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Estimates for the Pressure and
the Fourier Transform for Solutions and
Deriwatives to the Navier-Stokes Equations

Maria E. SCHONBEK

ABSTRACT. Several bounds on the solutions and the pressure
are obtained for regular solutions to the Navier-Stokes equa-
tions in two and three dimensions on the whole space. More
precisely, we obtain L! estimates for the Fourier transform of
the solution and its derivatives of all orders, L9 estimates for
the pressure and its derivatives of all orders, estimates which
show that if the solutions in three dimensions should blow up,
this must happen at a certain algebraic rate.

1. Introduction. It is well known that a good understanding on the pressure
term would lead to a better knowledge of the behavior of solutions to the 3-
dimensional Navier-Stokes equations. In this paper we work on a first step in
this direction establishing bounds on the derivatives of all orders of the pressure
in L¥ spaces, to 1 < p < oc for regular solutions to the Navier-Stokes equations
in two and three spatial dimensions on the whole space

(1.1) U FuVu+ Vp = Au—+f,

divu = 0.

Here the initial data u(z,0) = wug(zx) will possibly be large and belong to ap-
propriate spaces which will be specified below. The forcing term f belongs to
L? or to an H™ space and will be divergence free. In what follows we refer to
equations (1.1} by NS.

We note here that for regular solutions on bounded domains with smooth
boundary and smooth boundary values, the pressure would also be regular and,
as an immediate consequence, the pressure would be bounded in all LP spaces.

In Section 2 we show that the Fourier transform of regular solutions and
derivatives of all orders of the NS are bounded in L!. The bounds follow by
Fourier analysis of the equation and are essential to obtain the pressure bounds
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in Section 3. More precisely, in Section 3 we establish L? bounds, 2 € ¢ < o0,
for the pressure and all its derivatives. The L? estimates on the pressure itself
are included for completeness since such estimates follow also by the classical
Calderon-Zygmund theory (8].

In the last section we show that estimates can be used to show that, if
solutions to the three-dimensional Navier-Stokes equation should blow up, they
have to do it at a certain algebraic rate. A similar problem was treated by a
different approach in the pioneering 1934 paper of Leray {4]. More precisely, we
show that if there is a first point Ty such that

[Vu(-, 0z = oo,
then it is not possible that there exist gq > 0 such that
IVu(: )2 < C(Tp—t)~1/4Fe

for t € [Tp — 6,7p), some § > 0.
It is interesting to note that this blow up estimate is consistent with Prodi’s

results [4] where he derived a differential inequality

d )
So) SO, with e(t) = [[Tul- O,

which implies that for T+ = [2C(0)2]1,

o< ()

For a general reference on blow up results of the solutions to the Navier-Stokes
equations we refer the reader to [9].

We would like to recall that for both bounded and unbounded domains it
is shown in [5] that the pressure belongs to L3/% and its gradient is in L%/4.
Moreover, for the unbounded case a very detailed exposition of the case can be
found in W. von Wahl [10]. The results in {7] and [10] hold for any weak solution,
and there is not even any requirements of energy-inequalities. In this paper we
rely on the solution being regular or, equivalently, on its having either a bound
in H! or L, which, as is well known, are estimates that yield regularity. We
find that the results of Sohr and W. van Wahl [7, 10] are extremely interesting
and use hard techniques very different from the ones in his paper. More recently,
in [3], it was shown that the pressure is L%* = L9(0,00; L7(£2)) for  a bounded
domain.

The following notation will be used.

1/p
lgllp = (f lgl” dw) for g: R™ — R.
Rn
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If w = (uy,...,un), then

n
=3 f fusl? de
i=g ¥ R™

Dazm, a=(a1,...,an), Ofg'>0, Ilel:ZOfg
a
a‘i=5““x“f=vi7 V:(a‘i:"':aﬂ):gradv
1

e = Flu(6,1)) = /R e, t)e T da,

2. L! bounds of the Fourier transform of the solution and its derivatives. We
first obtain an L' bound on the Fourier transform of the solution and then
use this bound to estimate the L' norm of the Fourier transform of all higher
derivatives of the solution.

The idea is to take advantage of the expression of the solution in Fourier
space and obtain a bound of the L' norm in terms of the H! norm of the
solution. The next lemima is auxiliary and establishes in Fourier space a bound
on the derivatives of all orders of the gradient of the pressure in terms of a
multiple of the correspnding derivative of the convective term.

