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Abstract

In this paper we establish lower and upper bounds for the rate of
decay of the total energy and of the magnetic energy of solutions to
the magneto-hydrodynamics equations on Rn, 2 � n � 4. It is shown
that weak solutions subject to large initial data outside a class of
functions with total radially equidistributed energy decay algebraically
(rather than exponentially). It is also proved that initial data with ra-
dially equidistributed energy gives rise to weak solutions which decay
exponentially (rather than algebraically).
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1 Introduction

The purpose of this paper is to derive upper and lower bounds on the de-
cay of the total energy and the magnetic energy of a viscous incompressible
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electrically conducting resistive uid. The interactions between the uid mo-
tions and the magnetic �eld are modelled by the magneto-hydrodynamics
equations which, in non-dimensional form, can be written as (cf. [4], [11]):

@

@t
u+ (u � r)u� S(B � r)B +r(P +

1

2
SjBj2) =

1

Re
�u+ f;

@

@t
B + (u � r)B � (B � r)u = � 1

Rm
r� (r�B);

r � u = 0; r �B = 0:

Here u, P and B are non-dimensional quantities corresponding to the velocity
of the uid, its pressure, and the magnetic �eld; f(x; t) represents a non-
dimensional density of volume force, and jBj2=2 is the magnetic pressure.
The non-dimensional numbers appearing in these equations are the Reynolds
number,Re, the magnetic Reynolds numberRm, and S =M2=ReRm, where
M is the Hartman number. For the sake of notational simplicity, and without
restricting generality, we set all of these numbers to unity. Thus, upon such
normalisation and letting p = P + 1

2SjBj2 denote the total pressure, we
consider the magneto-hydrodynamics (MHD) equations in Rn, 2 � n � 4:

@

@t
u+ (u � r)u� (B � r)B +rp = �u+ f;

(MHD)
@

@t
B + (u � r)B � (B � r)u = �B;

r � u = 0; r �B = 0;

supplemented with the initial conditions

u(x; 0) = u0(x); B(x; 0) = B0(x):

There is no loss in generality in assuming that the forcing function is diver-
gence free; i.e., that r � f(t) = 0 for all t � 0. We shall always make this
assumption.

We show that weak solutions to the MHD equations, subject to large
initial data outside a class of functions with total radially equidistributed
energy, decay algebraically (rather than exponentially). In particular we
prove that, for such solutions, the total energy (kinetic plus magnetic) and
the magnetic energy have slowly decaying algebraic lower bounds. Moreover,
we show in which cases the lower bounds are valid for the kinetic energy alone
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or the magnetic energy alone. Thus, our results reinforce mathematically the
observation made by Chandrasekhar [3] that \the magnetic �eld in systems
of large linear dimensions can endure for relatively long periods of time".

The following notation will be used throughout the paper: Hm(Rn) will
denote the Hilbertian Sobolev space on Rn of index m, m � 0; Lp(Rn)
will stand for the Lebesgue space equipped with its standard norm k � kp,
1 � p � 1;

V = fv 2 [C1
0 (Rn)]n : r � u = 0g; H = closure of V in [L2(Rn)]n:

In addition we introduce the following weighted Lebesgue spaces (and asso-
ciated norms):

W1 = fv :
Z
Rn
jxj2jv(x)jdx <1g; W2 = fv :

Z
Rn
jxjjv(x)j2dx <1g;

jvjW1
=
Z
Rn
jxj2jv(x)jdx; jvjW2

=
�Z
Rn
jxjjv(x)j2dx

�1=2
:

Suppose that (u0; B0) 2 H � H, and let f 2 L1(0;1;L2(Rn)n). By a
weak solution of the MHD equations we mean a function (u;B) 2 B � B,
where

B = Cw([0;1);H) \ L2loc((0;1); [H1(Rn)]n);

satisfying the integral relations

hu(t); �(t)i+
Z t

0
�hu(s); @�

@s
(s)i+ hru(s);r�(s)i

+ h(u(s) � r)u(s)� (B(s) � r)B(s); �(s)ids = hu0; �(0)i +
Z t

0
hf(s); �(s)ids;

(1)

hB(t); �(t)i+
Z t

0
�hB(s); @�

@s
(s)i + hrB(s);r�(s)i

+ h(u(s) � r)B(s)� (B(s) � r)u(s); �(s)ids = hB0; �(0)i;

for all smooth divergence-free vector �elds �(x; t) with compact support in
Rn � [0;1). Here h�; �i denotes the scalar product of the space [L2(Rn)]n,
and Cw([0;1);H) is the space of weakly continuous functions from [0;1)
into H.
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When n = 2, the existence of a unique strong solution is well known,
whereas for n � 3 no uniqueness result without restricting the class of solu-
tions is available (see, [5] and [21]). Nevertheless, all solutions to the MHD
equations constructed so far do obey the energy inequality, stated in (2) be-
low, or at least they may be approximated by solutions of this type. This is
well known for solutions to the Navier-Stokes equations (see [13], [24]). The
methods used to construct solutions to the Navier-Stokes equations ([2], [13],
[22]) can be easily extended to a construction for the MHD equations, and
the solutions will in the same fashion satisfy the energy inequality (2) for
2 � n � 4. Thus, following the approach of Wiegner [24] for the incompress-
ible Navier-Stokes equations, we shall assume in the rest of the paper that
the solution (u(t); B(t)) to the MHD equations obeys:

ku(t)k22 + kB(t)k22 + 2
Z t

s
(kru(r)k22 + krB(r)k22)dr

(2)

� ku(s)k22 + kB(s)k22 + 2
Z t

s
jhf(r); u(r)ijdr;

for s = 0, and almost all s > 0 and all t � s.
By our assumption that f 2 L1(0;1;L2(Rn)n), this implies (in the same

fashion as in [24]) the existence of a constant C = C(u0; B0; f) such that for
s = 0, and almost all s > 0 and all t � s,

ku(t)k22 + kB(t)k22+ 2
Z t

s
(kru(r)k22 + krB(r)k22)dr

(3)

� ku(s)k22 + kB(s)k22 + C
Z t

s
kf(r)k2dr:

Indeed, if f is smooth and kf(t)k2 > 0, then h(t) = jhf(t); u(t)ij � kf(t)k�12
is a continuous function, and, by the Cauchy-Schwarz inequality,

h2(t) � ku(t)k22 � ku0k22 + kB0k22 + 2
Z t

0
h(r)kf(r)k2dr

� ku0k22 + kB0k22 +
Z 1

0
kf(r)k2dr +

Z t

0
h2(r)kf(r)k2dr

� C�(u0; B0; f) +
Z t

0
h2(r)kf(r)k2dr:
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Thence, by virtue of Gronwall's inequality, we have that h(t) � C(u0; B0; f),
and the required inequality follows from (2). The general case of f 2
L1(0;1;L2(Rn)n) is dealt with by approximation.

In Section 2 we analyze the lower and upper bounds of L2 decay rates
for solutions to the heat equation subject to a forcing term. The upper
bounds are included for completeness. In this paper, we improve known
upper bounds given in [16] and [9]. The derivation of the lower bounds
for weak solutions to the MHD equations presented in this paper hinges on
decay properties of solutions (u0(x; t); B0(x; t)) to the non-homogeneous heat
system

@

@t
u0 = �u0 + f; u0(x; 0) = u0(x);

(HS,f)
@

@t
B0 = �B0; B0(x; 0) = B0(x);

with the same initial data, (u0; B0), and volume force, f , as in the MHD
equations. We will impose certain conditions on the functions f and prove
that these conditions guarantee that the solutions of the heat equation with
forcing function f decay at the same rate as the corresponding solutions of
the \free" heat equation. We need these conditions on comparing solutions of
the MHD equations with solutions of the heat equation in our proof that, at
least generically, the square L2-norms of the solutions to the MHD equations
have a rate of decay bounded below by C(t+ 1)�n=2�1 (with C > 0).
De�nition. Let f : Rn� [0;1)! Rn be measurable, and assume r�f(t) =
0 for all t � 0. Let �; �; � 2 R. We say

a f 2 A� if there exists C � 0 such that

kf(t)k2 � C(t+ 1)�� for t � 0:

b f 2 B� if there exists C � 0 such that

jf̂(�; t)j � Cj�j� for t � 0; � 2 Rn:

c f 2 C� if there exists C � 0 such that

kf(t)k1 � C(t+ 1)�� for t � 0:
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We can make these spaces into Banach spaces de�ning norms in the ob-
vious way; for example,

kfkA� = sup
t�0

(t+ 1)�kf(t)k2;

and similarly for kfkB�, kfkC� .
We also have to assume frequently that f 2 L1(0;1;L2(Rn)n); we de�ne

the norm in this space by

kfkL1(L2) =
Z 1

0
kf(t)k2 dt:

For our lower bounds, we need to be able to estimate �rst order moments of
the solution (u;B) of the MHD equations (cf. Lemma 6.1). For this purpose
we assume f 2 L1(0;1;W1).

In order to derive the lower bounds, we use the ideas presented in [20] for
solutions to the Navier-Stokes equations. We compare the decay of solutions
of the MHD equations to those of the heat system with the same initial
datum. The decay in L2-norm of solutions of the heat equation (or system)
depends mainly on the presence (or absence) of long waves in the initial
datum; i.e., on the size of the Fourier transform of the datum near the origin.

We show that for initial datum (u0; B0) 2 H � H, the L2-norm of the
di�erence between the solutions of the MHD equations and the heat system
(with the same datum) satis�es an upper bound which decays faster than
the L2-norm of the solution of the heat system. Speci�cally, we prove the
following theorem
Theorem. Let the initial datum (u0; B0) 2 H �H and assume

f 2 L1(0;1;L2(Rn)n) \ An=4+1 \B4 \ C(n+3)=2:

a) If n = 2 and not all components of û0(0) or B̂0(0) are zero (in the sense
de�ned at the beginning of Section 2), then

ku(t)� u0(t)k22 + kB(t)�B0(t)k22 � CD0
(t+ 1)�n=2�1(1 + log2(t+ 1));

b) if n � 3, or if n = 2 and (u0; B0) 2 [H \ L1(Rn)n]2, then

ku(t)� u0(t)k22 + kB(t)�B0(t)k22 � CD1
(t+ 1)�n=2�1:
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Cases a) and b) are mutually exclusive due to the following lemma estab-
lished by Borchers [1].
Lemma [B]. Let u 2 L1(Rn)n \H. ThenZ

Rn
u dx = 0:

Proof. Suppose �rst u 2 [C1
0 (Rn)]n. ThenZ

Rn
u1 dx =

Z
Rn
u � rx1 dx =

Z
Rn
(r � u)x1 dx = 0:

The general case of u 2 L1(Rn)n \ H follows using approximations and
passing to the limit.2

For the sake of completeness, we notice that case a) of the theorem can
obtain; in fact there do exist functions u 2 H such that û(0) 6= 0 in the sense
of Section 2. For example, let g 2 L2 \ L1loc(Rn) and de�ne u by

û(�) = (
�2
j�jg(�);�

�1
j�jg(�); 0; : : : ; 0):

Then u 2 H, but û(0) 6= 0 if g is bounded away from zero near the origin.
By showing that in case (û0(0); B̂0(0)) 6= (0; 0), the solution of the heat

system satis�es the lower bounds

ku0(t)k22 � C2(t+ 1)�n=2; kB0(t)k22 � C2(t+ 1)�n=2;

the lower bound for the MHD equations easily follows from the estimates in
cases a) and b) above.

