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LARGE TIME BEHAVIOUR OF SOLUTIONS TO THE NAVIER-STOKES
EQUATIONS IN H™ SPACES

Maria E. Schonbek!

Department of Mathematics
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ABSTRACT: In this paper we establish the decay of the homogencous H™
norms for solutions to the Navier Stokes cquations in two dimensions. The rates
of decay are obtained by means of the Fourier splitting method. The rate cbtained
is optimal in the sense that it coincides with the rates for solutions to the heat

system.
§1 INTRODUCTION

In this paper we study the large time behaviour in high Sobolev norms of
the solutions to the incompressible Navier-Stokes equations in two spatial
dimensions

(1.1) w+u-Vu+Vp=Au,
divu=0,
u(x, 0) = u(x),

where uy(x) will belong to an appropriate Sobolev space. The goal of the paper is
to establish uniform decay rates in H™ spaces and for the L* in space for the
derivatives of all orders.
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The decay will follow using ideas of Kato [1] (seec also Wiegner [8]) for
the H! norm and a method first developed in [6, 7], which consists of Fourier
analysis of the equation for higher Sobolev norms. This method can be applied to
solutions of systems of equations for which there is an energy inequality
combining L2-norm of the solutions (or derivatives of the solution) with the 12
norm of the gradient of the solution (or gradient of the appropriate derivative). In
section two the decay of the gradient is established. This section is included for
completeness since it is an immediate consequence of Kato's [1] decay results for
smatl data and Wicgner's [8] decay results for the L2 norm of the solutions in two
space variables with arbitrary data.

Induction arguments on the number of derivatives and ideas developed in
[6, 7] yield the decay for the homogeneous H™ norms for m 2 2. More precisely,
it is shown that the L2 norm of the derivatives of order |a| =k decay at the same

speed as the derivatives to solutions to the heat equation, that is, with a speed of (¢
+ 1)~k + 12, Now the L2 decay rates combined with the standard Gagliardo-
Nirenberg [2] inequality will yield decay for the L= norm of the derivatives of all
orders.

Finally we would like to mention that this paper has also as goal to show
another application to the Fourier splitting method which was developed to study
decay of solutions to parabolic conservation laws [6] and solutions to the Navier-
Stokes equations [7]. Resulis of similar type for LP decay were obtained by
several authors. See, for example, [3], [4], [5).

The following notation will be used.

U= (“l! u2)- o= (al! (12)

Bl = ( L’ la; I’)up
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Let e = (1, 0), ez = (0, 1), D*'=D™9 for cither j = 1, or 2. If no confusion
arises, we will use D%y 1o indicate D™ .

§2. DECAY FOR THE L¢ NORMS OF THE GRADIENT

The decay for the Lg norm of the gradient follows combining Kato's {1]
decay results for small data and Wiegner's [8] results on decay rates for the
solutions in two space dimensions with arbitrary data. This section is only
included for completeness since it is a straightforward consequence of the results
of Kato and Wiegner {1, §].

Recall that in [1] Kato shows for n =2

@ h(, Dy S C r12+41 lu(, Oy, 28g<e=
and
(2.2) IVv(., oy < C ri+lia Iv(, Oz, 25g<ee

where v is a solution to the Navier-Stokes equations. By Wiegner's results on
decay [8], we have for up e L2 L1

llu(-, £) Was 2

Hence starting with v(-, 0) = u(:, #2) in Kato's result it follows (by unigueness of
solutions in two dimensions)

N, )Wy S C A
and
WVu(, Ol S C (IR

More precisely for the L4 norm of the gradient it follows that

Theorem 2.1: Letuge L1 N L2(R2). Let u-(-, 1) be 2 solution to the Navier-
Stokes equation with data u;. Then
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i. Nu-(, g s C rivlig 25gSe,

. WV, oy < cr32+lg 2€g<eo
If in addition we suppose uo € H3(R?) then

iii.  WWu(, DlegC12

Proof: Inequalities i and ii are as pointed out above an immediate consequence of
Kato's [1] and Wiegner's [6] results. Inequality iii follows by Wiegner's decay
result for the L2 norm of the solution and the standard Gagliardo Nirenberg [2]
inequality

@3) I Vul2 SCllu 1Dl
Note that if ug € H3(R2) then the solution u(-, 7) admits the uniform bound
D3y, Hha £ Co,

where ¢, depends only on D3yl

§3. DECAY FOR HIGHER DERIVATIVES IN L2 AND L~ NORMS

In this section we study the upper bounds of decay rates for the L2 and L*
norms of the derivatives. We show that the derivatives of order «, lal =&
decay in L? atarate of (¢+ 1)*+D/2 andin L= atarate of 1+ 1)"%* V. The L2
and L>rates of the derivatives are optimal since they coincide with the L2 and L™
rates of the derivatives of the solution to the heat equation.