Lemma 2.1. Letuy€ HNHYR"), f € L? and div f = 0. Ifu(z,t) is a
solution fo the NS eguations with date ug, then

(i) |Dop(e,0)] < 3 | Dourun(€,1)],
r.k
(ii) | DBV p(e, )| < 3|DPuvu(e, 1)

for B8] 20, |a| = 0, and t € [0,Tg], To chosen so that D*u(-,t) exzists for
t € [0,Tp].

Proof. Take the divergance of the (NS) equation. Since fand u are diver-
gence free,

Vp = - Z Biajuiuj.
.

Since u € H, the Fourier transform is well defined. Taking the Fourier transform
of the last inequality yields

€70 = = &ttty
i3
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Note that uy € H'; hence for 2D the derivatives D are well defined for all time

and for 3D, t € [0, T()] for some Tj. Hence the derivatives of the gradients of the
pressure satisfy

(2.1) Dap(e,ty = ~i Y & e Dourugle] 2.

r.k

Thus, by the Schwarz inequality, since |£.&| J¢|72 <1,

[Dep(e,t)] < 3 [Dousunle b))

r.k

Hence, letting D™ = DPVj, it follows easily from (2.1)

BBV (€ ) < 5,-2%5:9 i
k,r
< 3 6 DPuruy|

k,r

< 3| DPuVult, 1)

This last lemma will be essential for all the estimates of the L' norms of the
Fourier transform of the solution and derivatives of all orders. O

The next lemma is also auxiliary and is a crucial step in the process to
establish that the L1 norm of the Fourier transform of the solution and of the
derivatives of all orders of the solution are bounded. The argument we present in
this lemma includes some suggestion made by M. Wiegner which shortened the
orginal version. The lemma is an extension of the standard Gronwall inequality.

Lemma 2.2, Let o(t) satisfy o(t) > 0 and
to
(2.2) p(t) < An+Bn/D mﬂo(-‘?) ds, t € [0, T,
where n = 2 or 3, and A, B, given constants, then
- n
p(t) < 24nexp e (1 - Z) T,

where e ~"/*B, = L{(1-n/4).
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Proof. We first show by contradiction that ¢(t) is bounded in [0,T5]. Sup-
pose ©(t) is not bounded in {0,75]. Let s¢ € [0,7p) be the first point such that
(50} = oo. We will show that this leads to a contradiction. For any £ < sg
choose t € [0,4y] such that

(2.3) p(t) = o‘%i%’io{""(s)}‘

Rewrite {2.2) as follows:

t—eg 1 |2 i
ot) <A, + Bn‘/; m (,0(3) ds+ By [...E m (,0(8) ds

where ¢ is chosen such that

P\ o nap 1
(2.4) (1 4) &4, = 3.
Then, by the choice of ¢ in (2.3}, the last inequality yields
L Y 14
olt) < An +Bnm/0 ols) ds+Bo (1-3) T e Aplt).

Hence combining with (2.4) yields
¢
p(t) < 24, + 2Bn£_"/4[ w(s) ds.
0

Now, using (2.4), Gronwall’s inequality yields,

(2.5) () < 24, exple ™/ 1t) = Th(t).

Since (2.5) is valid for all ¢ € [0,s9) and [, (¢) is increasing, we have
o(t) < Tu(s0).

Hence by (2.2) it follows that

(s0) < dnt Bn | syt ds
-1
= A+ (1 - g) Bnl"n(so)s‘l,_“/d‘ < oa.

We have reached a contradiction and hence p(f) < oo for all t € [0,T;]. Now
repeating the argument that led to inequality (2.5) with ¢ < sy, we obtain

(P(t) g (Tﬂ)

and the proof of the lemma is complete. o
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Theorem 2.3. Letuy € IXNHNH! and fig € L}, f € H. Let u(z,t) be
a solution to the Navier-Stokes equations with data ug. Suppose that u(x,t) €
HYR™) fort € {0,Tp], n = 2,3 (note that Ty could be equal to infinity). Then
(&, M 1 mmy < C(To), for t € [0, Ty
where C(Tp) depends on Ty, (|6l and supge,<r, | Vul-, )2
Proof. If Ty = o0, the result above will be established in [0,T] for arbi-

trary T'. Take the Fourier transform of the (NS) equations to obtain for the 5
component,

(2.6) iy + |20y = —uVu; - Vip+ fi = —Hj.

Integrating the last equation in time for ¢ € [0, T} yields
2 t -~ 2
a;(€,t) = 49 (E)e e - / H;(€,s)e 167 t=2)gs,
0
Hence
t
[atordes [ ias@nder [ [ e=e0m g s n=1,2
R” R" 0 JRn

Thus, by the Schwarz inequality and using the bound of Lemma 2.1(ii) with
3 = 0 (to estimate the V;p), we obtain

[ iaeora < [ e

4 /Ot ( fﬂ el (t=s) dg)”z l( ]R ] |uvuj|z)” ’ dz+(||f||;a)] .