For the di�erence between a weak solution u(t) of the Navier-Stokes equa-
tions and a semigroup solution u0(t) of the heat system, Wiegner [24] showed
that one has the estimate

ku(t)� u0(t)k22 � C(t+ 1)�n=2�1:

It is worth mentioning, however, that whereas for the Navier-Stokes equa-
tions this inequality holds regardless whether or not the initial data has zero
average, this is no longer true for the MHD equations in two dimensions (cf.
Corollary 3.2). This distinctive feature stems from dimensional arguments
and the fact that the nonlinear terms in the MHD equations involve both
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the velocity and the magnetic �eld; thus when we estimate the di�erence
between solutions of the MHD equations and the heat system, the bound
involves kru0(t)k1 which decays at a rate depending on whether or not the
initial data has zero average. A more subtle situation occurs when the av-
erage of the initial data is equal to zero: in this instance there are no long
waves present in the initial data and the corresponding solution of the heat
equation in Fourier space may contain only short waves, so that the L2-norm
of the solution to the heat system decays very fast. However, for the MHD
equations the nonlinear terms can produce a mixing of the Fourier modes
which slows down the decay. As was shown in [20] for the Navier-Stokes
equations, solutions with data outside of a class of radially equidistributed
functions will immediately produce low Fourier modes. More precisely, it can
be shown that in frequency space solutions to the MHD equations take the
form

û(�; t0) = � � �(�; t0) + h(�; t0);

(4)

B̂(�; t0) = � � �(�; t0) + k(�; t0);

where � and � are homogeneous functions of degree zero, and h and k are
O(j�j2). This is proved as in [20]. The appearance of long waves (i.e., low
Fourier modes) does not seem to be su�cient to insure that the decay rate will
slow down. We need to add a hypothesis on the solutions guaranteeing that
these slow Fourier modes keep showing up in a sequence of times tending
to in�nity. We conjecture that this hypothesis is removable; whenever a
slow Fourier mode has appeared it will persist as time goes to in�nity. In
other words, once long waves are present they will stay inde�nitely. For the
time being, we show that if the slow modes do not persist then the solution
decays at a faster rate. We also show that the persistence of the slow modes
is generic (Section 4). Next we compare the solution of the MHD equations
with solutions of the heat system with initial data (u(�; tm); B(�; tm)), where
ftmg is a sequence of times satisfying limm!1 tm =1. The form of the initial
data given by (4), with t0 replaced by tm, guarantees that the corresponding
solution, (u0(tm); B0(tm)), of the heat system satis�es

ku0(tm)k22 + kB0(tm)k22 � C3(tm + 1)�n=2�1;

with C3 independent of m. The derivation of the lower bound for the total
energy of the solution to the MHD equations is now reduced to showing that
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the upper decay constant, CD1
, for the di�erence, (u(t)�u0(t); B(t)�B0(t)),

satis�es
CD1

< C3;

where C3 is the constant corresponding to the lower bound for the solution
of the heat system. A similar analysis yields the lower bound on the decay
for the magnetic energy alone.

This part of the analysis is performed for initial data giving rise to solu-
tions in Mc

0, the complement of the set M0 of functions with total radially
equidistributed energy. The set M0 is a generalisation of the class of ra-
dially equidistributed functions, M , introduced in [18] to obtain algebraic
lower bounds for the Navier-Stokes equations. Given u = (u1; :::; un) and
B = (B1; :::; Bn) in [L1(0;1;L2(Rn))]n, let

~Aij =
Z 1

0

Z
Rn
(uiuj �BiBj)dx;

~Cij =
Z 1

0

Z
Rn
(uiBj �Biuj)dx:

We also set
hx;B0iij =

Z
Rn
xjBi(x; 0) dx:

Then, introducing the matrices ~A = [ ~Aij], ~C = [ ~Cij], and hx;B0i = [hx;B0iij ],
we de�ne

M0 = f(u;B) 2 [L1(0;1;L2(Rn)]2n : ~A is scalar and ~C = hx;B0ig:
We note thatM0 is very small. More precisely, if (u;B) 2 [L1(0;1;L2(Rn))]2,
then generically (u;B) 2 Mc

0. This will be established in Section 4 (cf.
Lemma 4.2 and Corollary 4.3). In other words, generically solutions are not
in M0, the set where slow Fourier modes do not persist. We show that the
lower bound holds if and only if the solution is not in M0 (cf. Section 4,
Theorem 4. 3). We strengthen this result in the �nal section where we give
examples of solutions to the MHD equations not inM0 which decay exponen-
tially (rather than algebraically). These examples, of solutions which decay
exponentially rather than algebraically, are of two types. Solutions where
the magnetic �eld B is zero and the velocity is simultaneously a solution to
the Navier-Stokes and the heat equations; secondly, solutions where both the
velocity u and the magnetic �eld B satisfy heat systems. The example we
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have is valid in all even space dimensions and shows that the classical radial
solution of the Navier-Stokes equations is also a solution of the homogene-
nous heat equation. It extends in a quite technical way the 2 dimensional
example given in [20]. The analysis done here gives a general method for con-
structing simultaneous solutions to the heat equation and the Navier-Stokes
equations. It raises the question whether only solutions which also satisfy
the heat equation can decay exponentially.

Our results are also a �rst step to showing that, in the far �eld, the
behaviour of solutions to the MHD equations and the heat system are quite
di�erent. Whereas solutions to the heat system may have very fast algebraic
or exponential decay when the initial data is rapidly oscillating, the nonlinear
terms in the MHD equations generically alter the decay of solutions to a slow
algebraic rate when started from the same initial data. We note that, with
minor modi�cations, the analysis presented here can be adapted to the case
when the second equation in (MHD) also contains a forcing term. We have
the following result.
Theorem. Let (u0; B0) 2 [W2 \H]2,

f 2 L1(0;1;L2(Rn)n \W1) \An=4+1 \B4 \ C(n+3)=2;

and let (u(x; t); B(x; t)) be a weak solution of the MHD equations with initial
datum (u(x; 0); B(x; 0)) = (u0(x); B0(x)).
a) If û0(0) 6= 0 or B̂0(0) 6= 0, then

C0(t+ 1)�n=2 � ku(�; t)k22 + kB(t)k22 � C1(t+ 1)�n=2:

b) If (u0; B0) 2 [W2 \H \ [L1(Rn)]n]2 (so that

û0(0) = (2�)�n=2
Z
Rn
u0(x) dx = 0; B̂0(0) = (2�)�n=2

Z
Rn
B0(x) dx = 0;

by Borchers' Lemma) and (u;B) =2 M0,then

C2(t+ 1)�n=2�1 � ku(�; t)k22 + kB(�; t)k22 � C3(t+ 1)�n=2�1:

We note that if < (rû0(0)) 6= 0 the solutions stay inMc
0.

In this paper we also obtain a very precise expression for the �rst term of
the Taylor expansion in frequency space of solutions to the MHD equations.
The expansion is valid, as well, for solutions to the Navier-Stokes equations
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setting B � 0. In fact, the MHD equations reduce to the Navier-Stokes
equations when B � 0 so that the methods presented here are also suitable
for the analysis of the decay of solutions to the Navier-Stokes equations with
a forcing term f . The lower bound on the decay rate of the total energy
for the MHD equations is the same as that of the kinetic energy for the
incompressible Navier-Stokes equations, with the set M0 replaced by its
counterpart

M = fu 2 L1
�
(0;1); L2(Rn)n

�
: [rij] is scalar, where rij =

Z 1

0

Z
Rn
uiujdxg:

We note that in this paper we corrected a gap that was found in the corre-
sponding result for the Navier-Stokes equations [20].

Finally, we mention that upper bounds for the MHD equations have also
been derived in [16] and [9].

2 Bounds for solutions of the heat equation

We begin with the homogeneous heat equation. If  2 L1loc (or, more gen-

erally if  is a distribution), we say  has a zero of order � at the origin if
in some neighborhood V of the origin

 (�) = �(�) + h(�) for � 2 V
where � is a non-zero function homogeneous of degree �, continuous on
Rnnf0g, and h(�) = O(j�j�+�) for � ! 0, some � > 0. If  has a zero of
order 0, we will say (with some abuse of language) that  does not vanish at
0, write  (0) 6= 0. This generalisation of the concept of a zero at the origin
will be used exclusively in case  (�) = û(�), u 2 L2(Rn). Moreover, u will
be the solution of a heat equation or part of the system of solutions of the
MHD equations for some (�xed) time value. If � is a non-negative integer
and jxj�u 2 L1, then û is �-times continuously di�erentiable (with bounded
derivatives) and û has a zero of order � at 0 in the generalised sense if and
only if it has a zero of order � in the conventional sense. In particular, if
u 2 L1, then û(0) 6= 0 if and ond only if û has a zero of order 0 at the origin.
Since we also have for u 2 L1 that

û(0) = (2�)�n=2
Z
Rn
u(x) dx;
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so that û(0) = 0 if and only if u has a zero average. With some abuse of
language, we shall say that a function u 2 L2(Rn) has zero average if its
Fourier transform û has a zero of order at least 1 at 0. Also, with some abuse
of language, we shall say that a function u 2 L2 satis�es û(0) 6= 0 if û has a
zero of order 0 at the origin; i.e., if û di�ers from a homogeneous function of
degree 0 by a quantity of order O(j�j�) for � ! 0, where � > 0. If u 2 W1,
these concepts reduce to their usual interpretation.

Lemma 2.1 Let u0 2 L2(Rn) and let v = v(x; t) be the solution of the
homogeneous heat equation vt = �v with initial datum v(0) = u0. If û0 has
a zero of order � � 0 at the origin, then there exist constants C0 > 0, C1 � 0
such that

C0(t+ 1)�
n
2
�� � kv(t)k22 � C1(t+ 1)�

n
2
��

for all t � 0.

