F 22
Ann. Inst. Henri Poincaré,

Vol 12, n® 4, 1995, p. 425-457. Analyse non linéaire

Asymptotic behaviour of solutions
to the Korteweg-deVries-Burgers system

by

M. E. SCHONBEK * and 8. V. RAJOPADHYE

Department of Mathematics,
University of Califurnia at Santa Cruz

ABSTRACT. — We consider the large time behaviour of solutions ot the
Korteweg-de Vries-Burgers system of equations to obtain lower and upper
bounds for the rates of decay of the solution. These decay rates extend the
work of Amick et af. |1], where the scalar case was considered and that of
Zhang Linghai [8]. An important tool in the analysis is the so called Fourier
Splitting method developed by M. E. Schonbek for obtaining algebraic
upper bounds for the solution to the system of parabolic conservation laws.
This tool was later used to establish algebraic upper and lower bounds
for the Navier Stokes and Magneto Hydrodynamic equations. The lower
bounds show that in the far field the behaviour of the sclutions te the KdVB
system and those of the heat system are very different. This behaviour is
believed to be due to the nonlinearity and not to the dispersive nature of
the equation, since such behaviour is also present in non-dispersive systems
like the Navier-Stokes and the Magneto-Hydrodynamic equations.
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RESUMf. — Dans ce fravail nous obtenons des bornes supérieures et
inférieures pour le taux de décroissance des solutions du systtme de
Korteweg-deVries-Burger. Ce travail prolonge celui de Amick et af [1]
dans lequel le cas scalaire est considéré, ainsi que le travail de Zhang
Linghai. La technique qui est fondamentale pour les résultats que nous
obtenons est le « Fourier splitting ». Cette méthode a &té développée par
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426 M. E. SCHONBEK AND §. V. RAJOPADHYE

M. E. Schonbek pour obtenir des bornes supérieures algébriques pour un
systeme de lois paraboliques de conservation. Elle a éi¢ utilisée ensuite pour
établir les bornes algébriques supérieures et inférieures pour les solutions
des équations de Navier-Stokes et de Magnéto-Hydrodynamique. La borne
inférieure montre que pour ¢ tendant vers P'infini, le comporiement des
solutions pour les systémes de Korteweg-deVries-Burger et le comportement
des solutions de "équation de la chaleur sont différents : ce comportement
proviendrait des termes non linéaires et non de la nature dispersive du
systéme car il est aussi présent dans des systémes non dispersifs comme les
équations de Navier-Stokes et les équations de Magnéto-Hydrodynamique.

1. INTRODUCTION

In this work we study the asymptotic behaviour of solutions to the
Korteweg-deVries-Burgers system (henceforth referred to as the KdVB
system), in n-space dimensions. This equation can be expressed in the form

L LN, AN,
Ut+za—mV®(U)+2;a—ngfU

1
M :aAU—HSZa U,
=1
U(:I,'., 0)_Uﬂu

where ¥ = (1, T2, ..., ¥n) € R, Uz, t) = (Ui (z, 1), ..., Un (z,t)) is
the n-dimensional vector valued function, ® (U/) is a scalar function of the
vector variable {/ which satisfies certain growth conditions which will be
specified below. The gradient operator with respect to U is denoted by the

a* .
symbol “grad”, §; = E agF § = &, and p, n are integers greater than
Z;

1=l
or equal to 1 and @ > 0, 3 are constants and 2p > n > 1. Note that we

can without loss of generality, choose 3 equal to zero. This is possible by
a change of coordinates, from a stationary to a moving frame of reference,
which enables us to absorb the term 36 U into the term U;. Moreover, we
can for simplicity assume o = 1. Thus we consider the system 1 which
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SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGER EQUATION 427

can be rewritlen as,

U, + 6 grad @ (U) + 860, U = 6, U,

(2)
Ulx, 0) = Uy,

In one dimension, the equation reduces to the generalized KdVB equation.
When the nonlinearity is given by UU,, Amick ef al. [1] have obtained
sharp rates of decay for the solutions to the KdVB equation. For the
scalar case, Zhang Linghai has also obtained decay rates in Ly N Lo
for a class of equations more general than the KdVB equation; e.g. the
Benjamin-Ono-Burgers equation.

In higher dimensions, existence results have been obtained by Zhang [8]
following the lines of the proof of {7] for the generalized K-dV equation.
Moreover, he obtains rates of decay for the L,- and L.,-norms of the
solution as £ — oaQ.

In this work, we first obtain decay rates on the H™-norm and by an
application of standard Sobolev inequalities obtain the Lo,-decay rate. In
addition, lower bounds on the energy decay rates of the solutions are also
obtained. It is shown that for a certain class of the initial data, the solution
Uz, t) to the K&VD system admits an algebraic lower bound on the
energy decay. Two distinct cases have to be considered. First, when the
average of the initial data is non-zero and second, when the average equals
zero. In the first case, it can be shown that

UG 013, 2CE+1)7,

7 . . . .
where a = 7 In the second case, if the average is zero, that is the Fourier

transform at the origin is zero, two cases are considered, If the zero is of
order one, and the data [, lies in £, N HF*! as well as in suitably weighted
L, spaces, with s = 1, 2; then the lower bound is of the form

U, HF, 2CE+1)7,
where ay, = g + 1 and C depends on the initial data and certain initial

parameters. If the zero is of order greater than one, the data lies outside a set
of equidistributed energy and the nonlinear function @ lies in a large class
of polynomias, then the lower bound is again of order a. It is this second
case which is the more subtle one and which shows the differences between
the behaviour of solutions to the KdVB and heat systems in the far field.
This explains our interest in studying the lower bound of rates of decay.
This difference in the behaviour of the KdVB and the heat system shows
that the nonlinear term produces some mixing of the Fourier modes creating

Vil 120 0¥ 4-1995.



