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We consider the Navier�Stokes system with slowly decaying external forces

{
�u
�t

+u } {u=&{p+2u+f

div u=0
u(0)=a

in t>0, x # Rn (n=2, 3, 4),

in t>0, x # Rn,
(NS)

We show that the energy norm of a weak solution has non-uniform decay,

&u(t)&2 � 0 (t � �),

under suitable conditions on the data f and a which make the energy of solution
bounded in time. Also, we show the exact rate of the decay (uniform decay) of the
energy,

&u(t)&2�C(1+t)&=,

for external forces with a given explicit decay rate. � 1997 Academic Press
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INTRODUCTION

We are concerned with the asymptotic behavior of weak solutions to the
Navier�Stokes equation,

{
�u
�t

+u } {u=&{p+2u+f

div u=0
u(0)=a,

in t>0, x # Rn (n=2, 3, 4),

in t>0, x # Rn,
(NS)

where u=u(x, t)=(u1(x, t), u2(x, t), ..., un(x, t)) and p=p(x, t) denote
unknown velocity vector and pressure at point (x, t) # Rn_(0, �), while
a=a(x)=(a1(x) a2(x), ..., an(x)) and f=f (x)=( f1(x), f2(x), ..., fn(x)) are
given initial velocity and external force.

We shall discuss the energy decay problem of weak solutions to (NS):

&u(t)&2
2 � 0 as t � �. (D)

This problem was originally suggested by Leray in his pioneering papers
[13, 14]. For the case f=0, Kato [10] gave the first affirmative answer for
strong solutions with small data. For weak solutions, Schonbek [19]
obtained algebraic decay for the Cauchy problem in R3 for large data in
L1 & L2. At the same time, Masuda [16] proved the non-uniform decay for
weak solutions satisfying the strong energy inequality (see (E) below) in
the general domain when n=2 and f # L1(0, �; L2(R2)) or when n�3 and
f=0. When the external force f=0, the method in [19] was extended by
Kajikiya and Miyakawa [9] and Wiegner [26] for the case Rn (n=2, 3, 4)
(see also Schonbek [20]). Other unbounded domain cases were treated by
Heywood [6], Borchers and Miyakawa [1], Ukai [25], Maremonti [15],
and Kozono and Ogawa [12] (for strong solutions see [3, 8, 11]; see also
a recent work by Carpio [29]). All these results are valid even if we con-
sider an external force with sufficiently fast decay. For example, if
& f (t)&2�C(1+t)&n�2&1 and f # L�(0, �; W&1, 1(Rn)), then the energy
decays at the same rate as for f=0 ([19]). On the other hand, Miyakawa
and Sohr [17] showed the existence of a weak solution to (NS) in an
exterior domain in Rn (n=2, 3, 4) which satisfies the strong energy
inequality

&u(t)&2
2+2 |

t

s
&{u({)&2

2 d{�&u(s)&2
2+|

t

s
|( f ({), u({)) | d{ (E)

for almost all s>0 with s=0 and all t�s. Using this inequality, they
extended Masuda's non-uniform decay to the case where the external force
f # L1(0, �; L2(Rn)).
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In this paper, we first extend their results to more general external forces
and establish non-uniform decay. For that purpose, we construct a weak
solution which satisfies a generalized energy inequality (see Proposition 2.3)
by a method analogous to that due to Leray [14] and Caffarelli et al. [2].
The Fourier splitting method (see [19, 20]) combined with an argument
due to Masuda [16] on the generalized energy inequality yields non-
uniform decay (D).

Next we show uniform decay of the energy of the solutions,

&u(t)&2�C(1+t)&=, (UD)

for slowly decaying external forces. More precisely, we obtain uniform
decay (UD) for a class of functions which contain functions f satisfying

& f (t)&2�C(1+t)&1&= (0.1)

or

&rf (t)&2�C(1+t)&1�2&2=, (0.2)

where =>0 is a small constant and r=|x|. We also need a condition on the
behavior of the external force:

f # L�(0, �; W&1, 1). (0.3)

Interpolating the two conditions (0.1) and (0.2) for the decay of the
external force, we obtain a more general assumption on the external force
which will also yield a uniform rate of decay (UD) of the solution when
n=3, 4.

We also discuss an alternative condition,

f # L2(0, �; L1),

instead of (0.3), which gives us an another aspect for the uniform decay
(see Assumptions A.2 and A.3 in Section 1 for the details). We consider the
two-dimensional case at the end of Section 4, in which we need a slight
modification of the argument to obtain (UD).