Proof. Let � > 0. By Plancherel's Theorem,

kv(t)k22 =
Z
Rn
jû0(�)j2e�2tj�j2 d� = A�(t) +B�(t);

with
A�(t) =

Z
j�j��

jû0(�)j2e�2tj�j2; B�(t) =
Z
j�j>�

jû0(�)j2e�2tj�j2:
Since

B�(t) � e�2�
2tku0k22;

B�(t) decays exponentially and it su�ces to see that A�(t) decays at the
desired rate. We select � > 0 so that

û0(�) = �(�) + h1(�)

for j�j < �, where � is homogeneous of order � and h1(�) is bounded by
const�j�j�+�, where � > 0. The result follows, sinceZ

j�j<�
j�(�)j2e�2tj�j2 d� � t���n=2

while Z
j�j<�

j2�(�)h1(�) + h1(�)
2)je�2tj�j2 d� � const t���n=2+�:

We notice that we can replace t by t + 1 in the estimates, since kv(t)k22 is
bounded at 0. 2

In particular, if û0(0) 6= 0, we get
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Corollary 2.2 Let u0 2 L2(Rn) and let v = v(x; t) be the solution of the
homogeneous heat equation vt = �v with initial datum v(0) = u0. Assume
û0(0) 6= 0. Then there exist positive constants C0; C1, depending only on the
norms of the datum, such that

C0(t+ 1)�
n
2 � kv(t)k22 � C1(t+ 1)�

n
2

for t � 0.

We want to explore a case in which the initial datum has zero average in
a bit more detail.

Lemma 2.3 Let u0 2 [L2(Rn)]n and let v(x; t) be the solution of the homo-
geneous heat system with initial datum u0. Suppose in addition that there is
� > 0 such that the Fourier transform of u0 admits the representation

û0(�) = P (�)� + h(�); for j�j � �,

where P and h satisfy the following conditions:
i)P is a homogeneous, n� n matrix-valued function of degree zero with

kPk = sup
j�j=1

jP (�)j <1

(where jP (�)j denotes a matrix norm of P (�)).
ii)jh(�)j �M0j�j2, for some M0 � 0 and all � 2 Rn, j�j � �.
Then

kv(t)k22 = cn(�; t)
�Z

Sn�1

jP (!)!j2 d!
�
t�

n
2
�1 +O(t�

n
2
� 3

2 ) (5)

where  
�2

2

!n
2
+1

e�2�
2 � cn(�; t) �

�
1

2

�n
2
+2

�(
n + 2

2
) (6)

for t � 1, and
jO(t�n

2
� 3

2 )j � Ct�
n
2
� 3

2

with C depending only on M0, kPk and �. If, in addition,

�1 :=
Z
Sn�1

jP (!)!j2 d! 6= 0 (7)
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then there exist positive constants C0, C1 with C1 depending only on M0,
ku0k2, kPk, and �1, C0 depending on all these quantities and on � such that

C0(t+ 1)�
n
2
�1 � kv(t)k22 � C1(t+ 1)�

n
2
�1:

Proof. We have�����kv(t)k22�
Z
j�j��

e�2tj�j
2jû0(�)j2 d�

����� =
Z
j�j��

e�2tj�j
2jû0(�)j2 d�

� e�2t�
2ku0k22:

It su�ces to show that
R
j�j�� e

�2tj�j2jû0(�)j2 d� is of the form cn(�; t)�1t�n=2�1+

O(t�n=2�3=2). For j�j � �,

jû0(�)j2 = jP (�)�j2 +  (�)

where
j (�)j � Cj�j3

and C depends only onM0 and kPk. Equation (5) follows multiplying jû0(�)j2
by e�2tj�j

2

and integrating over j�j � �. In fact,Z
j�j��

j�j3e�2tj�j2 d� �
Z
Rn
j�j3e�2tj�j2 d� = C � t�n

2
� 3

2 ;

where C is a constant, while

Z
j�j��

e�2tj�j
2jP (�)�j2 d� =

 Z �

0
rn+1e�2tr

2

dr

!�Z
Sn�1

jP (!)!j2 d!
�

=
1

2
�1

 Z 2t�2

0
s
n
2 e�s ds

!
(2t)�

n
2
�1:

Notice that

(�2)
n
2
+1e�2�

2 �
Z 2t�2

0
s
n
2 e�s ds � �(

n + 2

2
)

for t � 1. The �nal statement of the lemma is an easy consequence of (5)
and the boundedness near 0 of kv(t)k2. 2
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Having derived upper and lower bounds on the decay of solutions of the
homogeneous heat equation, we now consider the heat equation with a forcing
function f. Let v satisfy

@

@t
v = �v + f

v(x; 0) = u0(x):

We split v = u + w, where u solves the free heat equation ut = �u, with
u(0) = u0, and w solves wt = �w + f with initial datum w(0) = 0. Then

1

2
ku(t)k22 � kw(t)k22 � kv(t)k22 � 2ku(t)k22 + 2kw(t)k22

and to see that ku(t)k2 and kv(t)k2 have the same rate of decay, it su�ces
to show that kw(t)k2 decays at a faster rate than ku(t)k2. We have

Lemma 2.4 Let v be the solution of vt = �v+f , assume the Fourier trans-
form û0 of the initial datum of v has a zero of order � � 0 at 0 and that

f 2 A� \ B�, where � >
1
2(
n

2
+ � + 2) and � > � + 2. There exist positive

constants C1, C2, such that

C1(1 + t)�n=2�� � kv(t)k22 � C2(1 + t)�n=2��

for all t � 0.

Proof. In view of Lemma 2.1 and by the remarks preceding this lemma, it
su�ces to prove kw(t)k22 decays at a faster rate than t�n=2��, where v = u+w
as above. Writing

w(t) =
Z t

0
e�(t�s)�f(s) ds

=
Z t=2

0
e�(t�s)�f(s) ds +

Z t

t=2
e�(t�s)�f(s) ds = I1 + I2:

By Plancherel,

ke�(t�s)�f(s)k22 =
Z
Rn
e�2(t�s)j�j

2jf̂ (�; s)j2 d�

� kfk2B�

Z
Rn
j�j2�e�2(t�s)j�j2 d� = Ckfk2B�

(t� s)�n=2��;

15



so that

kI1k2 � CkfkB�

Z t=2

0
(t� s)�n=4��=2 ds = CkfkB�t

�n=4��=2+1:

By Plancherel (or otherwise), ke�(t�s)�f(s)k2 � kf(s)k2, hence

kI2k2 �
Z t

t=2
kf(s)k2 ds � kfkA�

Z t

t=2
(s+ 1)�� ds � CkfkA�(t+ 1)��+1:

>From these bounds we conclude (after squaring and with a constant C
depending on kfkA� , kfkB�) that for t � 1

kw(t)k22 � C[(t+ 1)�n=2��+2 + (t+ 1)�2�+2] � C(t+ 1)�n=2����

where � = min(� � 2� �; 2�� � � n=2 � 2) > 0. 2
As for the case of the free heat equation, the main cases in which Lemma

2.4 is applied are contained in the following Lemma.

Lemma 2.5 Let v be the solution of vt = �v + f with initial datum v(0) =
u0. Then

1. If û0(0) 6= 0 and f 2 A� \B� with � > n=4 + 1, � > 2, then there
exist constants C0 and C1, depending on norms of u0 and f , such
that

C0(t+ 1)�n=2 � ku(�; t)k22 � C1(t+ 1)�n=2:

2. If û0(�) = P (�)� + h(�) for j�j � �, where � > 0 and P , h are as
in Lemma 2.3, and f 2 A� \ B� where � > n=4 + 3=2, � > 3,
then there exist constants C2 and C3, depending on norms of u0
and f , such that

C2(t+ 1)�n=2�1 � ku(�; t)k22 � C3(t+ 1)�n=2�1:

To show that the solution (u;B) to the MHD equations with initial data
(u0; B0) is asymptotically equivalent to the solution of the heat system with
the same initial data, we need the following auxiliary result concerning the
decay of the L1-norm of the solution of the heat system.
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Lemma 2.6 Suppose � � 0, and let v(x; t) denote the solution of the heat

system (HS,f) with f 2 C� , where � =
n

4
+
�

2
+ 1. If

kv(�; t)k22 � C(t+ 1)��; t � 0:

Then
(a) krv(�; t)k21 � C(t+ 1)�n=2���1; t � 1;
(b) kv(�; t)k21 � C(t+ 1)�n=2��; t � 1.

Proof. Let Di denote the identity operator if i = 0, the gradient operator r
if i = 1. Let

K(t)(x) = K(x; t) = (4�t)�n=2e�
jxj2

4t

be the heat kernel; we can then write

Div(t) = DiK(t=2) � v(t=2) +
Z t

t=2
DiK(t� s) � f(s) ds

so that

kDiv(t)k1 � kDiK(t=2)k2kv(t=2)k2 +
Z t

t=2
kDiK(t� s)k1kf(s)k1 ds:

Standard estimates yield

kDiK(t)k2 = Ct�
1

2
(n=2+i)

kDiK(t)k1 = Ct�
i
2 ;

hence

kDiv(t)k1 � Ct�
1

2
(n
2
+i)kv(t=2)k2 + C

Z t

t=2
(t� s)�i=2kf(s)k1 ds:

Using f 2 C� and the hypothesis on the decay of kv(t)k2, we get

kDiv(t)k1 � Ct�
1

2
(n
2
+i) t�

1

2
� + Ct�

1

2
(�+n

2
+2)

Z t

t=2
(t� s)�i=2 ds

� Ct�
1

2
(�+n

2
+i);

since 0 � i=2 < 1 (and (t� s)�i=2 integrated from t=2 to t is of order t1�i=2).
The proof is complete. 2
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3 Fourier representation and upper bounds

for solutions of the MHD equations

In this section, and in the sequel, (u;B) will denote a solution of the MHD
equations with initial datum (u0; B0) and divergence free forcing function
f . In deriving upper bounds for the decay of (u;B) we mimic the methods
developed to establish decay of solutions of the Navier Stokes equations in
[18] and in [24], most notably the Fourier splitting method (introduced by
one of the authors in [17]). The Fourier splitting method has already been
used by Mohgooner and Sarayker for the MHD equations (cf. [16]), but
their rate is not optimal. Our approach is somewhat formal (if n � 3) since
we are applying ordinary time derivatives to functions which may only be
weakly di�erentiable in time. We remark, however, that the rigorous proof
follows applying the method to approximating sequences to solutions, similar
to those constructed for the Navier-Stokes equations by Leray [12], and by
Ca�arelli, Kohn and Nirenberg [2] in case n = 3; by Sohr, Wiegner and von
Wahl [22], and by Kajikiya and Miyakawa [7] if n = 2; 3; 4. The decay results
established for the approximating sequence will be valid for the limiting weak
solution.

