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We show that an energy decay || u(£) [, = O(¢ ~*} for solutions of the Navier—Stokes equations
on R, # < 5, implies a decay of the higher order norms, e.g. | D®u(£)||; = O{t~*~*12) and
fla(t) |l = O(e™* 4,

1. Introduction

During the last decade there has been some interest and significant progress in the
study of the behaviour of solutions of the Navier-Stokes equations in unbounded
domains. In this paper, we shall devote our attention to the decay for large times in
higher-order norms in dimensions n < 5. Let us mention right at the beginning, that
our paper contributes only to the Cauchy problem on the whole space, but it
attempis to lead the direction of research also for the case of exterior demains.

S0 suppose that Q< R" is either an exterior domain (with sufficiently smooth
boundary), meaning that K = R"\$} is the closure of a bounded domain, or  is the
whole space R". There are several known ways [3,4,12,17] to construct a weak
solution

e Ly([0, 0), Ly ,(") N Lo([0, w0), H5(Q)")
of the Navier—Stokes equation
,—Au+{u-Viu+vp=0,
divu=40, (1.1)
u{(0)=ae L, (Q)"
For some constructions and n <4, they also fulfil the so-called generalised energy
inequality

IIH(I)II§+2f IVu(r) |3 dr < || u(s)i3 (1.2)

for t 20, s=0 and almost all s <t (see also the remarks in the appendix of [18]).
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Here L, ()" denotes the L,-closure of the smooth divergence-free vector fields; and
if P is the corresponding projection, then A:=—PA is called the Stokes operator
with domain D(A) = HHQY' n HY{(Q)' AL, ,(Q". Then the results on the asymptotic
behaviour of the L,-norm of u, starting with Schonbek [13, 14] and with contri-
butions by Kajikiya and Miyakawa [7], Galdi and Maremonti [ 3], Borchers and
Miyakawa [1] and Wiegner [18], may be summarised as follows:

Proposimion 1.1. If u is a suitably constructed weak solution and [[ug(t}|, = Ot ™7),
with a > 1 for simplicity, where u,(t)=e "a, then:

) - (), = Ot ™" 2), if Q=R", n 22 [18];

[t — ug{O) |, = Ot ™™4), if Q@ is an exterior domain, n 2 3 [1].

Note the difference between these cases. The case of a two-dimensional exterior
domain was settled in 1993 by Kozono and Ogawa [10] {under some additional
assumption on the initial value); also the boundedness of ¢4 was proved recently
[2].
In particular, we infer from [18]:
if [ug(t), S Coll+07% «20, then [u(t) 2 S c(Co)(1+ 1) mniner 2/,
(1.3)

Furthermore this exponent is generically optimal (see [15]).

2. Strong solutions

Let us now consider strong solutions. First we remember two facts. On the one
hand, global (unique) strong solutions are known to exist either in two dimensions
or for small L -data. On the other hand, we also have some information in three
and four dimensions. The above-mentioned weak solutions with generalised energy
inequality [12, 17] become strang after a finite time:

there is some Ty({lall,) >0, such that we C([Ty, o), L,)

for 2<p=o0, Vue(([T;, «),L,) for
25psn and Dlue ([T, w0), Ly) (see [9]).

This follows from the embedding jul, < cjlulliiVul} for n=3 (respectively
<c|Vu|; for n=4), and the estimate [ {|Vu|3ds < |all3, which implies that
lu(T*)|, is smalt for some T*; then the generalised energy inequality allows the
reconstruclion of u as a strong solution.

So in what follows we assume either:

(a) u is a weak solution with generalised energy inequality and n £4; or

(b} ae L (&} L,(€Q), | al, small enough, so that u is a global strong solution,
where we pose the additional assumption that n < 5. The reason for this restriction
can be found in Lemma 3.1.

We know from Kato [8, Theorem 2], that

|1() |0 < Colt — Ty)~F  for some Cy> 0. 2.1)

In fact, there are sharper results known under suitable conditions on the initial value
{see T8, 16, 19, 207]) but these will follow as a corollary from our results befow.
Let us remark that Twashita’s estimates for the Stokes semigroup [5] allow us
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also to prove estimates for | u(1)|l, and | D*u[, in the exterior domain case, see [9]
forn=3,4 and [10] for n=2.
In this situation, the main result is then without any further assumption on the
initial vajue:
if |u()|3=00"%), then [D™u(t)|3=0("™"*) forallmeN.

REMARK 2.1. (1} The case n=2 was settled under more stringent assumptions on
the initial data in [16]. For the exterior domain case with n =3, this estimate, but
only for m =1 and 2, can be found in [11].