The decay will be obtained in several steps. The idea is to establish a
differential ineguality of the form

(3.1) —‘iJ’ . Io“ul2dxscl(:+1)*‘-czj' , |D™%| 2
dt Jr R
where by ¢j = j = 1, 2 we mean the canonical basis of R2. (For simplicity in

notation we will use D%+1y to indicate D***u when no confusion arises.) In (3.1)
we will need to have | = la| + 1, then a slight modification of the arguments
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introduced in [6, 7] will yield the decay rate we are seeking. The first step will
yield (3.1) with 4 < |a| + 1 and then a bootstrapping argument involving the
Gagliardo-Nirenberg [2] inequality will yield (3.1) with the right B

We start with an auxiliary lemma which will be needed for the bounds of
the derivatives of order , || 2 3.

Lemma 3.1: Let a, B be multi-indices &= (ci1, &), B= (B1, Bp). Letu=(uy, u2)
then the derivatives of u of order ¢ and o + 1 satisfy

2
. 0 uas) D* i | | p*u [ax +
R B

(32) C Y Copt D*PunDPul+
B < [iar2]]
B0

+CHD™ I[N a i + 1t Du 2]

Proof: By the generalized Leibnitz rule we have
1=| f D %D ™ u; dx |5J| D™y | 2(‘;)| D*PupPy |ax
[

where 21=® Ay and a < P if and only if o < Bi. Hence
Bl \mpp e

1 |2 4L 5 @ a8,n8|2
rsk [ Il &?ﬁgﬂ(ﬁ)fﬂlb a0\ a

=(II+III}%.
We only need to bound i1,
- @ af nB.. @ of B .
=y, gl .| D" uD dc+ Y, g [].| D uD i | dx+
psazz \" 7R app\F NE
80 peo
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Joo D e+ oD%

=i+ +3+ M.

Note that the bounds for J1 and Jo will be the same and J3 and J4 also have the
same bounds. Hence we only obtain the bounds for J; and J3. For convenience
in notation we drop the subindices.

(3.3) ns Y CaﬁJ’ |D“‘ﬂu |24x||Dﬂu i i=1,2
por 'K
pe0

Bounds for J3 and J4

As mentioned above it is sufficient to find a bound for J3 since the bound
for J4 is analogous. For notation sake we omit the subindices. Integrating by
parts yields

J,< J;, | D% [dx=-2 .L‘ uDuD™ uD% dx - L, WD U™ dy <
fn, WDl dx + J'R, DuAD%~ Yt L, Wi2D% 1uD™*
=A]+A3+ Az
A< J’R, WDuD®\uD di + [ , D% D M d <
A< L, uDuD®~ 'uD% dx + fl, Wi2D% LD Ly dx <
5 L, w40 i + fn, D"+ Vuddr +
<1 fR, uD%%x + $1Du’ J.R, D™ Lt +

smﬂ'_jn, D%~ Y + fn, D% * Yul%
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A, S\Du? Lz D%~

4 a-112 1 e+l.2
A3SSIuI_L,ID wldx + IOL,ID wdx

Thus

L, D udr s 310wl + 1002 fn, D%~ Yui?de + 1 f‘, D™+ s .