We begin introducing some notation. Let

H = (H1; : : : ;Hn) = (u � r)u� (B � r)B +rp;

M = (M1; : : : ;Mn) = (u � r)B � (B � r)u;
so that the MHD equations become

ut ��u = �H + f;Bt ��B = �M:

Fourier transforming with respect to the space variables and solving the
resulting �rst order equations in time, we get

û(�; t) = e�tj�j
2

û0(�)�
Z t

0
e�(t�s)j�j

2
�
Ĥ(�; s) � f̂ (�; s)

�
ds;

(8)

B̂(�; t) = e�tj�j
2

B̂0(�) �
Z t

0
e�(t�s)j�j

2

M̂(�; s) ds:

18



Since r�u = r�B = r� f = 0, applying the divergence operator to the �rst
set of MHD equations gives

�p = �
nX

k;j=1

@2

@xk@xj
(ukuj �BkBj);

where we used

r � ((v � r)w) =X
k;j

@2

@xk@xj
(vkwj) if r � v = 0:

Hence

p̂(�; t) = � 1

j�j2
X
k;j

�k�j
� dukuj � dBkBj

�
: (9)

Notice also that

(v � r)w =
X
j

@

@xj
(vjw) if r � v = 0:

It follows that

Ĥ(�; t) = i
X
j

�j
�duju� dBjB

�
� i

X
k;j

�k�j
j�j2

� dukuj � dBkBj

�
�;

M̂ (�; t) = i
X
j

�j
�dujB � dBju

�
:

Setting
akj = dukuj; bkj = dBkBj; ckj = dujBk;

we write all this in a somewhat more compact way introducing the n � n
matrices A = [Akj], C = [Ckj], � = [�kj], where

Akj(�; t) = akj(�; t) � bkj(�; t); Ckj(�; t) = ckj(�; t)� cjk(�; t);

and

�kj(�) =
�k�j
j�j2 :

Then

Ĥ(�; t) = i(I � �(�))A(�; t)�;

M̂(�; t) = iC(�; t)�:
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Since

jak;j(�; t)j+ jbk;j(�; t)j � k dukujk1 + k dBkBjk1 � (2�)�n=2 (kukujk1 + kBkBjk1)
� (2�)�n=2 (kukk2kujk2 + kBkk2kBjk2)

we see that

jA(�; t)j2 � 2
X
k;j

�
jakj(�; t)j2 + jbk;j(�; t)j2

�
� 2(2�)�n

�
ku(t)k22 + kB(t)k22

�2
(10)

for all � 2 Rn, t � 0; since �(�) (hence also I � �(�)) is an orthogonal
projection matrix for each � 2 Rnnf0g, we get���Ĥ(�; t)

��� � 2(2�)�n=2
�
ku(t)k22 + kB(t)k22

�
j�j (11)

for all (�; t). Similarly,

jC(�; t)j2 � 4
X
k;j

jckj(�; t)j2 � (2�)�n
�
ku(t)k22 + kB(t)k22

�2
(12)

so that ���M̂ (�; t)
��� � (2�)�n=2

�
ku(t)k22 + kB(t)k22

�
j�j: (13)

for all �; t.
We denote by (v;w) the solution of the (HS,f) system with the same

initial datum (u0; B0). We set D = (D1;D2) = (u � v;B � w). We now
obtain several auxiliary estimates which will be needed later. First we have

d

dt
kD(t)k22 =

d

dt
(kD1(t)k22 + kD2(t)k22)

= 2hD1;�D1 �Hi + 2hD2;�D2 �Mi:
Recall that the form (u; v; w) 7! hu; (v � rw)i is skew symmetric in the �rst
and third entries (if u; v; w are divergence free), moreover divergence free
vector �elds are orthogonal to gradients. We thus get, after some integration
by parts,

d

dt
kD(t)k22 = �2krD(t)k22 � 2hD1; u � rvi+ 2hB;B � rvi � 2hB;u � rwi

+2hu;B � rwi
(14)

= �2krD(t)k22 � 2hD1; u � rvi+ 2hD1; B � rwi � 2hD2; u � rwi
+2hD2; B � rvi:
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We proceed to apply the Fourier splitting method. Let g(t) � 0 for t � 0 (to
be determined later) and let G(t) = exp(2

R t g(s)2 ds), so that G0 = 2g2G.
By (14),

d

dt

�
G(t)kD(t)k22

�
= 2[g(t)2kD(t)k22 � krD(t)k22 � hD1; u � rvi

+ hB1; B � rwi � hD2; u � rwi+ hD2; B � rvi]G(t):

Estimating each of the last four terms on the right hand side by

jhq1; (q2 � r)q3ij � kq1k2kq2k2krq3k1;

we get

d

dt

�
G(t)kD(t)k22

�
� 2G(t)

�
g(t)2kD(t)k22 � krD(t)k22

�
(15)

+2(t)
�
ku(t)k22 + kB(t)k22

�1=2 kD(t)k2(krvk1 + krwk1)

For some of our results it su�ces to use a simpler inequality. Noticing that
hD1; u � rvi = hu; u � rvi and using the �rst inequality in (14) we get (esti-
mating as before)

d

dt

�
G(t)kD(t)k22

�
� 2G(t)

�
g(t)2kD(t)k22 � krD(t)k22

�
(16)

+2G(t)kD(t)k2
�
ku(t)k22 + kB(t)k22

�1=2
(krvk1 + krwk1)

Now, by Plancherel's theorem,

g(t)2kD(t)k22 � krD(t)k22 =
Z
Rn
(g(t)2 � j�j2)jD̂(�; t)j2 d�

�
Z
j�j�g(t)

(g(t)2 � j�j2)jD̂(�; t)j2 d�

� g(t)2
Z
j�j�g(t)

jD̂(�; t)j2 d�:
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This inequality is used to derive both the upper and the lower bounds for
the decay of the L2-norm of (u;B). Using it in (16), we get

d

dt

�
G(t)kD(t)k22

�
� 2g(t)2G(t)

Z
j�j�g(t)

jD̂(�; t)j2 d�
(17)

+ 2(ku(t)k22 + kB(t)k22)(krvk1 + krwk1)G(t):
For the purpose of �nding upper bounds, it will su�ce to boundZ

j�j�g(t)
jD̂(�; t)j2 d�

as follows. Since
D1t = �D1 �H;D2t = �D2 �M

and D(0) = (0; 0), we have (Fourier transforming and solving the �rst-order
equation in t)

D̂1(�; t) = �
Z t

0
e�(t�s)j�j

2

Ĥ(�; s) ds;

D̂2(�; t) = �
Z t

0
e�(t�s)j�j

2

M̂(�; s) ds:

By (11), (13) ,

jD̂(�; t)j =
�
jD̂1(�; t)j2 + jD̂2(�; t)j2

�1=2 � Cnj�j
Z t

0
(ku(s)k22 + kB(s)k22) ds;

(18)
where from now on Cn denotes a constant depending only on the dimension
n, not always the same in all formulas.

We are ready to prove our result on upper bounds. It can be summarised
by saying that the solutions of the MHD equation decay at the same rate as
the corresponding solutions of the heat system; the di�erence D(t) decays at
a faster rate.

Theorem 3.1 Let (u0; B0) 2 H �H, and let f 2 L1(0;1; [L2(Rn)]n) \ C� ,
� = n=4 +�=2 + 1, and 0 < � � n=2 + 1. Assume that the solution (v;w) of
the (HS,f) system satis�es

kv(t)k22+ kw(t)k22 � K(t+ 1)�� (19)

for all t � 0, some constant K � 0.
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1. There exists a constant C, depending only on the L2-norm of the initial
datum (u0; B0), on the L1(0;1;L2(Rn)n) \ C�-norm of f , and on K
such that

ku(t)k22 + kB(t)k22 � C(t+ 1)��

for t � 0.

2. If 1 � � � n=2 + 1, then there is a constant C, depending only on the
L2-norm of the initial datum (u0; B0), on the L1(0;1;L2(Rn)n) \ C�-
norm of f , and on K such that

kD(t)k22 �
(
C(t+ 1)�n=2�1 if 1 < � � n=2 + 1 ;
C(t+ 1)�n=2�1(1 + log2(t+ 1)) if � = 1 :

for t � 0.

Remark. Note that if f 2 A�\B� with � > (1=2)(�+2) and � > ��n=2+2,
then (19) holds (see Lemma 2.4).
Proof. All constants C, C1, C2, appearing in this proof depend only on the di-
mension n, the L2-norm of the initial datum (u0; B0), the L1(0;1;L2(Rn)n)\
C�-norm of f , and on K. We write �(t) = ku(t)k22 + kB(t)k22, �(t) =R t
0 �(s) ds. The energy inequality implies

�(t) � �(0) +
Z 1

0
kf(t)k2 dt = C

for all t � 0; hence �(t) � Ct for all t � 0. By (18),

jD̂(�; t)j � Cn�(t)j�j;

henceZ
j�j�g(t)

jD̂(�; t)j2 d� � Cn�(t)
2
Z
j�j�g(t)

j�j2 d� � Cn�(t)
2g(t)n+2: (20)

Using this in (17), we get

d

dt

�
G(t)kD(t)k22

�
� Cn

h
g(t)n+4�(t)2 + 2�(t)(krv(t)k1 + krw(t)k1)

i
G(t):
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We estimate the last term on the right by Lemma 2.6 obtaining

d

dt

�
G(t)kD(t)k22

�
� C

h
g(t)n+4�(t)2 + (t+ 1)�

n
4
��

2
� 1

2�(t)
i
G(t): (21)

We now select g(t) = (=2(t+ 1))1=2,

G(t) = e2
R t
0
g(s)2 ds = (t+ 1) ;

where  >
n

2
+ 2. The last displayed inequality becomes

d

dt

�
(t+ 1)kD(t)k22

�
� C�(t)2(t+1)�

n
2
�2+ +C�(t)(t+1)�

n
4
��

2
� 1

2
+ : (22)

The choice of  insures that all powers of t+1 appearing in the last inequality
are positive. Integrating from 1 to t, we get (� is increasing and �(t) �R t
1 �(s) ds)

(t+ 1)kD(t)k22 � 2kD(1)k22 + C
Z t

1
(s+ 1)�

n
2
�2+ ds�(t)2

+C(1 + t)�
n
4
��

2
� 1

2
+
Z t

1
�(s) ds

� 2kD(1)k22 + C(t+ 1)�
n
2
�1+ �(t)2 + C(1 + t)�

n
4
��

2
� 1

2
+�(t):