Recall that

1/2
/ e~2lEr(t=9) gg v = 2_”/2w(n)-1—— for w(n) = f e dn ! .
n (t - S)n/4 ’ Rn

Hence

t ——
P& s < iy +2 "/ 2(m)s | oz (1l +171al) s




Two- and Three-dimensional Navier-Stokes Equations 541

By Young’s inequality it follows that

e G oh <ont [ [ el ol 1V o)l s,

where
o, = [l + 27" 2w(n)4Tpess sup (EEE] P
s€{0,T0)

Bn = 27 2w(n)12.

Note that if Ty = oo, then we obtain estimates in arbitrary intervals [0,T] and
hence K,, = K,(T) where Ty is replaced by T. Hence we can always work in a
finite time interval. Since ||Vullz < My, (2.7) can be rewritten as

4
. 1 -
(- 0l < o+ 80y [ o llis Dl s
Now by Lemma 2.2 with ¢(t) = ||4;(-,8)|1, An = @, Bp = GoMy yields
. _ n
by (-0l < 200 exp e (1-2) To,
where £1~"/4B,, = 1(1—n/4). This completes the proof of Theorem 2.3. O

Remark 2.4. We note that the theorems above and the lemma do not
extend in an immediate fashion to dimensions » > 4 since then fﬂt 1/(t—s)™* is
no longer integrable.

The next theorem establishes an L' bound for the Fourier transform of the
gradient and all higher order derivatives of the solution to the Navier-Stokes
equations. The proof is inductive and uses the results on short time regularity
by Leray [4] for solutions to the 3-D Navier-Stokes equations. More precisely,
recall the following results due to Leray [4].

Theorem 2.5 (Leray [3]).

(i) If wo € HY(R2)NH, then the corresponding solution to the 2-D Navier-
Stokes equations belongs to H™(R?) for all m, i.c., there exist constants
Km such that

”u('!t)”H”‘ SKm(T)s 0<t<T.
(i) If up € HY(R3NH and for [0,00) the corresponding solutions to the 3-D
Navier-Stokes equations u(-,t) € HY(R¥) N L®(R®), u(-,t) € H™(R®) for

all m, i.e., there exist constants K, such that
el )|l pm < K (T) fort € [0,T].
Proof. See Leray [3]. O
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Theorem 2.6. et ug € L'NHNH(R™) and |[Dougll, < To, n = 2,
3. Let f € H*(R") and div f = 0. Let ulz,t) be a solution to the Navier-
Stokes equations with data ug end forcing term f. If n = 3, also suppose that
u(-,t) € HY(R?) for t € (0,7p). Then, for |a| < m,

| Dol -, 8) < Gy for t € [0,T0),

where ¢ = C1(||DPulls, Hmnl yTo), B<a Ifn=2 anyTy > 0 s
satisfactory.

Proof. If Ty = oo, then the proof is done on an arbitrary interval [0,7T] and
(' depends on T instead of 7j. We proceed by induction in ||

1. If |o| = 0, the conclusion of the theorem is given by Theorem 2.3.

2. Suppose the theorem is true for |a| = k, that is ||m|l1 < M; where
|v| = £ < k. Let |a| = k+1, k+1 < m. Take the D¢ derivative of the j**
component of the solution to the Navier-Stokes equations. Then take the
Fourier transform to obtain

(28)  Dougy+ |£2Du; = —DouVu, — DoV,p— D = —D=H,.
Hence integrating in time yields
—— ——— 2 t 2 ——
(2.9) Deuyj = Doulell™ — / e ¥ =9) Da H ds.
0

Recall that by Lemma 2.1 (ii),

| DoV p(é,t)] < 3|DPuVu(g,t)].

Thus f)“;ff_., (see definition of D—;ﬁ; in (2.8)) can be bounded by

|D>H;(&,¢)| < 4lD*uVu(&, 1) + D= f(£,1)].
Combining the last inequality with (2.9) and integrating in space yields

(2.10) | iprienra

t
s/ |Dauo(§)|d5+4// e~ =) DayVy| dg
Rn» 0 JR™

1
+ f / e—|£[2(t—5)|Daff ds
0 n
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=I14+II+1IIL

The hardest term to bound is I1. We start with this term. For this, we use the
generalized Leibnitz rule. Let ¢; be the i*® element of the canonical basis in R™.
Then