Thus

2 4 -1.42 2 1,42
3.9 J3+J4SC[(IDui_ +h?) J'l, 0% Yaitdr+ 2 L, D%+l dx]

Cormbining inequalities (3.3) and (3.4) gives inequality (3.2). 0

The next theorem is the central one in the paper. It estabiishes the decay
of the homogeneous H™ norms and of the:L* norms of the derivatives. The proof
is done in two parts. The first one establishes the decay for the L2 and L™ norms
of derivatives up to order o, |ct| 2. Then Lemma (3.1) is used to establish the
decay for the norms of derivatives of higher order by an inductive step. The
decay rate of the homogeneous A" norms obtained in this theorem is optimal.
Finally at the end of the section we obtain a corollary which gives the decay of the
derivatives for all LP spaces 2 Sp <o,

Theorem 3.2: Letug € Hn N LY(R2), m 2 3. Let u(x, ¢) is a solution to the
Navier-Stokes equations with data w,. Then forz2 1

i |D%uB<Catr+1)- 0D
il. | D% < Cufr+ 1) 01D

where lod < m.
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Proof. We first establish the result for lad < 1 and then proceed by induction. We
note first that (i) for lol =0, 1, and (ii) for lal = 0 re consequences of Theorem
(2.1) (Kato {1], Wiegner [2]). Once we have i, ii for lal <3 we proceed by
induction using (3.2). To obtain (ii) for lal =1 we need to obtain first some
auxiliary estimates. Repeating the procedure three times will yield the right
decay. From (iii) Theorem (2.1) (Kato [1], Wiegner [2]) it follows that

(3.6) Vil < Ct + 1y12, 21

Now we obtain some auxiliary estimates for ID2uly and ID3uly which in
conjunction with theorem (2.1) will give a new estimate for {Vul., which is better
than (3.6). With this estimate in hand we can improve the estimates for (D23,
\D3udp. This procedure will end when we get the estimate (ii) for 1V ..

Multiplying the Navier-Stokes equations by D2; yields

en & _L, D%, %dx = 22,1 fn, D** 1D ydx-2 J;, D%
=I+1I.

Since dir u = 0 the pressure term vanishes when we sum over /, hence we omit it.
By Lemma (3.1) and theorem 2.1 we have
ISQDuﬂ]Duf_ﬂuﬂ_)ﬂDsuE

SC{(r+l)"2”)+(r+1)“2+‘)]+|D3u|§s(:—f?1—),+|93nﬁ 121

%Lll D% favsce+ l)"-ﬂ Dl

Let v= D2y, then by Plancherel it follows that

%ﬂﬁf’sc«+1)"3-f|gﬁ$[’
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Now we use the Fourier splitting argument inooduced in [4], [5]. Let

e o))

Hence
2 15 Pagsactes - 25 [L15 Fag
and thus |
4 L, P + A J;, WSO+ 1)+ B J'n, W2dE,
Multiplying by (¢ + 1)* yields

d 4 2 3 2
3‘-[(:+1) J‘R,Iﬁ dE<C(r+1)+4(+ 1) fsmlm d§]
SCo+ 1) +40+ 17 DU SC+ ).

where the decay of Dul} (obtained in theorm 2.1) ws used. Dividing by (¢ + 1/
and integrating in space over [1, £] yields

(3.8) fl, ID%u%dx < C (5 + 1)

We use this last estimate to show that

(39) DUl <Cye+ 72

Estimate (3.9) follows the same way as estimate (3.8). That is, multiplying the
Navier-Stokes equation by D3u integrating in space. Bounding the consecutive
term by lemma (3.1) estimates (3.1) and the Fourier splitting method. Since the
steps are an exact repetition of the steps which lead to (3.8) we omit them.

From (2.3), Theorems 2.1() and (3.9) it follows that

Video < Cft +1)1
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With this estimate in hand and following the same steps as before we obtain
lf LDzulzdxs—L;—2J' Dulds .
LAy ¢+t e

Hence the Fourier splitting method yields

(3.10) J;, D2l s C(r +1)°

This is the best we can expect since the term coming from integrating on S(¢) will
yield no better, In the same way we get

@3.11) J'n, DPuitdr < Cle 4 1)

Now from (3.12), (2.1), Theorem (2.1)({} it follows that
Vil <Clr+1)y3R,
which is the desired estimate (ii) for fad = 1.