By the energy inequality satis�ed by solutions of the MHD equations, and
by the corresponding one for solutions of the heat equation, we can estimate
the L2-norm of D(1) = (u(1) � v(1); B(1) � w(1)) in terms of the L2-norm
of (u0; B0) and the L1(0;1;L2(Rn)n) norm of f . We thus get, dividing by
(t+ 1),

kD(t)k22 � C(t+ 1)� + C(t+ 1)�
n
2
�1 �(t)2 + C(1 + t)�

n
4
��

2
� 1

2�(t) (23)

for t � 1, hence also for t � 0 since kD(t)k22 is bounded for all t (by the
energy inequality). Using (u;B) = (v;w) +D, we get

�(t) = ku(t)k22 + kB(t)k22 � 2kv(t)k22 + 2kw(t)k22 + 2kD(t)k22
� 2K(t+ 1)�� + 2kD(t)k22
� 2K(t+ 1)�� + C(t+ 1)� + C(t+ 1)�

n
2
�1 �(t)2 + C(1 + t)�

n
4
��

2
� 1

2�(t):
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Since  >
n

2
+ 2 > � we can replace (t + 1)� by (t+ 1)�� and get (notice

that
n

4
+
�

2
+
1

2
=

1

2
(
n

2
+ 1 + �))

�(t) � C1(t+ 1)�� + C2(t+ 1)�
n
2
�1�(t)2: (24)

We claim that limt!1 �(t) = 0. Since � is bounded, hence �(t) is bounded
by Ct, this is clear from (24) if n � 3. For n = 2, we proceed as in [19] for
the Navier-Stokes equations: We return to (21), taking now

g(t)2 =
3

2(t+ 1) log(t+ 1)
; G(t) = exp(2

Z t

e�1
g(s)2 ds) = log3(t+ 1):

Instead of (22) we get

d

dt

�
log3(t+ 1)kD(t)k22

�
� C(t+ 1)�3�(t)2 + C(t+ 1)�1�

�
2 �(t) log3(t+ 1)

� C

t+ 1
+

C

(t+ 1)1+
�
2

log3(t+ 1);

where we have used again that �(t) is bounded by Ct. Integrating from 0 to
t, we get

log3(t+ 1)kD(t)k22 � C log(t+ 1) + C
Z t

0

log3(s+ 1)

(s+ 1)1+
�
2

ds � C log(t+ 1) + C:

Dividing by log3(t+ 1), we see that limt!1 kD(t)k2 = 0. The claim follows
since

�(t) � 2K(t+ 1)�� + 2kD(t)k22:
Moreover, it is clear from all these bounds that the rate of decay of � at 1
(as de�ned in the Appendix, after Lemma 6.2), depends only on K, the L2-
norm of (u0; B0) and the L1(0;1;L2(Rn)n)-norm of f . This holds for n = 2
as well as for n > 2. We can now apply Lemma 6.2 of the Appendix (with
� = 1 + n=2, so � � 2 and minf�; �g = �) to conclude the proof of part 1
of the theorem. To prove part 2, we assume � � 1. We use (15) instead of
(16), which allows us to replace (17) by the improved version

d

dt

�
G(t)kD(t)k22

�
� 2g(t)2G(t)

Z
j�j�g(t)

jD̂(�; t)j2 d�
(25)

+ 2�(t)1=2kD(t)k2(krvk1 + krwk1)G(t)

25



Working as before, using (20) to estimate the �rst term on the right hand
side of (25) and invoking Lemma 2.6), with g(t) = (=2(t + 1))61=2, G(t) =
(t+ 1), we get instead of (22),

d

dt

�
(t+ 1)kD(t)k22

�
� C�(t)2(t+1)�

n
2
�2++C�(t)1=2kD(t)k2(t+1)�n

4
��

2
� 1

2
+:

We integrate from 0 to t, estimating (by part 1), �(t) by C(t+1)�� and also
(as before)Z t

0
�(s)2(s+ 1)�

n
2
�2+ ds � �(t)2

Z t

0
(s+ 1)�

n
2
�2+ ds

= ( � n

2
� 1)�1�(t)2

�
(t+ 1)�

n
2
�1+ � 1

�
� C�(t)2(t+ 1)�

n
2
�1+ :

We get, after dividing by (t+ 1)

kD(t)k22 � C�(t)2(t+ 1)�
n
2
�1 + C(t+ 1)�

Z t

0
(s + 1)�

n
4
��� 1

2
+kD(s)k2 ds:

Setting Y (t) = sup0�s�t(s+ 1)n=4+1=2 the last inequality implies

Y (t)2 � C�(t)2 + C(t+ 1)1��Y (t);

thus
Y (t) � C�(t) + C(t+ 1)1��:

Since

�(t) =
Z t

0
�(s) ds �

(
C if � > 1
C log(t+ 1) if � = 1

for all t � 0, part 2 follows at once. 2
The following corollary summarises the consequences of Theorem 3.1

which will be needed in the sequel. The hypothesis f 2 C(n+3)=2 insures
f 2 C� for � � n=4 + �=2 + 1, � = n=2 or � = n=2 + 1.

Corollary 3.2 Let (u0; B0) 2 H � H, and let f 2 L1(0;1;L2(Rn)n) \
C(n+3)=2. Assume that the solution (v;w) of the (HS,f) system satis�es

kv(t)k22+ kw(t)k22 � K(t+ 1)��

for all t � 0, some constant K � 0, where � = n=2 or � = n=2 + 1.
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1. There exists a constant C such that

ku(t)k22 + kB(t)k22 � C(t+ 1)��

for t � 0.

2. If n = 2 and � = n=2 = 1, there is a constant C, such that

kD(t)k22 � C(t+ 1)�2(1 + log2(t+ 1))C(t+ 1)�3=2

for t � 0.

3. If n > 2 or if n = 2 but � = n=2 + 1 = 2, there is a constant C, such
that

kD(t)k22 � C(t+ 1)�
n
2
�1

for t � 0.

We would like to mention that the result kD(t)k22 � C(t + 1)�n=2�1, in
the case in which D(t) is the di�erence between a solution of the Navier-
Stokes equation and the solution of the heat equation with the same initial
datum was �rst established by Wiegner [24] for n � 2, using a di�erent
approach. It is also worth mentioning that Zhang Linghai has recently made
some improvements to the the Fourier splitting method for n = 2 (cf. [25]),
which we have used in our proof above.

4 The lower bounds

In this section we derive lower bounds for the decay rate of the L2-norms of
solutions to the MHD equations. Our lower bounds take the form

�(t) = ku(t)k22 + kB(t)k22 � C(t+ 1)��

for t � 0, where C > 0 and � = n=2 or � = n=2 + 1 (see below). We assume
from now on that our forcing function is in the set

F = L1(0;1;L2(Rn)n \W1) \An=4+4 \B4 \ C(n+3)=2:

The choice of this set is motivated by the immediately veri�able fact that
if f 2 F , then f satis�es the hypotheses of Lemma 2.5, Lemma 2.6 and

27



Theorem 3.1 with � � n=2 + 1, and Corollary 3.2. We need something like
f 2 L1(0;1;L2 \W1) to be able to apply Lemma 6.1 of the Appendix.

We may assume that our solutions are smooth. In fact, a general solution
can be approximated by smooth solutions, and it is an easy matter to verify
that such an approximation can be done without a�ecting the constants
appearing in our estimates. It follows that general solutions satisfy the lower
bounds for a.e. t. However, we notice that by the results of the last section,
since �(t) decays in time, we can �nd t0 > 0 such that �(t) is arbitrarily
small for t � t0. By the energy inequality (2),  (t) = kru(t)k22+ krB(t)k22
is integrable over 0 � t < 1, hence lim inft!1  (t) = 0. It follows we
can �nd t0 � 0 for which �(t0) (t0) is arbitrarily small. It is a well known
classical result that, for 2 � n � 3, the solution (u;B) is smooth for t � t0 if
�(t0) (t0) is su�ciently small (see [12], [6] for the case of the Navier-Stokes
equations, the MHD case is similar). For n = 4 it is also known that, for
t su�ciently large, the solution is strong. The lower bounds are then valid
everywhere for t � t0. Since we are assuming that our solutions satisfy
the strong energy inequality (hence cannot vanish for some t without also
vanishing for all t0 � t),the lower bound also has to hold everywhere for
t � t0, possibly with a smaller positive constant.

The case � = n=2 is easily dealt with. Assuming that û0(0) 6= 0 or
B̂0(0) 6= 0, we proved in the last section that

kD(t)k22 � C(t+ 1)�n=2�1 if n � 3

kD(t)k22 � C(t+ 1)�n=2�1(1 + log2(t+ 1)) if n = 2;

while, by Lemma 2.5, kv(t)k22 � C(t+ 1)�n=2. It follows that

ku(t)k22 + kB(t)k22 � C(t+ 1)�n=2;

and, in fact,
ku(t)k22 � C(t+ 1)�n=2

if û0(0) 6= 0,
kB(t)k22 � C(t+ 1)�n=2

if B̂0(0) 6= 0. Thus we will assume for the rest of the section that û0(0) =
B̂0(0) = 0.

The proof of the lower bounds is based on Fourier analysis of the equations
satis�ed by the di�erence between the solution of the MHD equations and
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the solution of the heat system with the same initial data. We begin with
two auxiliary Lemmas. The �rst one calculates the value of the constant �1
of Lemma 2.3 for the solution of a heat equation whose initial value is u(T).

Lemma 4.1 Let P (�) = I � �(�), where I is the n� n identity matrix and

�(�) =
1

j�j2 (�k�j)1�k;j�n (26)

for � = (�1; : : : ; �n) 2 Rnnf0g and assume S = (skj) is a symmetric matrix.
Then

�1 =
Z
Sn�1

P (!)S! � S! d! =
�n=2

n(n+ 2)�(n2 )

0@X
k 6=j

(skk � sjj)
2 + 2n

X
k 6=j

s2kj

1A :
Proof. We shall be using the following easily established formulas:

Z
Sn�1

!2k d! =
2�n=2

n�(n
2
)

for k = 1; : : : ; n;

Z
Sn�1

!2k!
2
j d! =

8>>><>>>:
2�n=2

n(n+2)�(n
2
)

if k 6= j

6�n=2

n(n+2)�(n
2
) if k = j

for 1 � k; j � n. Since S is symmetric, we get for ! 2 Sn�1,

(I � �(!))S! � S! =
X
k;j;p

skpsjp!k!j �
X
k;j;p;q

skpsjq!p!q!k!j : (27)

We integrate over Sn�1 noticing that only terms in which all powers of the
!k's are even have non-vanishing integrals. In the �rst sum appearing in
(27), these are the terms with k = j. In the second sum, we have to consider
the terms for which all indices are equal and the terms in which the indices
appear in pairs. We get Z

Sn�1

(I � �(!))S! � S! d!
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=
X
k;j

s2k;j

Z
Sn�1

!2k d! �
X
k

s2k;k

Z
Sn�1

!4k d! �
X

1�k<j�n

(2skksjj + 4s2kj)
Z
Sn�1

!2k!
2
j d!