(2) The effect that stability in higher norms is implied by energy stability, is also
observed in other situations—for the Boussinesq equation, see [6].

The proof will follow from a sequence of lemmata.

3. Proofs

As we are considering solutions which are smooth for ¢ > T, we know that

3 3
DyueC, ([T T oo) LI(R"}") and Dl SCU+D7E 12T+

{see (2.1)). As a first step, we claim:

LemMa 3.1. If n €5, D*u and D*u, & Lo(R*)" for all multi-indices «, provided t > Ty,

Proof. Let t,, = Ty +&(1 — 2™™). We may represent the solution with the help of the
Fourier transformation by
4

e—u—s}lclziék(u}ﬁ;)(s +1t,) ds)‘

(3.1)

ﬁ(t+rm)=(éf,-—écjlﬁl‘z)(e""':"ﬁ}{rm)* J
0

As
1+ Ic'lz)(u;ﬁ:)ilz =1+ Az < Cwllz + | Va2 oo,

<Gt} forrzi,,

we get

) B t @ e—Z{I—s]rzrrx+l e
(e + )0, = Ct "’fZ‘I-CJ; (J; —('T;?-)—z”dr) ds

3
gCr""*ﬁ2+cJ‘ (t—s) P Pds<on fort>0duetonss.
)]

Now |19 (st HEN < 2¢,( | 1| AE)*1HE)]) due to £ < e, (| — pulf + 1) Hence the
estimate for convolutions implies

1R 2 < 2¢q Nl [ 1€ R4,

Assuming by induction that | | }ei(s)l, < Cls,m—3) < o0 for s=1,, we may
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multiply (3.1) by {£[" to get the bound

HEa(e + ta) )2 £ ot *+ch (t—s)"*ds=Clt,m)< 0

for t > 0.
Thus | |£|™#t +¢t,)|, is finite for all m and t>0. The same reasoning applies

after differentiating (3.1) with respect to ¢, which proves the claim. [

Lemma 3.2, For me N, we have the inequality

d

) Dmull3 + 3 D™ ul < ol llu ]S D™u i + Ry),
with

0 form=1,2,
Ba=1 ¥ 10wl D" iulg formz3.
15j=mi2
Proof. Applying D® to the equation, multiplying by 2Dy, integrating by parts and
summing over all a, || = n, we get

d du
SIDruli+210mtuiis2 ¥ | o (—u,‘)D w dx
ox

lal=m

=~2 Y | DYuu)D* " *u; dx
|l =m

< E|D'““ui|2+c J‘|D5u|2|D“ Pyl dx,
|ﬂ|§]a|.l’2

B | —

hence the claim for m = 3.
If m=1, then

d a2 dee 1 8 [fdu)\? J du, O,
~ et g wdx= =5 oW gy ) AT | G B

<c .[iu[ | Du| | D% dx,

as the first term vanishes due to diva=0.
The same is used for m = 2, where we get

0 a). 2
jé‘xk (ax, o, *))a o &
a au 51‘.!,‘ 3H,v aut azl‘k 52!1,-
+ — + U dx
é‘xk {J‘xI 6x dx, 8x; 8x; Ox,/ Ox; dx,

B ou; au,; 2y, 6uk Bu; %u, Ou, J
- dx; 0x, 5x EJ‘x,cax, (’;bcI 6xk 8x; 8x, } dx, Ox, *
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and an additional integration by parts gives a bound against
1
c Jlul | D] | Dul dx < 3 1D*u 5+ cllul | D)3,

This proves the claim. U
The following lemma is based on the Fourier splitting method of M. E. Schonbek.
LeMMA 3.3. Letme N T,=T,+1—2"" and assume
1™ W2 € Cpy(t — Ty y) Pt fort>T, ;.

Suppose

d - S -3
7 D™ |3+ D" ull S colt — Tum ) D3+ X cilt =T )™,

i=1
with §; 2 pp_y + 2. Then
|D"u|2s Co(t—T,) # fori>T,,

with p,.= 1+ p,,.., and some C,,, depending on C__ |, ¢;, 8;, Pm—1, M, but not on Ty,

Proof. Let
cot+a \t
s={efs ()

with a =max {s;} + L. Then

D"+ i) 2 f {E[2|DPuf? d&

R™S
CD+H Co+a e
2 — Dm Z_ N " Dmuzd
2 DI 2 | 1D
o+ a co+a e
2 ——— | D"l | — LDl dg
t— Tm*l t— Tm—l 5
and therefore
d a
— || D™ 2 —_— Dm 2
10+ o 1D

SCpoilco+ @t —T,_ ) @m0+ % ¢ (t— T 4)" ™

i=1
Multiply by (¢t — T,,.,)% integrate and divide again by (¢ - T,,_ )" to get
IDmulE S 8yt — Toe) Pt L= Toy) T

Hence on t =z T, this is the claimed estimate, since for g 2 go, t=T,=T,_;+2™"
we have

(t _ Tm— 1)—1 < ZM(q—qu)(t _ Tm)‘qo‘ (N

We are now in a position to prove our main theorem.
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THEOREM 3.4. Suppose Jull3 = Colt + 1), for t 2 0, with some p 2 0. Thenforme N,
there is some C,, = C,{u, Co), independent of Ty, with T, given by (2.1), such that

D2 < Coft~T,—1)"" 2 fort2Ty+ 1.