To obtain estimates i, ii for lal =2 and lal = 3, one proceeds in the same
fashion. That is parti for lad =2 is (3.10). By Gagliardo Niremberg [2] we have
the estimate

1D/u? <DV~ "ul D7 * %l
Hence we have

D2l < Cft + 1732

Now applying the same procedure as before to obtain decay of ID"uIL:. This
decay bound will give a better decay rate for [D2ul... As before iterating the
process will yield

1D24les < Cft + 12
As before we can get from here

D3l SC(t + 1)-52
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For Jal = 3 we use induction to show if i, ii holds for lod = & then

7. |D%ufsce+ 1yl =k+1,i=1,23

i [D%lsCe+ 1) D0l =k 41

Note that if i holds then ii follows by the Gagliardo and Nirenberg's inequality
since

(3.12) 10%% s D™~ "W D% 2, < 0+ 1y~ -
<C(r+1)"2

New weproceed by induction: Let lod = 3 then theorem (3.1) i, ii, follows by the
above arguments. To show that i” holds for il = 4, 5, 6, we proceed as in the
following fashion. The idea is to show that

d o 2 _ a+l1,2
ey 4w e s s [+ 1D e

and ‘then apply the Fourier splitting method to get estimate i. Multiply the NS
systems by D% and integrate in space to yield

T o2, _ x+e, o _ a+l 2
614 4 0%u’a _22‘“];,0 WDy s -2 1D** ultde
'The pressure term vanishes since div u = 0. By lemma 3.1, equation (3.1) we
have
3.15) 4 L, D%l < M (1) L, D% Ly

where

Mo(r) = C;psﬁz}lpa-ﬂuﬁpﬁuﬁ + Cle“— "‘E [lu[‘_+ |Du|3]

B0

Since lal 2 3, © < [o/2] = 1Bl < lal - 2, hence by inductive hypothesis we have

Molt) S Cr(+1)# + Co(e +1)7
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where
=lod - Bl +1fl+2=ld+3
¥ =min(lod + 4, Jod + 3).
Hence
(3.16) Mo(f) < Cra1)~(ok3),

Hence combining (3.1) and this last estimate yields (3.13). Now the Fourier
splitting technique yields the desired estimate i’, for lod = 4, 5, 6. To obtain 1/, ii
for lal = 3, we proceed by induction. Step laf =3 is done. For lx! > 3 we only
need to show i since by 3.12, step i will follow. Again the idea is to show 3,13
from where we can to apply the Fourier splitting technique to obtain the desired
decay rates. Since that 3.14, 3.15 and 3.16 are valid for Il > 3 hence 3.13
follows. Now we work out the details of the Fourier splitting technique.

dJ u+3 f wiZdx
Let
S0 = {E.. ;1€ s('(?l++14]1/ 2}.
Then
'gfjf Widx < C(e + 1)@+ 3 &T:_f;_)flz e
Hence

%{a £y L, m"‘dx] SCe+1) +(od +4)(r + D¥*3 L . DB dE <
Clt + 1) + (o + )1 + 1)""‘*2]'Ilz D"~ 1uldx < (e + 1) + (o + 4)¢ + 1)F]

Integrating in time once [1, #] yields

La IDuldr < C 0+ 17+ i+ @D 4 4 1)+




NAVIER-STOKES EQUATIONS IN H™ SPACES 115

Hence
L, Dy < C(e + 1) 0D

To obtain the result for lal = &k + 2, k + 3 one only has 1o note that the bound of
Mq(s) only depends on IDPidl,- and D™~ Pz with B < [ov2] and since lod 2 3 this

norms decay of the appropriate rate is known by inductive hypothesis.
Now estimate (ii) follow by Gagliardo Nirenberg.
ID%ul2 < D%~ 1w ID** 2,
Hence and last bounds

D%_SCt +1)%*!

which concludes the proof.

The next corollary gives L9 decay of the derivatives, by interpolation.
Since the L* norm is not optimal we expect that the L9 decay can be improved.

Corollary 3.3: Letuge H=( L1(R2). Let ufx, ¢) be a solution to the Navier-
Stokes equation with data uy. Then

|DulpasCyte+ )™

i+2
whercr(ﬁr—JTu%.

Proof: Follows by Gagliardo-Niremberg's incquality and L! estimates obtained in
theorem 3.1

[D/ul, <| D uBuly™

where
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hence

- 1 -
a—l-——(j+1)q, la-__(j+1)q'

Thus by theorem 3.1

_Jj+2a t_g_j+2 j+2 1
e R R 5 (A ey v
Simplifying yields

_ 42
r(j)_ P -

oy [
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