=
X
k;j

s2k;j
2�n=2

n�(n
2
)
�X

k

s2k;k
6�n=2

n(n+ 2)�(n
2
)
�X

k 6=j

skksjj
2�n=2

n(n + 2)�(n
2
)
� 2

X
k 6=j

s2kj
2�n=2

n(n+ 2)�(n
2
)
:

Decomposing now X
k:j

s2kj =
X
k

s2kk +
X
k 6=j

s2kj ;

grouping terms together and using

(n� 1)
X
k

s2kk �
X
k 6=j

skksjj =
1

2

X
k 6=j

(skk � sjj)
2;

the expression for �1 follows. 2
The Lemma we have just proved will be used to calculate the constant

�1 of Lemma 2.3 for solutions v of the heat equation with forcing function f
and initial datum u(T ), for some T > 0. In this case, we will have S = A(T ),
where, for t � 0, we de�ne the n� n matrix

A(t) = [Akj(t)] =
Z t

0
A(0; s) ds:

We will also need the n� n matrix

C(t) = [Ckj(t)] =
Z t

0
C(0; s) ds:

In these formulas, A;C are the matrices de�ned in Section 3. By (10), (12)
and Theorem 3.1, we see that A(�; �); C(�; �) 2 L1(0;1) for every � 2 Rn if
either n > 2 or if n = 2 and u0; B0 have 0 averages. In estimating the solution
of the heat system with initial value (u(t); B(t)), for some t = T > 0, the
following quantities play a role. We de�ne for t � 0,

�1(t) =
�n=2

n(n+ 2)�(n2 )

0@X
k 6=j

(Akk(t)�Ajj(t))
2 + 2n

X
k 6=j

Akj(t)
2

1A
and

�2(t) = � 2�n=2

n�(n2 )

X
k 6=j

 
@B̂0k

@�j
(0)� iCkj(t)

!2
=

2�n=2

n�(n2 )

X
k 6=j

�����@B̂0k

@�j
(0)� iCkj(t)

�����
2

:
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The �rst quantity, �1, comes directly from applying Lemma 4.1. Both quan-
tities, �1 and �2, are related to the �rst order terms of the Taylor expansion
of the Fourier transforms of u;B as is made explicit in the proof of Theorem
4.5. Notice that if u;B are real valued (as we assume), then the matrices
A(t), C(t) are real. In fact, all entries are Fourier transforms evaluated at
� = 0 of real valued functions. Notice moreover that (@=@�j)B̂0k(0)� iCkj(t)
is purely imaginary. We also de�ne

�(t) = �1(t) + �2(t)

and
~�i = �i(1) = lim

t!1
�i(t) for i = 1; 2;

~� = ~�1 + ~�2:

By the remarks following the introduction of A; C, the functions Akj(t),
Ckj(t), are integrable over [0;1), hence ~� is �nite (recall that we are as-

suming that û0(0) = B̂0(0) = 0, which is needed for integrability in case
n = 2).

De�nition. Assume (u0; B0) 2 [H \W1(Rn)n]2, f 2 F and let (u;B) be
the corresponding solution of the MHD equations. We say (u;B) 2 M1 i�

1. D�û0(0) = 0, and

2. ~�1 = 0.

We say (u;B) 2 M2 i�

1.
@B̂0k

@�k
(0) = 0 for k = 1; : : : ; n, and

2. ~�2 = 0.

We set M = M1 \ M2. Note that by the de�nition of ~�1 and ~�2, a pair
(u;B) has ~�1 = ~�2 = 0 if and only if the matrices ~A; ~C of the Introduction
satisfy ~A is scalar and ~C coincides with hx;B0i. It follows that the set M is
a subset of the set M0 of the Introduction.

We note thatM0 is very small. More precisely, if (u;B) 2 [L1 (0;1;L2(Rn)n)]
2
,

then generically (u;B) 2 Mc
0. To see this, we set

�1ij = f(u;B) 2
h
L1
�
0;1;L2(Rn)n

�i2
: Aii �Ajj = 0g;
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�2i;j = f(u;B) 2
h
L1
�
0;1;L2(Rn)n

�i2
: Aij = 0g;

for 1 � i 6= j � n and set

�1 = \i;j�1i;j ; �2 = \i;j�2i;j:

We then have

Lemma 4.2 The manifolds �1 and �2 are transversal.

Proof. To show that �1 and � are transversal it su�ces to show that any two
submanifolds �1i;j , �

2
i;j are transversal. This will be established by showing

that �2i;j can be obtained from �2i;j by a double rotation by an angle of 450

(and vice-versa). Let

Q1 =
1p
2

 
1 �1
1 1

!
; Q =

 
Q1 0
0 Q1

!
:

Set (vi; vj; wi; wj)t = Q(ui; uj; Bi; Bj)t. A simple computation yields

vi vj � wi wj =
1

2
[(u2i �B2

i )� (u2j �B2
j )]:

The pair(u;w) with vk = uk; wk = Bk for k 6= i; j, vi, vj, wi, wj de�ned as
above, is thus in �2ij. Since the eigenvalues of the orthogonal matrix Q1 are

equal to 1=
p
2(1 � i), we see that Q1 is a rotation by an angle of 450 and Q

is the double rotation we were referring to above. 2

Corollary 4.3 Let (u;B) 2 [L1 (0;1;L2(Rn)n)]
2
. Then generically (u;B) 2

Mc.

Proof. Immediate; it is just a restatement of Lemma 4.2 2
We will also need the following auxiliary lemma.

Lemma 4.4 Let V be an n � n matrix of complex entries, let B be a sym-
metric n� n matrix of real entries. If for every ! 2 Sn�1 we have

V ! � i (I � �(!))B! = 0;

then V = 0 and B is a scalar matrix.
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Proof. Let ! be an eigenvector of B. Noticing that �(!)! = !, we get
V ! = 0. Since B is real symmetric, it has a complete set of eigenvectors and
it follows that V = 0. It is not too hard to see that for every ! 2 Sn�1, 1
is an eigenvalue of multiplicity one of �(!) with eigenvector !. Since now
B! = �(!)B! we conclude that B! = �! for some � 2 R. This proves that
every vector is an eigenvector of B, which is only possible if B is a scalar
matrix. 2

We now prove our main theorem.

Theorem 4.5 Assume 2 � n � 4 and let f 2 F , � > n=2+1. Let (u0; B0) 2
[H \H1(Rn)\ L1(Rn)n \W1 \W2]2 (which, by Borchers' Lemma B impliesZ

Rn
u0(x) dx =

Z
Rn
B0(x) dx = 0):

Let (u;B) be the corresponding solution of the MHD equations. Then

1. If (u;B) =2 M, then there exist positive constants M0;M1 such that

M0(t+ 1)�n=2�1 � ku(t)k22 + kB(t)k22 �M1(t+ 1)�n=2�1:

2. If (u;B) 2 M, then for every � > 0 there exists T� such that

ku(t)k22 + kB(t)k22 � �(t+ 1)�n=2�1

for t � T�.

Proof. We will denote by Ot(�) a quantity depending on �; t, bounded in
j�j � � for each t � 0, where � > 0 depends only on f . (If f � 0, then one
can assume Ot(�) is bounded for all � 2 Rn.) Since A;C are continuously
di�erentiable in � with bounded partials (cf. Appendix, Lemma 6.1; here is
the only place where we need to assume n � 4), A(�; t) = A(0; t) +Ot(�)j�j,
C(�; t) = C(0; t) +Ot(�)j�j. It follows that

Ĥ(�; t) = i (I � �(�))A(0; t)� +Ot(�)j�j2; (28)

M̂(�; t) = iC(0; t)� +Ot(�)j�j2: (29)

We use this expansion in (8), as well as the fact that since f 2 F we have
f̂(�; t) = Ot(�)j�j4. In addition, we expand û0 and B̂0 in Taylor series around
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the origin up to terms of order 2 (the hypothesis (u0; B0) 2 W1 implies that
û0; B̂0 are twice continuously di�erentiable with bounded partials) and use
that e�tj�j

2

= 1 +Ot(�)j�j2. We get

û(�; t) = û0(0) +D�û0(0)� � i(I � �(�))A(t)� +Ot(�)j�j2; (30)

B̂(�; t) = B̂0(0) +D�B̂0(0)� � iC(t)� +Ot(�)j�j2; (31)

where, for an Rn-valued function g of the variable � 2 Rn, D�g denotes the
Jacobian matrix with (k; j)-th entry @gk=@�j . For part 1, set

P1(�; t) = D�û0(0) � i(I � �(�))A(t);
P2(�; t) = P2(t) = D�B̂0(0)� iC(t);

so that (since û0(0) = B̂0(0) = 0)

û(�; t) = P1(�; t)� +Ot(�)j�j2;
(32)

B̂(�; t) = P2(�; t)� +Ot(�)j�j2:
Observe that if D�û0(0) = 0, then P1(�; t) = i(I � �(�))A(t) so that by
Lemma 4.1 Z

Sn�1

jP1(!; t)!j2 d! = �1(t);

while a simple computation shows that

�2(t) =
Z
Sn�1

jP2(t)!j2 d!

for all t � 0. Assume �rst ~�1 > 0 or D�û0(0) 6= 0. We claim that there exist
T0 > 0, � > 0 such that Z

Sn�1

jP1(!; t)!j2 d! � � (33)

for all t � T0. In fact, otherwise

lim inf
t!1

Z
Sn�1

jP1(!; t)!j2 d! = 0:

Since A(0; �) 2 L1(0;1), we can de�ne

~A =
Z 1

0
A(0; s) ds = lim

t!1
A(t)

34



and get Z
Sn�1

j ~P1(!)!j2 d! = 0 (34)

where
~P1(�) = D�û0(0)� i(I � �(�)) ~A:

Since ~P1 is homogeneous, (34) is possible only if ~P1(�)� = 0 for all � 2 Rnn0.
By Lemma 4.4 we conclude that D�û0(0) = 0 and ~A is a scalar matrix (i.e.,
~�1 = 0), contradicting our assumption. The claim is established. Assume
now ~�2 > 0; then (since P2 does not depend on �) it is clear that there exist
T0 � 0, � > 0 such that Z

Sn�1

jP2(t)!j2 d! � � (35)

for t � T0. It follows that with the hypothesis of part 1, one of (33), (35)
holds. Let T � T0 (to be determined later) and let (v(t); w(t)) be the solution
of the (HS,f) system with f replaced by fT = f(� + T ) and initial datum
(v(0); w(0)) = (u(T ); B(T )). In view of the representation (32) (with t = T )
of the initial datum of (v;w) we get from Lemma 2.3 that there exists a
constant cn > 0, depending only on n; �, such that

kv(t)k22+ kw(t)k22 � cn�t
�n=2�1 +O(t�n=2�3=2):