D“muj) < ZD“muj)
i
SIACTINES Db i (AR LIS e
i i Blate;
since u is divergence free. Here
(,LL) :I‘,}I(,ui) {nuz()u’la'--nuln)
14 =1 13 V:(Ul,...,vn)

and v < p (Le., vy < pi, i =1,...,n). Thus,
211)  DeuvVy) <Y Y (‘H e") Dby Dave—y,

[ BLa+te; ﬁ

3 ——— ———
+ ZaiDaui.De‘Uj—f- Z bi’,-De'"uiDa"'e‘"ErUj

i=1 =1
r=1,..n

(a+ei) (a-ﬂ-ei—er)
a; = y bir = :
o er

Hence to bound II it suffices to obtain bounds for

where

t ————
(i) /D / e &) | Dby, Datec—Byy) dE ds = Py,
where < a+e;and f£oand f=e.,r=1,...,n
¢ . o
(i) fo / e~ KIMt=9)| Day,; Decyy| dE ds = Py,

t
(i) / / ¢~ 6P =9 Deryy DA ei—er | dE ds — P
0 n
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Bound of P;. By Schwarz’s and Young’s inequalities,

1/2

t
rec| (f e’z'“z“*“’dé) 157alla D" ul2 ds,
0 R

where v = g if |8| < |a+e; — 8| and hence p = a+e; —f; otherwise,
a+e; — 3 and p = 8. With this choice of v we insure |y| < k. Recall that, by
inductive hypothesis,

1Dl < M. where |7 = £ < ,
and by Theorem 2.5,
D ull < K, for 5 = |u.

Hence, letting M = max{M,), £ < k, K = max K, s < m, then

(212) Pl < MKCw(n)f —W ”D‘T’Ulll d&',

1/2
where w(n) = (/ e d'q) .

The estimates of P; and P; are similar:

t
1 .
(2.13) P < KCw(n)/ G | D2z ds,
(2.14) Py < KCuw( n)] W |1 Dvuly ds, v=a+e —e,.

Note that |v| = |@|. Combining the estimates for P, Pa, P3 given in (2.12),
(2.13), and (2.14), respectively, yields the following bound for IT in (2.10):

t
1 . —
(2.15) I < an+ﬁn/0 W(IID%Ih +[|1Dvullr) ds

where o, = MK7T, "1 — nj)~lw(n), B, = KCuw(n).
The bounds for T and III in (2.10) follow easily by the hypothesis in the data
ug and the forcing function f. That is,

(2.16) 1< | Deugllz < To

-1
(217) HI<w n)/ )n/4 D% f|lz ds < w(n) (1 - g) T,V "B =T.
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Note that for ITI we used Schwarz’s inequality and B is such that ||f||g~ < B
with |a| < m. Such a B exists by hypothesis. Define

10 nl, = Y [ Bouenide.
a=k+1 K"
J

Now sum (2.9) over j and all & such that |of < k+1. Combine the bounds
obtained in {2.15), (2.16}, and (2.17) with (2.10) to yield

t
1 ——
k+1 k+1
1D¥*1uly < To+Ts + an +26n (¢ sy Dl ds.

Now apply Lemma 2.2 with ©(t) = || D¥  u(t)||1, Ap = To + T + an, Bn = 28,.
Hence |}m(§,t)|| < 24, expe (1 —n/4)Ty, where ¢! ""/4B, = 1(1-n/4)
and ¢ € [0,Tp]. This completes the proof of Theorem 2.6. O

3. L9 estimates for the pressure and its derivative of all orders. The results
of the last section are used to bound the pressure and its derivatives of all orders
in L9 for ¢ = 2 and ¢ = oo. Standard interpolation arguments will give a bound
for the L7 norms with ¢ € (2,00). The bounds for the pressure are included for
completeness since they are an immediate consequence of the results of the last
section and will not lengthen the arguments. The pressure bounds can also be
obtained using the classical Calderén-Zigmund theory [§].

Theorem 3.1. Letup € L'NHNHY(R™), Deug € L! and f e H™(R™),

n =23, div f = 0. Let u(x,t) be a solution to the (NS} equations. If n = 3,
suppose that |Vu(-,t)|l2 < My fort € [0,Tp). Then

ID*p(- )}, < Cs, t€[0,Tb], lof <m,
where Oy depends only on the norms of the data, My, Ty, and g.
Proof. Recall that by Lemma 2.1, it follows that
(3.1) |1 Dape, )] < CID=E(e, 1)].
Hence, by Plancherel, Lemma 2.1 and the Leibnitz generalized rule,

D283 = D23l S C " Kasl|DPus D=8 5],
<o
P