428 M. E. SCHONBEK AND §. V. RAJOPADHYE

long waves even when the initial data is highly oscillaroty. More precisely
if the initial data for the heat system is highly oscillaroty the solution
will have an exponential rate of decay. Moreover, depending on the data
chosen for the heat equation the decay in the energy norm can vary from
order (t + 1)~ % (when no oscillations are present at the origin in Fourier
space), to all possible algebraic orders up to exponential decay, depending
on how oscillatory the data is, We restrict attention to the case where the
nonlinearity is polynomial. By obtaining an algebraic lower bouad for the
solutions of the KdVB system we show that long wages are produced
which slow down the decay. We believe that his phenomenon is due to
the nonlinear term and not due to the dispersive term, since this behaviour
15 also present in non-dispersive systems like the Navier-Stokes and the
Magneto-Hydrodynamic equations [4], [5].

The method used here is based on the Fourier Splitting technique,
developed by Schonbek [2], to obtain upper bounds for sclutions to
the Navier-Stokes equation and parabolic conservation laws as well as
for obtaining lower bounds on the solution to the Navier-Stokes and
Magneto-Hydrodynamics equations.

The paper is organized as follows. In section 2, we briefly review the
notational conventions. Section 3 deals with obtaining the H,, decay rates
of the solution of the KdVB system. By a simple corollary using Sobolev
inequalities the L. decay rate follows. This rate coincides with the one
obtained by Zhang [8]. For the sake of completeness, we present some
results for the heat equation in section 4. In section 5, upper bounds for
the difference of the solution to the heat system and the KAVB system are
obtained, when both solutions correspond to the same initial data. Finally the
lower bounds for the solution to the KAVB system are derived in section 6.

2. NOTATION

The notation that we use is mostly standard. For the sake of completeness,
it is briefly reviewed here. For 1 < p < oo we denote by L, = L, (R*) the
Banach space of measurable real-valued functions defined on R® which are
pth power Lebesgue integrable. (essentially bounded in the case p = o).
The usual norm on the space is denoted by | - |,. For non-negative integers
s, H* = II* (R") is the Sobolev space of functions in L, whose generalized
derivatives up to order s also belong to L. The space is equipped with
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SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGER EQUATION 429

the norm,
1A= 15D ()]s, where f@= 37 Do f
=0 Jari=j
Of course H° = L, and the Ly-norm | - |2 = || - {lo will be denoted by the

symbol | - |3. We also define a norm on H*, equivalent to the usval one by,

NGOl =Y ke 35 [ 1DV 0 b,

=0 18 |=r

where the k. ,’s are positive constants that depend only on r, $ and 3.

The space C7(R", R) is the space of all continuous functions from
R" — R which are r times differentiable with continuous derivatives. In
addition we also define some weighted spaces as follows.

le{U:/ |.’.B|2|U|d$<m}
WQ:{U:/ }:ﬂ||U|2dx<oo}.
R!l

The spaces are equipped with the norms |U|w, = / |z|?|U|dz;
Rﬂ

and

13

VU lw, = (/ ||| U )? dz) respectively.
Rﬂ
The Fourier transform of a function f (x) is denoted by F (f (£)} and
is given by

FU©) = [ e s @y

n

The notation D? denotes the derivative of order 8 where J is a multi-index
ie., if

B= (B, Bz-.-, Bn)

then

DA =gt ol 3,

Vol 12, n® 4-19495,



43() M. E. SCHONBEK AND §. V. RAJOPADHYE
3. BOUNDS ON THE A™ AND L_-NORM OF THE SOLUTION

Equatien (1) has been studied by Zhang {8] to obtain results on the
existence of weak solutions under the hypothesis that the nonlinearity
(defined by @) satisfies the following growth conditions.

(@(U) < CUIF 224 CIUP,
0<g<l,
9% (U) p
—— | £ CIU |~ +C,
foral U e R*, i, 7=1,2,...,n,
8o (U) P
oU; 8U; < CU] '
for | U/ [small, i, 7=12 ..., n.

In addition, Zhang uses estimates on the L,- and the H*-norms of the
solution to show that if U, € L, N HP*! the weak solution is a strong
solutton. In the present work, we further restrict ® to satisfy the condition

(4) S W)= mx U,
i,k

4
where m; are real scalars and 3 < &; < b +2—¢q, with p > 1. The
7

case when k; = 0, 1, 2 corresponds to the linear equation and will not be
considered for the lower bounds. Hence it also follows that,

(le@)|<CUIFH, 0<g<l,
%o (U) ap
Dl SV VO 2
() Y Ba00, | SCIVIE
G2 e (1) 1
I S N s "-i'l_
foral W e R™ and ¢, j = 1, 2, ..., n. Zhang has shown (¢f Theorem 6

in [8)) that if Uy € L, 1 HP'Y, &(U) € C3(R™) and satisfies (5), the

following decay properties hold for the solution to the KdVB system:

(6) |U(£) |2SO(t+l)—%"7
U)o £C(E+1}77.
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SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGER EQUATION 431

Here we first obtain the decay rate for the H*-norm of the solution. Then,
making use of standard Sobolev inequalities, the decay rate obtained in [8]
for the L -norm follows.