We set D(t) = (D1(t);D2(t)) = (u(t+ T ); B(t+ T ))� (v(t); w(t)) so that D
satis�es

D1t(t) = �D1(t)�H(t+ T );D2t(t) = �D1(t)�M(t+ T );

and D(0) = 0. We will apply the Fourier splitting method, taking this time
g(t) = (=(2t))1=2, G(t) = t, t � maxf1; =(2�2)g. Inequality (17) is still
valid, with u(t), B(t) replaced by u(t+T ), B(t+T ). The squares of the L2-
norms of u(t+ T ), B(t+ T ), v(t), w(t) decay at the same rate as t�n=2�1 for
t!1;using Lemma 2.6 to estimate the L1-norm of rv and rw, inequality
(17) implies

d

dt

�
tkD(t)k22

�
� t�1

Z
2tj�j2�

jD̂(�; t)j2 d� + CT t
�n�2 (36)
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where CT is a constant depending on T . Inequality (18) also holds in this
case, once more with u;B translated by T; i.e.,

jD̂(�; t)j � Cj�j
Z t

0
(ku(s+T )k22+kB(s+T )k22) ds � Cj�j

Z 1

T
(ku(s)k22+kB(s)k22) ds:

Since ku(t)k22,kB(t)k22 behave like t�n=2�1 for t!1, we get

jD̂(�; t)j � Cj�jT�n=2:

Thus Z
2tj�j2�

jD̂(�; t)j2 d� � CT�n
Z
2tj�j2�

j�j2 = CT�nt�n=2�1:

Using this in (36) gives

d

dt

�
tkD(t)k22

�
� CT�nt�n=2�2 + CT t

�n�2:

Taking  > n + 2 large enough so that all powers of t in the last inequality
are positive, integrating from 1 to t, and dividing by t gives

kD(t)k22 � CT�nt�n=2�1 + CT t
�n�1

where C;CT depend now also on  and we collected all terms with powers
of t� into the last term. Taking now T large enough so that the coe�cient
CT�n of t�n=2�1 in the last inequality is less than 1

4cn�, we get

ku(t+ T )k22 + kB(t+ T )k22 � (kv(t)k2 + kw(t)k2 � kD(t)k2)2

� 1

2
(kv(t)k22+ kw(t)k22)� kD(t)k22 �

1

4
cn�t

�n=2�1 +O(t�n=2�3=2)

proving part 1. For the proof of part 2, it su�ces to observe that if we set

�1(t) =
Z
Sn�1

jP1(!; t)!j2 d! +
Z
Sn�1

jP2(t)!j2 d!;

then, under the hypotheses of part 2, limt!1 �1(t) = 0. In fact, since P2(t) =
D�B̂0(0) � iC(t), it is clear that

lim
t!1

Z
Sn�1

jP2(t)!j2 d! = 0:
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Concerning the other surface integral, notice that, since we are now assuming
D�û0(0) = 0, we have (as remarked in the proof of part 1)Z

Sn�1

jP1(!; t)!j2 d! = �1(t):

The assertion about �1 follows, since we are assuming ~�1 = limt!1 �1(t) = 0.
By Lemma 2.3, taking T large enough so

dn�1(T ) � �

4
;

where dn = (12)
n=2+2�(n=2 + 1), so that by Lemma 2.3 (see inequality (6)),

letting again (v(t); w(t)) be the solution of the (HS,f) system with initial
datum (u(T ); B(T )), we get

kv(t)k22 + kw(t)k22 �
�

4
t�n=2�1 +O(t�n=2�3=2)

for t!1. We de�ne and estimateD(t) as in part 1. Taking T large enough,
we get

kD(t)k22 �
�

4
t�n=2�1 +O(t�n�1):

The result follows applying the elementary inequality (a + b)2 � 2a2 + 2b2.
2

Remark. It should be emphasized that while it may be di�cult to always
decide when a given solution (u;B) is not in M, there is a trivial way of
getting solutions not in M and which, therefore, satisfy the conclusions of
part 1 of Theorem 4.5. In fact, it su�ces to select the initial datum (u0; B0)
so that Z

Rn
u0(x) dx =

Z
Rn
B0(x) dx = 0;

but there exist j; k such thatZ
Rn
xju0k(x) dx 6= 0:

In fact, in this case D�û0(0) 6= 0.
Noticing that in the proof of Theorem 4.5 the roles of u and B can be

kept fairly independent, we actually proved

37



Corollary 4.6 Let f 2 F . Let (u0; B0) 2 [H \W1]2 and assume thatZ
Rn
u0(x) dx =

Z
Rn
B0(x) dx = 0:

Let (u;B) be the corresponding solution of the MHD equations. Then

1. If u =2 M1, then there exist positive constants M0;M1 such that

M0(t+ 1)�n=2�1 � ku(t)k22 �M1(t+ 1)�n=2�1:

2. If B =2 M2, then there exist positive constants M2;M3 such that

M2(t+ 1)�n=2�1 � kB(t)k22 �M3(t+ 1)�n=2�1:

Notice that if <(rû0(0)) 6= 0, then u 2 Mc
1.

5 The counterexample.

Assuming an even number of space dimensions, we present an example of a
solution (u(t); B(t)) to the MHD equations, subject to initial data in the class
M of functions with radially equidistributed energy, which is exponentially
decaying in both the velocity and the magnetic �eld component. This is
achieved by �rst constructing functions u which are simultaneously solutions
to the MHD equations and the heat system, and are such that (u � r)u is a
gradient, i.e.:

(u � r)u = �rp;
ut ��u = �(u � r)u�rp:

By letting (u(t); B(t)) = (u(t); u(t)), we obtain a solution to the MHD equa-
tions, since then (u � r)B � (B � r)u = 0 and Bt = �B. The problem is,
therefore, reduced to constructing a radial solution u(t) of the heat equation
which decays exponentially.

Theorem 5.1 Suppose that n is even and let
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1. w : [0;1)�R! R be such that the function v(x; t) = w(jxj; t) is
a solution of the heat equation vt = �v; so

wt = wrr +
n� 1

r
wr;

2. g(r; t) = r�n
R r
0 s

n�1w(s; t)ds;

3. A = (aij) is an n� n matrix with real entries such that

A2 = �I for some � 2 R;

xtAx = 0 for all x 2 Rn:

Then the function u(x; t) = g(jxj; t)Ax satis�es:

a) ut = �u;

b) there exists a function p such that (u; p) is a solution of the Navier-Stokes
equations

ut ��u+ (u � r)u+rp = 0;

r � u = 0:

Remark. Let us note that, since we are assuming n is even, such a matrix A
can be constructed by choosing, for example,

A =

26664
T O : : :O
O T : : :O
: : : : : : : : :
O O : : : T

37775 ;

where T is the rotation matrix

T =

"
0 1
�1 0

#
:

For n odd, no such matrix can exist.
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Proof. Denoting by Aj the jth column of the matrix A, it is easily seen
that

@u

@xj
= (gr

xj
r
)(Ax) + gAj; (37)

@2u

@x2j
= (grr

x2j
r2
)(Ax) + gr

r2 � x2j
r3

Ax+ 2gr
xj
r
Aj: (38)

We note that the ith component of
Pn

j=1 xjAj is0@ nX
j=1

xjAj

1A
i

=
nX

j=1

xjaij = (Ax)i;

so that
nX
j=1

xjAj = Ax:

Using this in (38), we obtain

�u = (grr +
n+ 1

r
gr)(Ax): (39)

Since ut = gt(Ax), in order to prove a) it su�ces to see that

gt = grr +
n+ 1

r
gr: (40)

To establish (40), let us �rst notice that

wt = wrr +
n� 1

r
wr = r1�n(rn�1wr)r;

so that

grr +
n+ 1

r
gr = r�n�1(rn+1gr)r

and

gt = r�n
Z r

0
sn�1wtds = r�n

Z r

0
(sn�1ws)s =

1

r
wr:
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Thence

grr +
n+ 1

r
gr = r�n�1

�
rn+1(

1

r
w � nr�n�1

Z r

0
sn�1wds)

�
r

= r�n�1
�
rnw � n

Z r

0
sn�1wds

�
r

= r�n�1
h
rnwr + nrn�1w � nrn�1w

i
=

1

r
wr;

and hence (40). From (37) we have that

(u � r)ui =
nX

j=1

uj
@ui
@xj

=
nX

j=1

g(Ax)j

�
gr
xj
r
(Ax)i + gaij

�

=
1

r
ggr(x

tAx)(Ax)i + g2(A2x)i:

Consequently,

(u � r)u = 1

r
ggr(x

tAx)Ax+ g2(A2x):

By our hypotheses on the matrix A, we obtain

(u � r)u = �g2x;

hence

@

@xj
((u � r)u)i = �

@

@xj
(g2xi) = 2�ggr

xixj
r

+ �g2�ij =
@

@xi
((u � r)u)j;

so that (u � r)u is curl-free. This implies the existence of a function p such
that

rp = �(u � r)u:
Thence

ut ��u+ (u � r)u+rp = 0:

Finally,
r � u = rg(jxj; t) �Ax+ g(jxj; t)Tr(A) = 0;
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since Tr(A) = 0 (by xtAx = 0 for all x 2 Rn) and rg(jxj; t) is parallel to x.
2

We give two examples, based on this theorem, which illustrate that solu-
tions to the MHD equations in the class M can decay exponentially.

Example 1. Choose (u(x; t); B(x; t); p(x; t)) = (u(x; t); 0; p(x; t)), where u
and p are the functions constructed in Theorem 5.1. Then

ut ��u+ (u � r)u� (B � r)B +rp = ut ��u = 0;

Bt ��B + (u � r)B � (B � r)u = 0;

r � u = 0;

r �B = 0:

The essence of the example is that the function u is the solution to the heat
system, and so, by choosing appropriate initial data, u can be guaranteed to
decay exponentially. Let us suppose, using the notation introduced in the
statement of Theorem 5.1, that v is a solution to the heat equation vt = �v
subject to the initial condition v(x; 0) = v0(x), where the function v0 is
such that v̂0(�) = 0 for all � with j�j � �. Then it is easy to show that v
decays exponentially, so that, by construction, u(x; t) = g(jxj; t)Ax decays
exponentially.