Throughout this paper, the following notation will be used.
Let L2

_(Rn) and H4 1
0, _(Rn) denote the completions of C �

0, _ (C �
0 functions

with divergence free) in the L2(Rn)-norm & }&2 and the Dirichlet (homo-
geneous H1) norm &{ } &2 . We abbreviate them as L2

_ and H4 1
_ . F,=,� and
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F&1,=,8 denote the Fourier and the inverse Fourier transform of ,,
respectively. We denote

L p(a, b; Lq)={ f : (a, b)_Rn � Rn ; & f &Lp(a, b; L q)=\|
b

a
& f ({)&q

p d{+
1�q

<�= .

The notation & }&L p, q will be used for the norm of L p(0, �; Lq).
H 1

_=H4 1
_ & L2

_ , H&1=(H 1
_)*. The symbol ( } , } ) denotes the inner product

in L2. Various constants are simply denoted by C.

1. RESULTS

We first recall the definition of a weak solution according to Leray and
Hopf.

Definition. For a # L2 and T>0, we call u a weak solution of Leray�
Hopf type (Leray�Hopf solution) if and only if

(1) u # L�(0, T ; L2
_) & L2(0, T ; H4 1

_).

(2) For any 0�s<t�T, u satisfies

|
t

s
[&(u({), 8t({)) +(u({) } {u({), 8({))+({u({), {8({))] d{

=&(u(t), 8(t)) +(u(s), 8(s)) +|
t

s
( f ({), 8({)) d{ (1.1)

for all test functions 8 # C1([0, T]; C �
0, _).

The external force f is assumed to satisfy the following conditions:

A.1. For x0 # Rn, let

\=\x 0
(x)={ |x&x0|,

|x&x0| (1+|log |x&x0| | ),
if n=3, 4,
if n=2.

(1.2)

Suppose that for 0�#�1, 2�p�2n�(n&2+2#) (<� if (n=2)) and
%=4p�(2p#+np&2n),

\# f # L%$(0, �; L p$),

where p$ and %$ are the conjugates of p and %.
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Then the decay result reads:

Theorem A (Non-uniform Decay). Let n=2, 3, 4 and a # L2. Assume
that f satisfies A.1. Then there exists a weak solution u of (NS) satisfying the
strong energy inequality

&u(t)&2
2+2 |

t

s
&{u({)&2

2 d{�&u(s)&2
2+|

t

s
|( f ({), u({)) | d{ (1.3)

for almost all s>0 with s=0 and all t�s. Also the energy of the solution
satisfies

&u(t)&2 � 0 as t � �. (1.4)

Remarks. (1) The restriction on the dimensions is needed to obtain
integrability for the nonlinear term in the definition of the weak solutions.

(2) Assumption A.1 includes the following typical cases: f # L1(0, �; L2)
and f # L2(0, �; L2n�(n+2)) (n�3). These conditions ensure that f is in the
dual of the space to which the weak solution belongs. On the other hand,
if we assume that f belongs to some weighted space, then a weaker condition
on the time decay suffices to yield the decay of the solution. For example,
one can choose

rf # L2(0, �; L2).

Assumption A.1 is obtained by interpolating the decay conditions on f
mentioned above.

(3) The condition on f can be relaxed as follows: For a set of
exponents (#i , pi , %i ) (i=1, 2, ..., m) satisfying the same conditions as in
A.1, f is written as

f= :
m

i=1

fi ,

where each fi satisfies

|x&x0, i |
#i fi # L% $i (0, �; Lp $i ), i=1, 2, ..., m,

for some x0, i # Rn. However for simplicity, we only consider the case A.1.

If n=2, f # L1(0, �; L2) or if n�3 and f=0, Masuda [16] showed that
any weak solution in a general domain has a non-uniform rate of decay in
the energy norm. If n=3, 4 and f # L1(0, �; L2), Miyakawa and Sohr [17]
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constructed weak solutions satisfying the strong energy inequality in
exterior domains. Using Masuda's estimate,

|
t

t&1
&u({)&2 d{ � 0 as t � �,

they showed that these solutions have a non-uniform rate of decay. Under
more general conditions on f, Borchers and Miyakawa [1] considered the
energy decay in unbounded domain. If f satisfies

|
�

0
{ & f ({)&2 d{<�,

they showed that there is a weak solution for which the energy decays as
in Theorem A. Our theorem extends this result to the case of the Cauchy
problem (NS) for more general external forces.

