H* this estimate makes sense for t < to = (3 [|Vuo|? dz)

as shown in Theorem 3.1.
To estimate the L* norm recall the following estimate.

Lemma 3.3. Ifn =3 for any space set Q C R®

Ilzecoy < 22l 55, 17l35tg)

for allu € H}(Q).
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Proof. See Teman [6], page 297. 0

Remark. The last lemma can be trivially extended to the case 2 = R3 for
all u € H* with Ju(z)| — 0 as |z| — co.

To estimate the pressure term p recall that p satisfies an elliptic equation
which is obtained by taking the divergence of the Navier-Stokes equations

32
Ap T g 317,'8.'1?5 Hitlss

hence ”
ﬁ=_zl_é'_;@,
if
and by Lemma 3.3
2 12 §ilj -
p dx:/ |5 Sf s
Joto aa= [ o7 ae o 2o T

< 4[ |uf* dx
R3

3/2
5(8 / |Vu|2d:n) .
R3

Hence the right side of (3.1) can be estimated as follows for
t < to = (2K) ™ |Vuo |,

with K defined in Theorem 3.1:

<c ((/ﬂ (Vu? dx)aﬂ +/Rs |vu|2)

the constant C' depending on the L% norm of the data. Moreover, by Lemma 3.1,
for t < (2K)™", ||Vuq||;» = to; it follows that integrals on the right-hand side

of (3.2) are bounded by Cp = 4[(f!Vuo|2)3 + (fVug|2)9/2]. Hence for ¢ < #p

(3.2) I%F(t)

d
_— < =0,
‘th(t)l <CCy=0C,

By the mean value theorem for some 3 € [0,1]

|F(&) — F(0)] < |F'(8)|t = C1t.
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Thus F(t) > F(0) — C1t. Integrating over [0,T] yields
T T2
/ F(t) dt > FOT ~ Gy
0

hence for any T < min (to,%%l) where #; was obtained in Theorem 3.1 as

to— (2K ”Vuo"iz)—l and K depends only on the constant in Agmon’s inequality
and the L? norm of the data. Thus,

fo oy

Let Ty = min (to, %gll)o and Part (i) of the lemma follows.

F(0)
z2— T

Part (ii). Without loss of generality let 8 = 8} > 0. Let A = A(?) be the

rotation by %, ie,
cosd? —send O
A= |send cosd O with 4 = %.
0 0 1

Then if v¢ — (v1,v2,v3)f = A7 1u?, it follows that

/ulugdx=f v? —v dz
R? Re

and hence Part (ii) follows from Part (i) applied to the rotated coordinates vy,
V2, Uz.

Lemma 3.2 implies that if the data g dges not have radially equidistributed
energy then for a short time, ie., < o, al(t,u) # 0 or 8I(t,u) # 0 for some
i, j = 1,2,3. Hence the Fourier transform of the solutions to Navier-Stokes
equations with data ug has the form

g (€ t0) = € £i{€,80) + hi(€, o)

where £, and h; satisfy the conditions of Theorem 2.1 and ¢4 is given by Lemma
3.2. More precisely:

Proposition 3.4. Let g€ HNH'NW,NM°%(R3). Let u(z,t) be a suitable
Leray-Hopf solution in the sense of Caffarelli, Kohn, and Nirenbery. Let § hav
a zero at the origin of order greater than one. Then there exists § such that for
g1 <é6

4r(€,t0) = & £e(€,t0) + ha(€, 20)

where Ty is given by Lemma 3.2 and £ and hy satisfy

(1) |he(€)] < Molef?;

{(ii) &y is homogeneous of degree zero.
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(iii) wo - £fel(wo) = a # 0 for some wo € 5*! and at least one of the £,
(iv) &-£x(€) € C1(R*)\ {0}. The constant My depends only on |g|r2, |g|w, and
to.

Proof. We start the proof as in the first part of Theorem 3.3 {9]. Recall that

a weak solution with data g satisfies

2
63 @O0 - [ { (s 500)) +(Tu(s), Vo(e)

+ ((uls): Vulo) w0} ds = (o600 =0

for all smooth vectors ¢ with compact support and dive = 0. Following
Wiegner’s argument [10], choose ¢ to be a solution to the heat equation with
data o € CZ°(R3) with diviy = 0. This y is smooth and bounded in L* and
{3.3) holds for ¢ by approximations. Let ¢y > 0 fixed and t* > £p. For0< s <¢
let
¢(8) = F7 (Flpo) exp(—[£7(* - 8))

which is the solution to the homogenous heat system with data ¢g at time £* — 3.
For that choice of g, (3.3) yields

3
(34) (& to) =Y (8ix — &r&sl€I7%)

j=1

i o
I:gje_miztﬂ _f (u . V)uj(s)e_lflz(to_g) ds] .
0
For more details we refer the reader to [10]. By hypothesis

8(€) = §;(0) + Vg;(0) - €+ V2g;(n)(£,€) = V2a;(n)(&, ).