Tueorem 3.1, — If & (U) € C™*1 (R™, R) and satisfies equation (5) with
Uy € Ly N HPYL(R™), then the solution U to the KdVB system with initial
data Uy is such thar,

@ ¥ / | DU [Pde < C(t+1)F.
Rﬂ

|ar|Sm

Moreover, if m > [g] then,

Y DU <O+ 17T,
Joe|<m=[2]
where the constant C depends only on &, n, m and Uy.

Proof. — To obtain decay rates for the H°-norm of the solution of
the KdVB system, we use induction. We begin by giving an equivalent
definition for the H®-norm. Define,

NU@NE=>3 %, 3 / DA U (s, 1) |2 da.

18 |=r

where the k. ,'s are positive constants depending on 7, s, 8 and | U |
which will be determined below., We will show by induction that

s+1

d 2 / o 2
- <"_'/ k?‘.‘! !
®) aIVNES=C 3k, ”; | DU do
and
(9) HUNE<CE+1)%.

For | 3| = 0 inequality (8) foltows by multiplying the equation by U and
integrating in space and inequality (9) reduces with kgo = 1 to

hcy

(10 / [ U(#)Pde < C(t+1)" =,

Yol 12, % d4-1945.
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a result obtained in [8]. For the sake of completeness, we give a sketch of
the proof here. Multiply equation (2) by U/ and integrate over space to get,

1 d

p— —_— 2 * y *
an - ; dtfw(x, )| dx+]Ué<I>(U)dr

+/U662PUd:r=/U62Udz.

On simplification, we have,

.:;_it / U (z, t) |2 dz = -2 / |V U P dx.
By Plancherel’s theorem the equality can be rewriften as
d . N
(12) E/IUV%:—?/IéIZIUI"‘df-

Using the Fourier Splitting technique introduced by Schonbek {2], the
Fourier space is divided into two time dependent disjoint sets A (t) and
A(t), where

n 7
= : <=7 .
(13 A {5 €15 5557 ) }
Inequality (12) can then be rewritten as,
d 2
an 5 [ upa
<=2 [ epiOPac-2 [ (eRIPa
A Aty
T N
< Uftd
- t+1 Ae(t)i I 6
T - L -
< - UP? T U dt.
- t+1/"n| Jdg.i_t—}-l A(t)l I de

Hence it follows that,

d . N
sy < [(t+ 1y / |U|2dg] <n(t+ 1) / (0P de.
dt R" AR
Moreover, it has been shown in [8] that if Uy € L; n HPH! then

(16) U () 8o < Ui + | Us |12
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SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGER EQUATION 433

Equation (15) together with this time independent bound for the Fourier
transform yields,

d 23 T2
oo [ 100a
an | cnerr S AnEeIR? [
t

ek

Tt
< (0ol + 10 4 0o (55 )

where w,, denotes the volume of the n-dimensional unit sphere. Integrating
{17) over the interval {0, t] inequality (10) follows. This proves the estimate
in the case |s| = 0.

Define,

QI =3 ke ¥ [ 107U (@ 1)
r=0 1g|=r VA"
By the induction hypothesis, it follows that,
d 2 = . pil 2
(18} UL < —cg kr o1 [; / IDP U 2 ds

and

i

MUlZ, <C+1)7%.

Hence, for an appropriate choice of constants k, ,, it is necessary to show
that

HUWNZ<Cc@E+1~%

which would prove the desired result. Multiply equation (2) by D* U and
integrate over space. This yields,

.1 d

(19 (- 1) | DPUPde+ | D¥Usgrad ®(U)ds

2 dt R+ Rn

+/ D*2 U 66y, U dx:(-nf’“Z/ | DA U |2 ds
SR =l n

Vol 120 0" 4-1995,
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Note that the third term on the left-hand side integrates to zero. Using the
definition of @ given by (4) and hence determining the growth condition
on grad ®, the second term on the right-hand side of (19} can be bounded
above by

| s URYD¥U de
o 12T

4 4
where k; < —F 12 g Thus it follows that 2 < k = ks — 1 < -2 + 1.

n n
Combining this bound with equation (19) yields,
d
20y - DPU | de
@ /Rn [ D7U de

g—zz/ | DAF5 U ) da
i=1 °

LS

+ ¢ Z DAt DA Uk dy

j=1 YR"

542/ [ D+ 172 dee
j=1 “R*
n 1
—I-C(Z—/ | DA+ U |2 de
j:l O Rﬂ
- ¢ 3 rrk 2
— 7 :
27 /R |D° T |d£)
g=1
< —i | DAY U P do + o | DPU* P de
=72 7

R"

n C“!
S—Zf | DS U 2 dr + CO/ |DP U |2 dz
Lt Jn 4 n

+ > Cay /R | D* U | dz.

le|<8

In the second step we have made use of Schwartz’s inequality, and in the
last step we use the fact that if & > & we have

DUk = Z C , U3¢ z (DU, T integer
3==1

ar=j
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and if 3 < k

DUN= > DMU..DMVY,

a4+, Fop=a

and that § < s and «, r < s. In addition, by the induction hypothesis,
since derivatives up to order s — 1 are bounded in L, the last inequality
in (20) follows by using a simple interpolation inequality and C denotes
a constant depending on ® and the Lo.-norms of I/ and its derivatives up

to order 3 — [g} Hence inequality {20} yields,

d ; n
21 — DPUPdz < =) A 7 12 d
(21) dt/mr Uids < JI:1/R“|D Ul da
+le |D-5U|2dx

+ > a,,ﬁ/ | DU ? da.

