H22.

Some results on the asymptotic behaviour of solutiong
to the Navier-Stokes equations

Maria E. Schonbek®
Department of Mathematics
University of California
Santa Cruz, CA 95064
§1. Introduction

We consider the asymptotic behaviour of solutions to the Navier-Stokes cquationsin n > 2
spatial dimensions

U+ uwVu+Vp=Au
divu=0

In earlier papers we discussed the upper bounds of rates of decay in three space dimensions with
datauge L2 Lr, | £p <2 6,7). There have been several extensions and improvements on
these results [2, 11). Here we first present a survey of results on lower bound of the L2 rates of
decay in two- and three-dimensions [8, 9] and then extend these results to 1 > 3 dimensions.

The study of the lower bounds is a much more subtle problem than the one corresponding

to the upper bounds. The solutions to Navier-Stokes, unlike the solutions to the heat equation, do
not decay at arbitrarily large algebraic rates or even exponentially depending on how oscillatory the
initial data is. More precisely, solutions to Navier-Stokes outside a set M of radially
-equidistributed data have an algebraic lower bound of decay rate which is independent of the
oscillations of the data and depends only on the number of dimensions of the space. The algebraic
lower bound is a consequence of the nonlinear structare of the equations. The inertial term
div(u @ 4) in the Navier-Stokes equations appears to convert short-waves into long-waves
reducing the decay rate. For datz in M an example suggested by A. Majda shows that there are
exponentially decaying solutions.

There are two cases to consider. First case: the average of the initial data is nonzero, L.c.,
the initial data has long waves. Here the argument relies on a comparison argument with solutions
to the heat cquation with the same data. Second case: the average of the data is zero. The

* This paper was partially funded by NSF grant No, DMS-9020941.
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roach now is to find conditions on the data so that the corresponding solutions to the heat
o ecific algebraic rate. These conditions will be met by the solution to the

tions decay at a sp . ' :
:Jql::cr Stokes at some time £y 2 0. The lower bound in the solution to the heat equation will be an
avier-

essential tool 10 establish the corresponding estimate for solutions to Navier-Stokes.

§2. Main Results
The following notation will be used.
V(R™) =Cy(R™ N {u: V-u=0),

H(R™ = H = closurc of V in L2,

W) = Iu: L- eflul dx < u}, W= {u: I P dx < »},

1

= = fledt Zelx.
ld,, = ‘L. LriZeel o, Iulw’ jn.lx i

Letue Rn, m.;;='[n.u.'ujdx. defineM={w: ue R",mau-ix(m,-j)isscalar],

fo . o .
ocf(ro. u) =j miy— myds, Bitto, u) =L mg; ds, i #].
0

We recall that if the average of the initial data ug is nonzero, i.e., the initial data has long
waves, the corresponding solutions to the heat equation have a lower bound of rate of decagt of
(¢ + 12 and the difference between the solution to the heat equation and solutions to Navier-
Stokes decay at most like (¢ + 1)-#2-1, Hence, a straightforward comparison argument shows

that,

Theorem 2.1: Let uge H N LV and %0, 1) = fo. ulx, ¢) dr # O then there exist constants Co and

C such that

C,lt+ D™ <lul, <Gyt + )™
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with Cg, C| depending only on the L2 and L1 norms of the data.

Proof: See[8]. O

The case when &0, ) = f u(x, dx = 0 is iore subtle. The reason being that the mass
f u(x, )dx is invariant with time and hence stays equal to zero for all time. Hence comparison

with the heat cquation cannot be expected to work in a straightforward way. There are two
preliminary steps to be carried out. First find conditions on the data so that the comresponding
solution to the heat equation decays at a slow rate. Second show that solutions to the Navier-
Stokes equation, with zero average data lying in M¢, satisfy these conditions at some time tg 20.
In other words long waves will develop eventually,

Once this has been achieved a comparison argument will be used. We note that in this case
the lower bound of the rate of decay for solutions to the heat equation and the upper bound of the
rate of decay of the difference between solutions to the heat equation and Navier-Stokes equations
is the same. Hence the comparison between thesc two equations is much more difficult.

The data theorem for lower bounds for the solutions 1o the heat equation can be stated as
follows.