Note that the matrix [mij] with entries

mij(t) =
Z
Rn
(uiuj �BiBj)dx =

Z
Rn
uiujdx

is scalar for all t � 0, and

eij(t) =
Z
Rn
(uiBj �Biuj)dx = 0 t � 0;

so that not only is the solution inM but satis�es a much stronger condition.
If we de�ne

N = f(u;B) 2 [L2(Rn)]2 :

[
Z
Rn
(uiuj �BiBj) dx] is a scalar matrix

and [
Z
Rn
(uiBj � ujBi) dx] is the 0 matrixg;
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we see that in this case (u(t); B(t)) 2 N for all t � 0. We conjecture, in
fact, that this example (as well as the next one) is in some way typical :
(u;B) 2 M i� (u(0); B(0)) 2 N i� (u(t); B(t)) 2 N for all t � 0.

Example 2. In this examplewe choose (u(x; t); B(x; t); p(x; t)) = (u(x; t); u(x; t); 0),
where u is a solution of the heat equation. Then

ut ��u+ (u � r)u� (B � r)B +rp = ut ��u = 0;

Bt ��B + (u � r)B � (B � r)u = Bt ��B = 0;

r � u = 0;

r �B = 0:

Let us choose v0 to be the same as in the �rst example. Then u(t) and
B(t) = u(t) decay exponentially in time. Now

mij(t) =
Z
Rn
(uiuj �BiBj)dx = 0; t � 0;

and
eij(t) =

Z
Rn
(uiBj �Biuj)dx = 0; t � 0;

so that the initial data is again in the class N .

6 Appendix

This section is devoted to the proof of some auxiliary results.

Lemma 6.1 Let 2 � n � 4 and let (u0; B0) belong to [H1(Rn) \H \W2]2,
f 2 L1(0;1;\W1)\C� for some � � 0. Suppose that (u(t); B(t)) are regular
global solutions of the MHD equations with initial data (u0; B0). Then, for
all t � 0,

jr�aij(�; t)j � C(t);

jr�bij(�; t)j � C(t);

jr�cij(�; t)j � C(t);

where aij = duiuj, bij = dBiBj , and cij = duiBj . Here C(t) depends only on t,
ku0k2, kB0k2 and norms of f .
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Proof. Clearly,

jr�aij(�; t)j � C
Z
Rn
jxjjuiujjdx � C

Z
Rn
jxjjuj2 dx:

Similarly,

jr�bij(�; t)j � C
Z
Rn
jxjjBj2 dx

jr�cij(�; t)j � C
Z
Rn
jxjjujjBj dx � C

Z
Rn
(jxjjuj2 dx + jxjjBj2) dx:

It thus su�ces to proveZ
Rn
jxj
�
juj2 dx+ jxjjBj2

�
dx � C(t): (41)

Dot-multiplying both sides of the �rst MHD equation with jxju, of the second
MHD equation with jxjB, adding and integrating overRn, we get after some
integration by parts

d

dt

Z
Rn
jxj(juj2 + jBj2) dx = �

Z
Rn
jxj
�
jruj2+ jrBj2

�
dx+

n � 1

2

Z
Rn

juj2 + jBj2
jxj dx

�1

2

Z
Rn

(x � u)juj2
jxj dx �

Z
Rn

(x �B)(u �B)
jxj dx� 1

2

Z
Rn

(x � u)jBj2
jxj dx

�
Z
Rn

1

jxj(x � u)p dx +
Z
Rn
jxju � f dx:

In deriving this formula we used repeatedly that for divergence free vector
�elds w1; w2; w3 in H1(Rn)n we have

Z
Rn
jxjw1�(w2�rw3) dx+

Z
Rn
jxjw3�(w2�rw1) dx = �

Z
Rn

(w1 � w3)(x �w2)

jxj dx:

An obvious estimate now gives

d

dt

Z
Rn
jxj(juj2 + jBj2) dx � n� 1

2

Z
Rn

1

jxj(juj
2 + jBj2) dx + 1

2

Z
Rn
juj3 dx

+2
Z
Rn
jujjBj2 dx+

Z
Rn
juj jpj dx+

Z
Rn
jxjjujjf j dx:

= I + II + III + IV + V (42)
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Integrals II; III and IV can be estimated by the L2 norm of u times the
square of the L4 norm of (u;B); i.e.,

II + III + IV � Ckuk2(kuk24 + kBk24): (43)

This is obvious (using H�older's inequality) for II and III. For IV recall the
expression (9) for p in terms of u;B. >From it we get at once

kpk2 = kp̂k2 �
X
k;j

kukuj �BkBjk2 � Ckuk2(kuk24 + kBk24):

If q > 2n=(n � 1) we haveZ
Rn

1

jxj(juj
2 + jBj2) dx =

Z
jxj�1

1

jxj(juj
2 + jBj2) dx +

Z
jxj>1

1

jxj(juj
2 + jBj2) dx

� C(kuk2q + kBk2q) + (kuk22 + kBk22);

where

C =

 Z
jxj�1

jxj�q=(q�2) dx
!(q�2)=q

<1

by the choice of q. We thus have

I � C
�
kuk22 + kBk22 + kuk2q + kBk2q

�
: (44)

To estimate V we recall that f 2 C� allows us to estimate jf(t)j by C(t +
1)�� � C for all t � 0 so that

V =
Z
Rn
jxjjf j1=2jf j1=2jujjf j dx � C

Z
Rn
jxjjf j1=2juj dx � C

�
kfkW1

+ kuk22
�
:

(45)
By the Sobolev embedding theorem, H1 is continuously embedded in L4 if
2 � n � 4. Selecting q = 2n=(n � 2) if n � 3, q 2 (4;1) if n = 2, we have
q > 2n=(n� 1) and, by the Sobolev embedding theorem, H1 is continuously
embedded in Lq. We can thus estimate the L4 norm in (43) and both the L2

and Lq norms in (44) by the H1 norm. We also estimate the L2 norm of u
in (45) by the H1 norm of (u;B). We thus get from (42), (43), (44), (45)

d

dt

Z
Rn
jxj(juj2 + jBj2) dx � C

�
juj2H1

+ jBj2H1

�
(1 + kuk2) + CkfkW1

(46)
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We integrate both sides of (46) with respect to t from 0 to t. By the energy
inequalityZ t

0
(ku(s)k2H1 + kB(s)k2H1) ds =

Z t

0
(ku(s)k22 + kB(s)k22) ds +

Z t

0
(kru(s)k22 + krB(s)k22) ds

� t(ku0k22 + kB0k22) + (ku0k22 + kB0k22);
while Z t

0
kf(s)kW1

ds � C:

We obtained Z
Rn
jxj(juj2 + jBj2) dx � C(t+ 1)

for all t � 0. Since this is an inequality of type (41), we are done. 2
The following Gronwall style lemma was used in the proof of Theorem

3.1.

Lemma 6.2 Let � : R+ ! R+ be measurable and bounded. Let � � 2,
� > 0, and assume that there exist constants C1, C2 such that

�(t) � C1

(t+ 1)�
+

C2

(t+ 1)�

�Z t

0
�(s) ds

�2
(47)

for all t � 0. If limt!1 �(t) = 0, then there exists a constant C, depending
only on �, �, C1, C2, the sup norm of �, and the rate of decay of � at1 (as
explained in the remarks following the proof) such that

�(t) � C(t+ 1)�minf�;�g

for almost all t � 0.

Proof. Assume �rst there exists � > 0, C3 � 0, depending only on �, �
and the rate of decay of � at 1 such that �(t) � C3(t+ 1)��. If � > 1 thenZ t

0
�(s) ds � C3

Z 1

0
(s+ 1)�� ds =

C3

� � 1

and the conclusion follows. If 0 < � � 1 (decreasing � if necessary) we can
assume 0 < � < 1 and bound one factor of

R t
0 �(S) ds in (47) by C 0

3(t+ 1)1��

to get

�(t) � C1

(t+ 1)�
+

C2C
0
3

(t+ 1)� � 1 + �

Z t

0
�(s) ds;
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C 0
3 = C3=(1 � �). With  (t) = (t+ 1)��1+��(t) we get

 (t) � C1(t+ 1)��1+��� + C2C
0
3

Z t

0
(s+ 1)��+1�� (s) ds:

Since Z 1

0
(s+ 1)��+1�� ds =

1

� � 2 + �
<1

because � � 2, � > 0, Gronwall's lemma implies

 (t) � C4 sup
0�s�t

(s+ 1)��1+��� (48)

with C4 = C1 expfC2C
0
3=(�� 2+ �)g.If �� 1+ ��� � 0, then (48) becomes

 (t) � (t + 1)��1+���; i.e., �(t) � (t + 1)��, proving the lemma. On the
other hand, if � � 1 + � � � < 0, then (48) becomes  (t) � C4, hence
�(t) � C4(t + 1)�(��1+�). Since � � 1 + � > 1 we are now in the �rst case
in which � > 1. The lemma is proved, modulo the existence of �; C3. To see
they exist, we use an argument suggested by the referee, which shows that
this starting � can be chosen arbitrarily in the interval (0; 1) \ (0; �]. Given
such a �, we let � be such that 0 < � � (1 � �)=(4C2). Set K = supt�0 �(t)
and let T1 be such that �(t) � � for t � T1. Then, if t � T1,

�(t) � C1

(t+ 1)�
+

C2

(t+ 1)�

 Z T1

0
�(s) ds+

Z t

T1
�(s) ds

! Z t

0
�(s) ds

� C1

(t+ 1)�
+

2C2

(t+ 1)�
(KT1 + �(t� T1))

Z t

0
�(s) ds

� C1

(t+ 1)�
+

2C2

(t+ 1)

 
KT1

(t+ 1)��1
+ �

!Z t

0
�(s) ds

(where we bounded (t�T1)=(t+1)��1 � 1). Selecting now T0 such that t � T0
implies C2KT1(t + 1)1�� < (1 � �)=4, recalling � � � and C2� � (1 � �)=4,
we get

�(t) � C1(t+ 1)�� +
1� �

2(t+ 1)

Z t

0
�(s) ds:

Setting now  (t) = sup0�s�t(s+ 1)��(s), we get

 (t) � C1 +
1 � �

2(1 + t)1��

Z t

0
(s+ 1)�� ds (t) � C1 +

1

2
 (t);
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thus  (t) � 2C1; i.e., �(t) � 2C1(1 + t)�� for t � T0. This completes the
proof of the lemma 2
Remark: If we de�ne for � > 0

T�(�) = supft : �(t) � �g;

then we can call T� the \rate of decay of � at 1." Notice that in the proof
T1 = T�(�) with � depending only on C2; � hence (since � depends only on �)
only on C2; �). Since T0 depends only on �, T1 and K (the sup of �), we see
that the constant C3 depends only on �, �, C1, C2, the sup norm of �, and
the rate of decay of � at 1, and so do all the other constants appearing in
the proof of the lemma.
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