BN R

Summing over all 3 such that {§| = s leads to
> |DﬁU|2d:.c]

ST/
dt Lie |31=s

<a (cl / T |D-"Ul2d$)

13 |=s

- > (_/“[DﬁU[zdx).

| 8)=s+1

By the inductive hypothesis,

> / | DP U |? dx.
Rﬂ

d 2 ’
@ SNV ~-C Z:; ke, s 2
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Let mg_1 = Ckp a1 7 < 5—1.Choose kyy1 = m,—1 (2C, C1)7!. Adding
together inequalities (23) and (22) times &y, we get,

d -3
= U < - FLr2d
FIoE<—c> & ¥ [ 107w

r={} {3 |==

Brr)2
+Cr£12gck,,3_l /n Z | DPU ) dx

R™ 1 a)=s
~Rat Y. [ 1D'UPa
[f]=s+1 'R"
s+1
< —K, Zk Z/ | DU 2de |,
r=1 lﬁ:”:"" R"

where K, = min {1, K, ;}, and R,y is proportional to m,_,. Let
kv o = ke s-1/2, ks s = kuy1 and kyy1,s = ks, ,. This establishes the
inequality

d 541
2 — MU <-CY ks U da.
an IO -0Y k. 3 | i

If |3} = 0(24) reduces to obtaining the Lj-rate of decay for U, which
has been established in (10). Suppose that the decay rate has been obtained
for 4 with 0 < {8 < s. Let |#| = s. Taking the Fourier transform of
inequality (24) we obtain,

o= 4y 5
@ GNOIE= 5 ke 3 [ 5P P

= | B1=r
a+1 e
S_Ozkr,s Z / |DﬁU|2d‘5
r=1 | 3 |=r R
:_Czkr,s Z ‘/AR“ fflleBUlzdf'
r=1 | Bi=r

Annales de D'Iastitut Henrf Poincoré - Analyse non linéaire
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Repeating the same argument in (25) as that used in obtaining (17), we have,

d n
g+ 1) 11T @ .
d s —
a— n ﬂ 2
5 [+ 1) Zok > fﬂ | DU P de
= 181=r
<K (@+0" Y ke Y f | DS | de,
A

r=0 |18 |=r )

where A () is as defined earlier in (13). Hence, if K, = max k,,,

E n T2 n—1 T 2
o L nomscery K Y [ 10U PE

At)

161=r
<otk Y [ 15UR
|3 |<s R"

+Ct+1) / ik

A (t)

<C(t+1)" MK, Z/ | DFU 2 d¢
R~

| #i<s

+G(t+1)“-2/ | DTU |2 de.

L

By the inductive hypothesis for || < s,

/ |DAUPde <C(t+1) 5.

Using this in (26) we obtain,

d e (T a_
S+ IO R < O ns
Integrating this last expression over the interval {0, t] yields

(27) E+1 U2 CiE+ DT +HUOME,

Vol 12, n® 4-1995.



438 M. E. SCHONBEK AND §. V. RAIOPADHYE

which proves the claim. The bounds for the L.,-norm of I/ follow from
inequality (27) and Sobolev’s inequality. Hence we obtain,

[U s j<m—-[ﬂ].

Y IDUe<C
2

1A=

which in turn yields,

Y IDPUle<CE+1)"F,  with j<m—[g].
| 8 {=j

4. PRELIMINARY ESTIMATES

In this section we begin with some preliminary estimates for the heat
system. If V (z, ¢} is the solution to the homogeneous heat system, i.e.,
V satisfies

a8) { Vi(z, £) = AV (z, t),

Viz, 0) = Uy (z).

Then we have the following

Theorem 4.1. — Let Uy € Ly N Ly (R®) N RS for some o, 6; > 0, where
R ={U:|U()]|2a, for|€| <&}
Then
[ Ve orazcesnt m vV, <o),

Proof. — See Schonbek [3].
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THEOREM 4.2. — Let V' be a solution to the heat system with data Uy.
Suppose that

V)3 < Ct+1)~.
Then,
(29) |D*V ] <C{+1)"7727F  5>0.
Proof ~ Let |V (#) |5 < C'(t + 1)~ then it follows that

|DSV|ms/;f?”Vrd¢

< f €12 V7 (£/2) e 16PH/2 g

= (/ IEPS"'“'“%df)% (/Rn |V (£/2) |2d§)%

<G+ 1) E M (E+1) 3

L)
2;

<O (t+1)"7" 2

Proposmon 4.3, — Ler Vo € H* (1 Ly. This implies that if V is a solution
to the heat system with data Vy then

(30) 1DV E<CE+1)" %2

Progf. — The proof is standard and we inclue it for completeness, The
s-derivatives of the solution to the heat equation can be explictly given by

a2
DV (z, ) = (dnt) — g D* exp (— !—Z—fl) (Vo () |2 dy.
R~ Fil

Vol 12, n® 4-1995



440 M. E. SCHONBEK AND §. V. RAJOPADHYE

Hence

/ | DV (x, £)Pde < (4mt)” 2 / (4mt)” % D*

T R™

_]x—y|2 2
xexp( 12=0) 1y ) Py e

n

2
X exp (—M) d:c/ ]Vg(y)|2dy
Rﬂ

2t
SO+,

< (4nt)~(5+) / (dmt)y~ 7

which completes the proof of the proposition.