Theorem 2.2: Let voe LYR™). Let v be a solution to the heat equation with data vy, Suppose
there exists function ¢ and A such that the Fourier transform of 8¢ for Il < 5, 8 > 0 admits the

representation .
V@ =¢- HE+KE) t=(ty,.., by
where £ and A satisfy
i, LW <MgER, since My > 0,
i.. ! is homogencous of degree zero,

i o= f.wm Iw-2(w)i2dw > 0.
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Let M, = ;:illl' RO, My = suplVE(y), K = max(My, M, M5) then there exists constants Co and
C; such that

Co(r + 1) V24D < (y(-, IF2 < Cye + 1)~ W2+,
where Co and Cy depend only on Mg, My, 8, vyl 2 and Co also depends on K and a,

Proof: We give only the idez of the proof. Note that by the form of the initial data Vo2 =
(&) and hence by Parscval -

f Wldx = f Fo(E)12e- M 1dE = f O(ER)e gt

B R R

which when made rigorous and after change of variables implies that IR" Wi2dx is of
order (r+Iy{w2+1),

For a detailed proof see [8).

Corollary 2.3 The conclusion of theorem 2.2 holds if i and ii of theorem 2.2 hold and iii is
replaced by the following conditions.

il gl () =0, for some @y e 571,
i, ELE) e CHRMO).

Proof: Sec[8). O

Forthcsecondprclimina.:ystcpthcrcmnvocm 1. The zexo of the data is of order
one, Z.Thczcmofthcdamisofordcrgreawrﬂianm In the first case we usc the following.

Theorem 24: Letg € H O Wy N Wa(Rn), n =2, 3. If g has a 210 of order one, then ther
exists 8 > 0 such that for Il < 5 '

TE =E- KB +h(d
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where ¢ and k satisfy the hypothesis of theorcm 2.2 with Ma = ‘sér‘usl‘)‘lvzg(f_,)l and o) depending only
on Vg{0).

Proof: See [7). The proof preseated in (8] is valid forall n. [J

For the second case the data ug = u(x, 0) has to be in M¢, Before treating this casc we give

several auxiliary lemrnas.

Lemma 2.4: Letuge HI(R") N H(R"). Let u(x, 1) be a Leray-Hopf solution of the Navier-
Stokes equations with data #p. Then there exists £p > 0 such that '

IVu(, :)ll;z,a SC, fort <1
Proof: The proof is standard. In [9] we give a proof for n = 3. The main idez is to first multiply

the equation by Au and integrate in space. Using Agmon's inequality onc derives casily an
owdinary differential inequality for IV“’EL The solution of this inequality exists for 1 < fp where 15=

Io(lvuole, Iuole, n}. a

Lemma 2.5: Letuge HI(R®) N H(R7®). Let u(x, 1) be a Leray-Hopf solution to the Navier-
Stokes equation with data sy, then there exist fg > 0 such that for t <&

luC-, Hl-<C.
where C depends only on the L2 norms of the data 4 and the gradient of the datz Vi

Proof: Follows by Agmon's standard inequality and the last lemma. [0

The proof of the next lemma is formal for n2 3. In order to make it rigorous it should be
applied to approximating solutions as the ones constructed by Caffarelli, Kohn and Nirenberg [1]
for n = 3 or for n 2 3 by Kayikiya and Miyikawa [2] or by von Wahl [13].
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Lemma 2.6 Letuge H N H(R" N Wy N Wy where s =[121] + 2. Let u be a weak solution to
the Navier-Stokes equations with data ug. Then therc exists 1 > 0 such that for £5 &

ay=al+ EVeai(d).

.

where ag = a; (& 0) = ua{€, 0, afy=(£, 0).
Note for a= 3 it suffices to have s = 1 and the result is valid for almost all £,

Proof: For n =13 the theorem is an immediate consequence of Lemma (3.1) in [1). Actually this
lemma cstablishes the following bound for almost all £:

1 f ke(x, H12xl dx < A(r)
2 g

with A(r} depending only on the L2 and W5 norms of the data. Hence leiting
A= 'r : gL, NS A(r}}, '

hence for all r € A% the conclusion of the theorem follows in the case n = 3. for higher dimensions
we use the well-known fact that solutions are regular for a short period of time (this argument can
also be used for threc dimensions). There are scveral ways of establishing short tiae regularity in
i;arﬁcular for 3 dimensions, scc Kato [4]. For higher dimensions, sec Temam [10]. A simple way
of obtaining short time regularity is 10 bound the Dirichlet norm for a short time. This can be done
formally by multiplying the Navier-Stokes equations by Laplacian and integrating in space.
Agmon's inequality for the L* norm will yield an ODE for the Dirichlet norm from where the
bound for short time follows. From here Temam's methods will give rigorous short time
regularity.