REMaRK 3.5. If n=2 or if |all, is small enough, we have T,=10, while
T, = c(n)| all3*" 2 is admissible for weak solutions, n=3 or 4.

Proof of Theorem 3.4. We want to show by induction the estimate
1D |2 Cplt —T,) ™ fortzT,=TH+1-2""
If m=1 or 2, we know by Lemma 3.2 and (2.1), that

d
2 194 B4 10" 3 < cK(t— T) ™' D™uli3.

We may apply Lemma 3.3 to get the claim for m=1 or 2.
For m > 3, we have the additional term R, to estimate. We use the interpolation
inequality
.n
itz
i +1, 145 1- : 2
[DIulie, LD lulFullz™ with a;= —-—.
m+1

Note that

L~<aj41 for j= and mzn-—1
m+1

03| F

and in the case n=35, m=3, j=1. Then

1 .
R0 uld+clull Y D" u)it—e
2 1= jsm2
1
éi ID™  ull +e 3 {t—Tny)™%,
i
with
—J
§;=2u+(m+1) Z2u+m+1,
—ia]— =
m—j+ 5

where we used the induction hypothesis (weakened to) || D*ulj3 < C (¢t — T)"* for
k=m-—1.
Hence Lemma 3.3 may be applied again and proves the claim, [

THEOREM 3.6. Under the same assumptions, there holds, for 2<p < w and je Ng,

“ Diu Hp Le(t—Ty— 1)—Uf2+n£2t‘1!2—lfpl+ul

(especially |ullo St — Ty — 1)7479).
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Proof. By interpolation,
; - L-a 1 1 m 1
I D/uli, S cll D™ull3llullz™, ;=;+G 3=, T-a93

for suitable m. By Theorem 3.4 the claim follows. O

In order to derive estimates also for time derivatives of u, we have to show first a
generalisation of Lemma 3.1,

Lemma 3.7. For t > Ty, there holds
k

d
D ‘d—t}uELz(ﬂ)

for all multi-indices o and all ke N.

Proof. The claim for £ =0 and 1 is contained in Lemma 3.1. From the representation
(3.1), we gei the estimate (with any T, > Tg)

k

d 2 .
it + T) Ll e 4 a(T))

(4%

k—1
+e Z }é|2(i‘)’)—1+m
j=0

Z T+ T)

1
+c J e U= g2k 1bm  gTyie 4 T )| ds.
L1}

Since we already know from Lemma 3.1 that
It + &9 ul; <o forall g,
we get
I [£["d{s) ]}, < C(s) for 5= T; and all m.
Suppose now that

di
Hifl’”@ﬁ(s} LCp_ys) fors=T,,meNy;, g=1and2, and jz k-1

g

By induction, with the help of ||/ u|< c(|&%d]*|8]) + <(|1€1°]6|*|4]) and
If*gle = SN, Nel, it follows also that
k

wd
Hig 0

4
is finite for s 2 T}, ¢ = 1 and 2. This proves the lemma.

THEOREM 3.8. Under the same assumptions as in Theorem 3.4, we get, for t > Ty + 2,

k

m_ < — Ay i —k—n
dtk =C{t T(’) 2) .

2

D u
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Proof. By Lemma 3.7, we know that we may apply

k-t
]

e

to the equation. After scalar multiplication by

dk

D“E;u

and an integration by parts, the pressire drops out and we get with Holder’s
inequality

k-1

dr*~?

sc|D® (Au—u-Vu)

2

dk
” DGEH

Thus, letting k=1, we get, for t > T, + 1,

d
D*—u

% <c Dl +c T I Dul, | DI g,

2 J=laliz
<elt— T‘O — 1)—l==|a‘2—l—u +e Z{I —Ty— 1)—Uf2+m’4+n]—((|a|—J+l}f2+.u)
i

Se(t— T, — 1w,

where we used Theorem 3.6.
Estimates for

d
DF—u

. 2<p< oo,
dr P=%®

r

now follow by interpolation. The case of general k is then a consequence of
straightforward induction. 0O
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