CoroLLARY 4.4, — If |V |2 < C{¢+ 1)7°, then

an / | D7V [2de < C(t+1)" 30",

5. UPPER BOUNDS FOR THE DIFFERENCE

In this section we discuss bounds for the difference of the solution to the
KdVB system and that of the heat system comesponding to the same initial
data. There are several ways to approach this problem. Qur approach, will
be the Fourier splitting methed ([3], [4]).

We first consider the case when the average of U/ is non-zero. That is,

we have / Updr # 0. Let R, be a set defined by

Rlz{U(]:/ U[)d.'r;é()}

This implies that U € RS where R is defined by

RO ={U:|TU )2 x, for |£] < &),

We now obtain upper bounds for the solution to the KAVB system. But
first, we need the following result.
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THEOREM 5.1. — Let the initial data Uy be such that Uy € LynRyn HPHL,
Then there exists an upper bound for the difference between the solutions
to the KdVB system and the heat system, both corresponding to the same
initial data Uy. Thus if p > 1 and if W = U =V where U is the solution to
the KdVB system and V that to the heat system, then W satisfies,

|W (&)} < Co(t+1)"FFY,
Proof. — We consider the difference W = I/ — V| where U is the solution

to the KdVB system, and V' that of the heat system, both corresponding to
the same tnitial data U/;. Then W satisfies the equation

(32) W, — AW = =885, U — dgrad @ (U).
Multiply equation (32) by W and integrate over space. Noting that

/ U by U = 0 and / I7 & grad ® (U} = 0, we obtain

d
33 = Wi de
(33) dt ,,'.| " d

< -2 / | 6W |2 dx

+ 2|6V | / |grad @ (V) | d=

+2(f |62p+1V|2da:) (/ |U|2da:).
Rﬂ ™

Using Plancherel’s theorem the above inequality can be written in the form,

d "
34 = W |? d.
(34) & R..I " de

<2 [ jepiW P

+ 26V ) / tgrad @ (U) |dz
R~

3 3
+2(/ |52p+1V[2d3;) (/ |U|2dx).
R"i Rﬂ

Vol. 12, n” 4-1995.
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Using the Fourier Splitting methed, with

5(1) = {f:m < (3% 1))%},

with « sufficiently large, equation (34) can be rewritten as,

d n . .
4 |W|2de:—zf I£|21W|2d£—2/ €| |W |2 de
dt Jgn S0 e (1)

+2|5V|m] fgrad @ (U) |2 d=
Rn

3 b
—|—2(/ |D2P+IV|2d$) (/ |U|2d3:) .
R!l n

Hence, this can be simplified to yield,

d P v i 21 W12
4 e < - / W -2/ E2|W |2 dt
dt f.;,,' "¢ < (t+1) Jgeq) W () AR

+2}DV|mf | grad ® (U) | dz
R~

+2(f |D2P+1V|2d3;) (/ |U12dx).
F2 & R~

Further simplification yields,

% [(Hl)"‘ / }W|2ds:]

sn(t+1)“"1/ WP de

s

+C @+ 1) DV o / | grad @ () | dz

n

+C(t+_1)‘f(/ |D2”+1Vlzd:r:)z(/ |U|2dm)
R~ R™
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Using the bounds obtained in (30} and (31) for the solution of the heat
equation and the growth condition for ¢ expressed in (5), we obtain,

(35) % [(t+ 1) / }W|2d9:}
R LA
5t
rowey ) GG (UEITIET
Lo+ 4+ )G U,

< y{t+ 1) / |WPde+CLt+ )" + Co(E+ 1),
S (1)

. . 1
supposing first that p > 1 then 71 2 72 = 7 — (g +p+§). We now

need to estimate | W | on the set S (#). Taking the Fourier transform of
(32) we have,

(36) {"?tJrIEIzW:—Séﬁ~6gr£&'Ti>(U)=_ﬁ

Wi 0=0

Hence, it follows that

W (£ ) = _/t e I8 (=9 F (¢ 5)ds.

a

If v denotes the minimum power of U; in the definition of ® then,

G IS CEIGUBUUE? +1U12 )+ 161710 ).

Since | U/ | is bounded by a constant depending only on the initial data and

since £ € §(1), [£] < ((t—jf-lml_)) . Moreover, with p > 1l and n > 2

it follows that

s C T " .
s B 5 % E “Plds
W Ol € oy [t 170 (o017 F 4 Cla b 171
< C
T+ 1)z
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Thus,

o~ C
(38) [W{E, t) e < T

Substituting (38) into (35) and simplifying the result we obtain

i n
ﬁ {ftﬂ)" / IWF‘“] SO+ @+ )7 F+ G+ D)™,
: Jan

since 7y > -y2. Integrating over the interval [0, t] yields,

t+17 [ AW P <G sy (EH)
or equivalently,
/ \W (t) Pda < (£ + 1)~ (3 1),

This proves the theorem.