To obtain the conclusion of the theorem for n 2 4, let 1y be such that the solutions are
regular for £ < £5. It will be necessary to show that Vg, a; is well defined or equivalcatly that for

<t
j Le(x, )1 dx < e
B

Sinccﬂﬁsisanauiliaryresultwewillgiveaproofinanappendixaxﬁlcmdofﬂnpapcr. a




We will use the notation for i =/

2.1) o= ol =J; , da dx,

22) By= B0 =[ Lunya,

(% = ay(O). “vj = ll‘-'ln

By=B®.  ij=l.n .‘

Lemma 2.7: Letuge H O HSR™) N Me. Let ufx, 1) be a weak solution to the NS with data uq, !

Then

i. If o+ O for some i, j then there exists 75 such that

: , Ly
23) |20 |= [ a0 aslz3 o,

for all £ < 1y, 1y depending only on the A norm of the data.

ii.  If B} #O0 for some i, j then there exists 7 such that

@4 |30 |=| [ B9 as

for all ¢ < 7, tp depending only on the H* norm of the data.

L
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Proaof: Let Iy be such that the solution is regular for ¢ < 1p. The proof follows the same lines as in ;

[8,9]). The proof in [8] can be used for # 2 3 since we do have short time regularity. Note that ii
is a consequence of i since By; is a rotation of ¢ by an angle of x/4. O

Theorem 2.8: Let uge H (1 H™ ( Wy MC(]R"),uz?.,mZ[g-]+2 (f n = 2 it suffices if m =
1). Letufx, ¢) be a solution to the NS equations with data ug. If I has a zero greater than one at

the origin there exists fp > 0 and & > 0 such that for [E1<§

UL, ) = &~ 2UE 10) + I(&. 1),

where 29 depends on the H™ and W3 norms of the data, !, and hy satisfy the conditions of

corollary 2.3.
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Proof: For the proof we work in Fourier space. We will give the maain outline. More details can
be found in [8]. The proof follows the general lines of [8].

Note that the solution satisfies

B+ PR =—H, T =Hn(& 0),

where # =u - Vu + Vp. Arguments of Wiegner [12] show that

=t

n o ————
(2.5) CACAVEDY (csfk—ctéﬁérzx[%e-'ﬂ%- fo u- Vugé, s)e*ﬁﬁ'«—»ds}

where Ho is the j-th component of U and /g is given by lemma 2.6. By hypothesis, Hoj hasa
zero of order greater than one, hence we only have to consider the terms in

n { R,
2.6 2 (85— .51«5,4&2{ f u - Vugg, ,)e-:am.-s)d,}

=1 0
——— 3
Since u - Vi = Z &ittd; and e ¥¢e-5) = 1 + OQER) it follows by Lemma 2.5 that (2.6) can be
i=1

Tewritten as

n fo
@ — Y, (B~ GGpdr z{f &al(s) ds] + KHO),

Ji=1 (4
where KO < MIE?, M = M(lugl, 5, lugh o, 19). Without loss of gencrality let £ = 1. The sum

in (2.7) will be rewrittcn as

2.8) —i&- W(E 0y =i ), gjtil(g- ), Y= (g!‘. -t
ot

For this we first subdivide the sum in (2.7) into three parts.

a. When i = = 1 the corresponding terms of the sum are

p (] .1 fo
fl[“%lj; ahyds =¢zi-2“% A dlyds .
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b. Whenj=1landi22ori=1, 22, the terms of the sum arc

oo

<. Wheni=1andj 2z 1, the terms of the sum are

g SRy,

itj>1 @2 =2 |§]2

Hence, 8(& 1) = (!ll,' - ,l’:) can be defined as follows

P R R
!l—!r(ésfo)-gl—gi'jo )y — af ds.