Hence we only have to consider the terms in

3 to
(3.5) 3 (ks — x&51E1 ) f vhAu e 6 (t0=5) gy,
i=1 0
Let ay; = @;1;, al;(t) = 41;(0,¢). Then (3.5) can be rewritten as
3 tg 3 .
> (s —€k§j|§l’)f Y ek to=a) gy,
j=1 0 =1

By Lemma 8.2 of [2] there is a set A with Lebesgue measure zero such that if
t & A then
a:5i(6,t) = aj(£) + {Veay; (6,1).
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Hence (3.5) can be expanded as

3

(3.6) =36k — xt51€12) fo " ¢:a%,(s) ds + K(€).

j=1

where |k(¢)| < M{¢|*, M depending only on L?, W; norms of the data and .
Without loss of generality let k = 1. The first term in (3.6) can be rewritten as

3
—i€- &1(€,t0) = =i Y &:li(E to),

i=1
where
2 2
(3.7 £1(¢,to) = ||£§|2 f al, —al, ds +(!:’;3|I2)f ad, —al; ds,
2 to to
B(éto) = [1- !EL l [ aa-58 [ a

B¢, k) = [l-i%lé—‘u] ]; 1 ds —%23 / a3p ds.

From (3.4), (3.5), (3.6}, and (3.7) it follows that
ﬁk(gstﬂ) =& Le(€t0) + ha (gatﬂ)

with |hx(€,t0)| < Molé|? and My depending only on supm55|@(5)|, the L?,

W2 norms of g and ¢y. Conditions (i), (ii), and (iv) follow trivially. For (iii}

we only need to choose wo appropriately Since g € M°NH! by Lemma 3.2 it

follows that for i # 7, od(to) = [;°a% —a? ds # 0 or Bl (te) = f;"aj ds # 0

for some ¢, j = 1,2,3. We only analyze wo - fe(wp), £ = 1; for elther kit

follows similarly. If wo - £(wp) # 0, then simple continuity arguments show that

oy = fl w1 £(w)ds > & > 0. Let e; with the jth element of the canonical

basis in R3.

(i) If af # 0 choose wp = (e; +e;)/v/2.

(ii) If ol =0 and ,Bf # 0. Without loss of generality, suppose 7 is one. Then let
Wy = ej.

(iif) Iforf =0, ﬁ{ =, and ﬁf # 0, i and j not one. Let wy = (3 +¢; —e,)1/4/3.
Note that multiplying the appropriate element of the canonical basis by
sign or,’ or sign ﬁf , one can always show that wy - £ {wp) > 0. (]
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We recall that if the initial data wo € HNL! have nonzero average, we
establish upper and lower bounds for the rates of decay of the solutions to the
Navier-Stokes equations in three dimensions in [8]. More precisely, it is shown
that

Co(t +1)7%% < |ul-, )22 < CrL(t+1)"%2

with Cy, C; depending only on the L? norm of the data.

If the average of the initial data uo € HN LI NW; NW, is zero and dg(£,t)
has a zero of order one, in [9] we showed that for n = 2 there exist constants C,
and Cj depending on the L2, W; and W> norms of the data such that

(3.8) Ca(t+1)72 < Ju(-,)%:] < Cr{t+1)~2

In 9] we gave an outline of the proof for n > 3 of (3.8). The main step
in the proof of (3.8) was a comparison theorem between the solutions to the
Navier-Stokes equations and the solutions to the heat equations which satisfies
an inequality of type (3.8). More precisely the following theorem is the essential
step leading to a lower bound.

Theorem 3.5. Let ug € L2NWyN H(R?). Let v be a solution to the heat
equation with data ug. Suppose

Co(1+8)3/2 < ||u(-,8)||2, < Cr(1+18)~372.

Let u(z,t) be a solution to the Navier-Stokes equations with data ug, then there
exist constants My and M; such that

Mo(1+8)75/2 < [[o(-,0)||7. < Mu(1+18)=52

where My and My depend on Cy, n, the L' and the L? norm of up and M_ also
depends on the Wo norm of uy.

Note 1. The proof is based on the proof presented in [9], where the 2
dimensional case was established and the n—dimensional was outlined. We give
only the changes necessary to complete the proof in [8].

Note 2. The outline of the proof in {8] is formal. To make it rigorous apply
it to approximating sequences and pass to the limit.

Proof. There are two cases to be considered. Let ¢ # j. Let A;;(£) and
B;;(t) be defined by

i
Ais(t)=| [ (o) ds| 2 Fad,
t
14
Bij(t) = /;ﬂij(x,s) ds| > 5;3%
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