6. LOWER BOUNDS

In obtaining the lower bounds for the solution to the KdVB system, two
cases have to be considered. In the first case the mean of the initial data is
different from zero, that is long waves are present. In this case the lower
bound for the decay rate for the solution to the heat system is (£ + 1)~ %.
Hence from the previous section we note that as a consequence of the upper
bounds for the difference of solutions to the heat equation and the KdVB
system, which is of order (¢ + l)'('g‘ +1) when p > 1, the lower bounds for
the solution to the KdVB system follow easily. That is since

U2 1ViE- W,

it follows that,

U3 > Ct+1)" %,
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The second case to be considered is when the mean of the initial data
equals zero. In Fourier space this is equivalent to the statement that the
Fourier transform of the initial data has a zero at the origin. The bounds
that are obtained in this case for the solution to the heat system depend
on the order of the zero. We will show that outside of a class of data to
be defined below the solution to the KdVB system will have a uniform
rate of decay of order gé + 1, showing that in the far-field the behaviour
of the solutions to the Heat system and that to the KdVB system are very
different, ie., long waves can be created for such systems, a phenomenen
which is absent in the Heat system. Before we begin estimates for the
lower bound, some preliminary results are needed. We begin by stating the
following result, proved by Schonbek [4].

TueoreM 6.1, — Let Vg € Lo (R™). Let V' be a solution to the heat system
with initial data Vy. Suppose that there exists functions | and h such that the
Fourier transform of Vy admits, for | €| < 8, with &, > O the representation

(39) Ve )= L&) +Rh(E), IT=( .- k),

where | and h satisfy the following conditions:
(i) |R(&)] < Mo |, for some My > &
(i) ! is homogeneous of degree zero.
(iii)’}f:/ |w  L{w) |>dw > 0.
|u —_—
Let My = sup |{(y)], M2 = sup |VI(¥)|, K = max (Mo,

byi=1 #<lyigt
M\, My). Then there exist constants Cy and Cy such that

Cot+ 1B < |V(, <O+ 1) (3D
where Cy and Cy both depend on n, My, My, 8, and | Vy |, and Cp also

depends on K and o). Note that condition (iii) is not necessary for the
upper bound of |V (-, t}|a.

Proof. — See Schonbek [4].
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Let
Mg = {U :Re VU (0} = 0}
Mz = {U:Im VU (0) = 0}
szfum & (U (0, s))al.«;:/:o al ds

Pk = (Pk: caey Pk) and

& (U) = U P e~ 2mixt da':]

It the Fourier transform of the initial data has a zero of order one and
Uy € W) then, this implies that either Uy € My and Uy € M.

THEOREM 6.2. — Let Uy € W, N L, N HP*L, Suppose that / Updzr =10

and f}g has a zero of order one. Let p > 1 and let U be a solution to the
KdVB system with data Uy. Suppose thut

(i) Uy & Mg or

(i) For some k,
Im VT, (0) - P # 0.
Then there exist constants Cy and Cy such that
G+ EN <V R <G+ ()

for all t > 0 where V is the solution to the heat equation with data Uy and
there exist constants K, and K, such that

K1+ G < U B < Ky (3

where Cy, Cq, K\, Ky depend only on the norms of the data.

Proof. — We first need to explain our hypotheses, They ensure that long
waves persits, i.e., we associate long waves with the terms of order one
in the Fourier expansion. Note that

U ) =T+ eV U, +i P+ O(E]).

If we choose data which satisfies 4 or B below, then the first order terms
in the Taylor expansion of the Fourier transform persits, i.e., long waves
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will persist. Since the hypotheses are such that {75 (€) has a zero of order
one, we need that

(40) P.—Im$Us#0. or ReV Ug #0.

Note that the following conditions on the data and on the function @ ensure
that (40) holds.

Ay Uy & M¥%.

B)Up € My and (U) =) Y, U with my, =0 for k odd.

t k
We begin by considering the KsVB system. The mnonlinear term

§ grad ¢ (/) is such that
grad & (U) = (B, Bur, o0 B,

We introduce the notation

o

a; = dy

Hence we have
graﬁ&'(U) =(a1y -+ -, Gn):
Taking the Fourier transform of the KdVB system we arrive at,
U+ |20 =-H = —6grad® (U) — 685, U
U 0 =3

Treating this as an ordinary differential equation for U and writing down
the formal solution we obtain for each component, the equation

Ur (£, 1) = gi () eIl _/0 He (€, s)e 167 =9 gy

where,
Hi(6 5)= =i 3 & (rad @ (U)e =i} &1€17 O
i=1 i=1

This enables us to rewrite it in the form,

ﬁk (E 8)=—t Z £, - [G-k + Z ‘Efp I:T.Tc]!
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which implies that

f;\{:(J!qls ey Hﬂ):zg(&k"ze_?p[}k)

where

ar = (G -, Q&)
and

f}'k:(ﬁk, ey Uk)

By the hypothesis on the form of & grad ® it follows that,

Hy (6 s)==i> & lax+ €17 UL

i=1
Let a) = a; (0, ¢). Then a; can be represented as
@ =al +& Vea(f), 0<E<E
In the appendix (Theorem Al) we show that for |£{ < §,
1) |Veai (€, 8)[ < C(2)

where C(f) denotes a constant independent of £ but which depends on
| 712, | 41w, 61 and t. Therefore it is possible to write H, as

Ao (€, 8)=~iY & [ad +& Vear () + €7 Ul

=1
This yields
t . 2 t
/ He (€, s)emfH09 gy = 4 Z & ] ol ds + H.O.T.
0 7 9
where
t Y t )
H.OT.:/ ad (e I¢ (*_’)——l)ds-l—ié-/ [Vear + [£]%P Ui ds.
a 0