!E=ti(¢.ro)=[l ‘f"z] f ods — an a}lds.
nepi

for r 2 2. Hence the sum (2.7) can be expressed as described by (2.6). Combining (2.5), (2.6)
and (2.8) yields

u(€, 10) = § - L&, 10} + hl§, t0),

where & and hy = E kf(£) satisty wivially conditions i, ii and iii' of corollary (2.3). To cstablish
j=1
iif', let ¢; be the canonical basis of R¥. Let af and B} be defined by (2.1) and (2.2), then by

hypothesis ¢ither ag- #001'[3,-‘}#0. There are various cases to analyze.
+ .
i. For some |, j, a?_,— #0. Without loss of generality, leti = 1. Choose ab=817;—’, then
wy - Hag) = A{r) # 0, where A;{tg) was defined by (2.3) (see lemma (2.6)).
i Foralli,/, o =0. Supposc Bij # 0 for some i, j. Suppose either i or j is one. Without

loss of generality, lcu = 1. Choose g = ¢j, then axg !(mo) B (1) #0, where B {t0) was
defined by (2.4) (sec lemma (2.6)).




“

ds.
a&i(* oo
iglJo s

¢ (2.6). Combining (2.5), (2.6)

of corollary (2.3). To establish

«d by (2.1} and (2.2), then by
lyze.

Ch 81+ej
00sC dfy = , then

T2

ernma (2.6)).

¢ cither i or j is one, Without
o # 0, where B ;{t5) was

155

iii. Foralli,j & =0and p.’} =0. Supposeﬂ.-f,! # 0 for some I, /. Suppose and j are not
one. Choose wy= 71._5 () +e;—e;). Henceay- (tog) # 0. Note that multiplying by

appropriate signs of Aor B; , o - Hwg) >0. O

The next theorem was the essential step in establishing the lower bound of rate of decay for
the L2 norm in [8].

Theorem 2.9: Let uge L2 Wy N H(RA). Let v be a solution to the heat equation with data uy
Suppose '
Col + 20 < bu(:, 2 Cy(1 + 2D,

Let ux, 1) be a solution 1o the NS equations with data up, then there exist constants Mg and M)
such that

M1+ 070 <l 7 My(1 + 2D,

where Mg and M) depend on C), , the L1 and the L2 norm of ug and M. also depends on the Wy
norm of ug.

Nore I: The proof is based on the proof presented in [8], where the 2-dimensional case was
established and the n-dimensional was outlined. We give only the changes necessary to complete
the proof in [8].

Note 2: The outline of the proof in [8] is formal, To make it rigorous apply it to approximating
sequences and pass to the limit. -

Progf: There are two cases 1o be considered. Leti#j.
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Case 1 Given ¢ there exists T > ¢, such that for all pairs i, j

| A,M|<BYCs o IB!-,(T)|<[3\/C_°.

Case 2: There exists Ty such that for all £ 2 T and for at least one pair 1 S i, j<a

[20[28/C and |ey0|26/Co.

Herc B is such that 16824, = 1/16 where A, = 20,(2ny¥2+1 and O; = measure of the # ~ 1 sphere
_ of radius one. Sec [8] for reason of this choice.

'I‘hcproofofcasclisthesamcasthconeprcscnrodin[9]ifwcmplaccﬁby!iwhcm

~ 2
HE 9= ié-(% o} - a? .[1 -2 %J a?z) + 008,

}?(5 0=i§- I, =h,.., I), where

n =F|(§)=E%(a?1—a?,-).

=2 |

&, 1? nEE
I-Z—Llafl— E gl{'aﬁds,rzz.

fr=rio= 152 re>1 187

'lhcproofoféaseﬁsthcsameasthconcgivenin[8]ifwercplacc ﬁbyﬂ and note that

the auxiliary lower bound for ¢; =I i@+ 2{@)*da can be given easily using that we can find a
fat=i

wg - #(ewp) = & > 0, as shown above and hence the smoothness of ¢ (@) ensures that in some
neighborhood of wg, @ - #(w) > o/2.
Combining theorems 2.2, 2.4, 2.7, 2.8, lemnma 2.5, 2.6 and corollary 2.3 yields

Theorem 2.9: Letuge LV N H(RA) be such that #0, ) = f u(x, fdx =0.
Rl

i If'lfo(é)hasazc:oofordcroneauhcoriginthcnalsoletuoe Wy N W,

Ifﬁo(é)hasawoofordagmmerdlanoncatﬂwoﬁginﬂwnalsolct




/e
pair1 <i,fj<n
/%

-= measure of the n— 1 sphere

we replace & by # where

+ O(IER),

2.

place ﬁbyﬂ and note that

asily using that we can find a

f 8(w) ensures that in some

orollary 2.3 yiclds

dr=0.