Annales de I'Institur Henri Poincaré - Analyse gon linfaire



SOLUTIONS TO THE KORTEWEG-DEVRIES-BURGER EQUATION 449
Hence it follows that

U (€, t) = —i&- Li (€, to) + (HO.T )i

1 i
L (€, tg)z(/ agds,...,] agds),
0 0

(HOT)x = e () e 1 ad (787 1) i - [Vear + |17 Ui,

+ t ¢ .
f {12 = / ‘I)Uk ds = f U}:k_l ds.
0 0 0

To apply Theorem 6.1 we need a lower bound for a, for at least one
k., where

with

and

where

o () = oy = /[ - |w- Ly (w(t) * do,

and

Ly (o, t):[/ot ag/U ai]‘

Conditions (i), (ii) ensure that there exists a sequence ¢, — oo such that
(making use of the notation introduced above), for some &

{42) Uk (EO! tn) = gﬂ * Lk (tn) + H-OT
where L (t,) = Re VU (0) + (P —Im ¥ U (0)) and for some &

(43) Lo-Li(tn) 2 >0,

with o given by a = max {| ReV U (0)], | Ps — Im VU (0) |}, that is «
is independent of t,,. Moreover, £ can be chosen to be of the form

for 3 = k so that (40) holds.
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A) and B) above show that the class of data producing solutions which
satisfy (42) and (43) is large. Moreover, note that there exists N (&)

independent of ¢, such that £ - Ly (¢,.) > g for £ € N (&) N S"L. This
can be shown as follows, First we show that for k — 1 > 2, | L, ()| < C,
which follows since,

t t i
1
".<c/ / U"*‘1<C/ - __<c
/0 /Iaki— o P i = o (S+1)5+1 =

E=(g,...,e, 1 —vn—1e, ..., €}

and it follows that [£] = L and | — o | < € = 2 /n — 1. This implies that

Let

(44) £ Ly (ta) >

bR

Note that if Re VU, # 0 then it follows that

2

t
Ve LilP = |Re VU |2+ ImVUO—/ Po| > |ReVU|* > /2
0

Also note that,

al

u(tn)zal-——/ FE Ly (t) ] > Wy = p
Jw|=1 4
where w,, denotes the volume of the unit sphere. By the above remarks

for T =t, and [EL(E, T)| > Cp for all n. Recall that for £ > &, (see
Theorem 6.1) 8y = (89 {1 (,,})) where é is defined by the requirement
that 4§ My My < a3, since we can clearly choose 6; < 8;({¢t,) for all n
by letting 4 §; My M, = p. (see Schonbek [4].) Then V (x, t) the solution
to the heat systern with data U, satisfies

V()2 x, (e + 1)~ ()

aw e f Schonbek [4]), which, by the
— ] N N

2(n +2) y
computations above is independent of #;.

for £ > #, with x, =
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Let v be the solution to the heat system with initial data v (z, 0) =
ip _
U (x, Ty) such that K (1 +T) % < )é—p wy, where K = K; K IK;;
and ¥y, is as above. The constants Ky, K2 and K are defined as below.

dpti
lgrad @| < K [U 3 (IU ] +|V[5)
U< Ks(1+1)7%
|U)w < Kz (1+18)7%
and wy denotes the surface area of S™~1, and
6:111in{% + g -1, p+ % —1}.
Thus by Theorem 6.1 it follows that for ¢ > &, = &; (p)

@) ) <l B K@y (BT

where Ky depends on the L, norm of Up and x, depens on 3 and Co. o
is independent of T, since § dpends on p by the uniformity condition (44).

Let
wlz, t) =Ulax, t+11).

The difference w = v — u is now studied. The decay rates for the KdVB
system will imply that fw (-, {}| < C{f + 1)'(% 1) with C sufficiently
small. W satisfies an inhomogeneous heat system. The Founer splitting
method will yield

(46) % [(t+ 1)8 / lw}? d:::}

§(£+1)3“_1/
s
+K2[Vv|mf ] F+ da.

n

ZdE+ K, | Doy fulz

w

The second and third terms on the right-hand side of the above inequality
will be of higher order and will as such be easily bounded as follows:

231 < 1y
4n KQ{VU|OO/“|u] de < M;(t+1)

K, | Dty gl a]s < My (t+ 1)
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n 1 ..
where v = — +p+ 7 = v2. In obtaining these bounds, we make use
of the bounds on the derivatives of the solution to the heat equation and
the L.. and L, bounds for the solution to the KdVB system. To bound

the first term on the right-hand side of (46) the Fourier transform of the
inhomogeneous heat equation yields

W4 €0 = —6grad @ (u) — 665 u = —H.
As before, in (37)

VA6 O <K €] (Jul, ]2 T+ ul, 152 [ul, O
+ KL EPPP A0 ) oo

Let v = min power of U; in ® (U/). Therefore,

W@JHSAfﬁ@JH@

-1

t 4
SKMH/(W&@QQHHRQM Ju(, ) ds
4]
i
SR [ it o) ds
0

e
U 5) s

t+1
kgl [ UG

t+T

+&HW“/ 107 (- 5) [oo ds

T
t T (v—2) !
! K K
<K z___ 4 ! 14
S K f¢] T ((3+1)?” (1+3)P+2) 3

£+1

+OK, &7 / C* ds

T,

1 g
) ORI
1
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where = min {% v—1p+ % - 1}‘ Since n > 2 and p > 1 we have
g > 0. Here we have made use of the fact that the L,-norm of the solution
to the KdVB system decays at the rate of (1 +#)~ 7.

Thus we have,

i (¢, 1) < C1| €]+ Co | €17

CK
(1+T1)8 and C; = CK,. Note that T} can

be chosen as large as needed since x, is independent of Ti. Using the
definition of the set S (t), this implies that

where ¢y = G, (Ty) =

W

/ || de < C) — / |&12de + Cat® / | &2 de
5¢t) n Js) S{t)
<0 (t+1)" ) 4oy e+ 1y (FHY
Hence the first term on the right-hand side of (46) can be bounded as
follows.

(t+ 1) f | de < Oy (B4 1) E 2+ Co (b4 177
s

15

P2yt 1)

<X (41

The last inequality follows from the choice of 7. Combining this last
estimate with (46) and (47) yields

d Bry 2 Xp lin _3
— < 27 3

F O (1) T My (¢4 DB
+ M,y (¢ + 1) D7,

Integrating over the interval [6, (p), t] gives

/ | w2 dz < 2(8—“’ (t+ 1)—(%+1)
ol 1)y 1)

M4 1)) ) / w(z, 61) | de

n
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Note that

/ |wi(z,é )| dz S/ iu(m,0)|2d:r+/ [v(z,0)}?dz < 2/ | U |2 dzx.
[ Rn [ Rn
Hence, it follows that
2 . Xp 1y—s
/ | 1o [* < E—(t-i-l} + HOT.
for ¢ large enough, where u is defined by

L
= — 1.
Iz 2+

i

n
The rest of the terms are of higher order since 2p > n, g +1 < 5 +p+ 2
7L

2 +2p—1. That is for ¢ > T}

n
d — +1
an2+<

|u( )l 2 v )2 —fw (-, B2
>y, (t+ 1) (F 1) - 2‘78-*’ t+1)" G+ gor
and Ty is such that
HOT < % (t+1)" ¥,
Hence, for ¢t > T3 =T+ T4
fuls )2 > 22 (¢4 1) 5 (3 )

4
For ¢ < T the decay of energy of U yields

41
|, 815 2> [ul-, T3) 22> x,/4 14¢)%7 (1+t)—(%+1)
H 2 » a2 Xp 1+T3

and the result follows. This completes the proof.

THEOREM 6.3. — Let Uy € Ly N HPH N M N My Let U be a solution
of the KdVB system with data Uy where Uy is such that / Uy = 0 and

U has a zero of order > 1. If | Po| # 0 for some k then, there exists
constants K., Ko such that

K+ 1)y ) <, <Ko+ 1720
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where K, Ko depend only on the norms of the data.

Proof. — The proof is similar to the case when the data is of order one.
Note that if Uy € Mgz 0 Mg we only need

¢ ()= Z Qg U‘-’ci k; odd or
()= Z g, Uf" k; even,

Then, P, # 0. As in the proof of Theorem 6.6, there exists a sequence
of £, such that

U, ) =¢ - Lt,) + HOT.
This implies the uniform condition for the lower bounds,

£-Lp(t,) > a/2 for £ € N{(&)nS*!

for some &y, and the proof now is a repetition of the proof of Theorem 6.2.

7. APPENDIX

Turorem Al. — Let Uy € HPYL M Wy. Then if U is the solution to the
KdVB system with data Uy then,
Veo, (€) <O ()
where C (t) depends only on the norm of Ug in the spaces HP*! gnd Ws.

Proof. — By definition,

a; = @'U‘.

and

Oy, = (3. me Ul yo, =) me UFTL
k

We cary out the analysis of one term of the sum. Note that k > 2 since
otherwise the equation is linear. Thus, for k>2

|vaka‘:|gc]|U:°J"1n:ck|sc[U3|m.
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When k; > 2 it suffices to bound / U?|x|dz. We have,
d .
48) — / UZ |y | :/ Ui |z | Use
dt
= [ 1o 1U @ grad 2 )

+/12?k[Ui52p+1Ui_/ | e U (AU);
=Ff+ I+ I

Note that

I:/ }x”U,:(ﬁgrade));:/Sgn(Ik)UiU:"_l

+2. / |z | UST Ui 2y
j

1 )
s%/ﬁ+gjwwmw’
SCUJrQ,U

12

and

IIr= / I.a"‘}k- | U§62P+] U,' = —/ Sgn(:ck) U,'(Sgp U,j
- / |.’L‘k i&br, 62], U,;
= - / 5gI (fl?k) U,f 52p U,; + / Sgn (:I.‘k) 62p_1 U,f

+/ |2k | 62 Us 0251 Us

Hence 1t follows that

Hz/sgﬂ(ﬂ?k) Z oy bopr1—x Ui 6 Us
(49) k<2p41

+ (-1)>H / | 25 | b2p 1 Ui Ui
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and we can conclude that

(30) 2H=f sgn (Tx ) Z op Sapy1-k Us 6 Us

k<2Zp+1

col frs) ([ ) <o

where s, 7 < 2p + 1. Finally,
IIIZ/ lIklU,;AU,;:-"Z/|.’L‘k|U£:j+/SgII(CL'k)U¢VU
J

() ()

<C

Combining these estimates in (48) we obtain

d 2
— : <0
dtfb‘lxd'c

Integrating this with respect to time the desired result follows.
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