Wi N W,

so let
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uge Hm N Me N Wa, m =[12‘-]+2(ifn=3thcnm=[g-] + 1 suffices). If u ts a solution
to the NS equations then there exist constants Cp and C such that
Colr + 1)'(;—+ l]S bu(-, OMpymy SCi( + 1)_{%+ 1).

whmincascicoandcldcpcmonlyontthz.Wlandwznormsofugandincasciicoandcl
depend on the L! and L2 norms of #p and Cp also depends on the /™ norms of the data.

Prooft For upper bounds see {2, 7, 11]. The lower bounds are immediate consequences of
theorems 2.2, 2.4, 2.8, 2.9, corollary 2.3, lemma 2.4 and 2.5. To obtain a rigorous proof it will
be necessary to apply the above theorems and lemmas to approximating sequences and pass 1o the
limit. See[1, 2, 3, 5, 12] for construction of such sequences. Note that the lower bounds will be
first shown to be valid only a.e. in ¢. To obtain them for all r we usc the following lemma.

Lemma 2.10: Let A C R be a set such that the Lebesgue measure p{A¢) = 0. Ifu(x, ¢ )isa
solution to the Navier-Stokes equations and forre A

Colt + 1y <, N C e+ 1)
thenforallte R
(%)“c.,(: + 17 <llu, M3 S Cye + D02% .

Proof: Letige A, 1, e Asuchthatfge [f, 2], (o + 1Nty + 1)1 <2 and (fp + 1Xe2 + 1)1 2
1/2. Thea since llu(:, O is a decreasing function

(1) + 7% <t pWE <2°Cy (00 + 1. o

Having data in M¢ is cssential since the example preseated in [8, 9] of exponentially
decaying vorticity can be easily extended 1o n dimensions (see [9]). This example was suggested
by A. Majda for solutions in two spatial dimensions.
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3. Appendix
Here we establish lemmma 2.7 for n 2 3.

Lemma A: Let uge H N HR® [} W, N Wy where 5 =[t2t] +2. Letu = (uy, uy,..., u,)
be a Leray-Hopf solution to the Navier-Stokes solutions. Then there exists Io> 0, such that for ¢ g
b

ay=af+ EVeai &),

where a;; = ai(E, ) = iGu(E, ¢ ), aff = a(0, .

Proof: Let 1y be given by Lemma 2.4. It is only necessary to show that for £ < fg, Vi, i is well-
defined or equivalently that

f bl laef? dx < oo,
[
Multiply the Navier-Stokes equations by Idu; and integrating in space
L 3
-d—f Il = dx =*—E I I u.aju,-u;dx—f Ixla; 2 pox +f Uxlee; Ave;elx.
d[ R. 2 j=|. R. nl Rl
Note that the first term on the right can be bounded as follows.

-2": bel sy dx SC f el Pz + cf Wl WiPIVuldx < (C+ WunU bl lulzdx)L"(R" x [0, Tol |
J=1 'y : ‘.

< C;I bl el

Further integration by parts in (2.1) yields after summation over the § index

S d [ gl 2
?;%df R_m 5 dx=01fleluldx.

+Y | updx- i udjadx — f bel IVuPedx
=1 /R iy /R R"

Here we supposed that the integrated terms tend to zero.
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12 ) | ¥7
2 2dx I hul2dx j [Vut dx) -
<C L_ bd Ll + r{ L. lul de_ ip ) + .-:2( - " -

2
Pdr<Cyf iluldx + Cat, n, lugle2, lVﬂolL’)"j bl IVud*dx.
:_] +2. Letu = ("l» Uy,..., u“) - IR' Wl IVu.I dx < IL. R"

Te cxists £y > 0, such that for ¢t < .
) Hence by Gronwall's incquality for £ < £y

I b lu(x, HPdx < k exp Citg,

where k = k{tg, n, lugly 2, IViigl,2). And the lemma is proven. 00
wthatforr s fo, ng a‘:’- is well-

€

Ix +] Ucder; Auyx.
-

JVunU 3% mﬂdx]r(lz" x [0, Tg]

index

Vu,-Ide
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