For the uniform decay result, a slightly stronger assumption than A.1 is
needed. We assume:

A.2. Let #, p, %, and \ be the same as in assumption A.1. For small
=>0, we suppose that f satisfies

(1+t) ; p#f # L�(0, �; L p$),

where ;=(1�%$)+=(%+2)�%.
By choosing #=0, p=p$=2, and ;=1+=, we have a typical condition

of the external force:

& f (t)&2�C(1+t)&1&=.

Also, if we choose #=1, p=p$=2, then %=2 and ;=1�2+2=, which
yields (0.2)

&\f (t)&2�C(1+t)&(1�2)&2=.

It should also be remarked that the condition A.1 implies A.2.
In order to show uniform decay for the weak solution, we also need to

assume proper behavior of the Fourier transform of f near |!| &0.

A.3. Let f satisfy either:

(1) f can be written as f=Dg, where D is any first order derivative
and g # L�(0, �; L1), or

(2) f # L2(0, �; L1).
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Theorem B (Uniform Decay). Let f satisfy A.2 and A.3 and the initial
data a # Lq & L2, where q�2n�(4=+n). Then the solution constructed in
Theorem A has the following uniform decay:

&u(t)&2�{C(1+t)&=

C(log(e+t))&1�2

if n=3, 4,
if n=2.

Furthermore, if we assume that f # L1(0, �; L1(R2)) in the 2-dimensional
case, then

&u(t)&2�C(1+t)&=.

Here the constant C only depends on norms of a and f.

Remark. If there is no restriction on the initial data other than a # L2,
it is known that there is no explicit uniform decay as in Theorem B.
(c.f. [20]. In the case of an exterior domain, see Hishida [7].) If n=3 or 4,
q>2n�(4=+n), and a # L2 & Lq, then the uniform decay rate in Theorem B
is determined by the term involving the initial data and hence becomes
slower (c.f., Lemma 2.7 below). On the other hand, if we choose a more
rapid decay for f the decay for the solution is determined by the nonlinear
term (cf. [19, 20, 27]).

2. EXISTENCE AND GENERALIZED ENERGY INEQUALITY

In this section, we establish the existence of a weak solution which
satisfies a certain energy inequality. To this end, we need some apriori
estimates for the solution. The following auxiliary lemma is first estab-
lished.

Lemma 2.1. Let 0�#�1 and 2�p�2n�(n&2+2#). If n=2 and #=0
then p<�. Let f satisfy A.1. Then for u # L�(0, T ; L2

_) & L2(0, T ; H4 1
_) and

0�s<t<�, we have

|
t

s
|( f, u) | d{�CC(1&*)(1&#)(t) \|

t

s
&{u({)&2

2 d{+
1�%

&\( |x&x0 | )# f &L%$, p$ ,

(2.1)

where x0 # Rn, E(t)=sup{<t &u({)&2
2 and *=[n�(1&#)](1�2&1�p). The

weight functions \ and % are the same as those described in Assumption A.1.
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Proof. We first consider the case when *<1. Put r=|x&x0 |. Recall
that

\=\x0
(r)={ r(1+|log r| )

r
(n=2),
(n=3, 4).

By using the Ho� lder, Gagliardo�Nirenberg, and Hardy inequalities, we
have

|
t

s
|( f, u) | d{�|

t

s
&p# f &p$ " u

\#" p
d{

�|
t

s
&\#f & p$ &u&1&#

$ "u
\"

#

2

d{ \where $=
2p(1&#)

2&#p
>0+

�C |
t

s
&\#f & p$ &u& (1&*)(1&#)

2 &{u&*(1&#)
2 "u

\"
#

2

d{

�C |
t

s
&\#f & p$ &u& (1&*)(1&#)

2 &{u&#+*(1&#)
2 d{

�CE(t)(1&*)(1&#) &\#f &L%$, p$ \|
t

s
&{u({)&2

2 d{+
1�%

. (2.2)

If # and p satisfy the extremal case *=1, i.e., n(1�2&1�n)=1&#, then
%=2 and $=2n�(n&2) and it follows that

|
t

s
|( f, u) | d{�|

t

s
&\#f & p$ "u

\"p
d{

�|
t

s
&\#f & p$ &u&1&#

2n�(n&2) "u
\"

#

2

d{

�C |
t

s
&\#f & p$ &{u&2 d{

�C &\#f &L 2, p$ \|
t

s
&{u({)&2

2 d{+
1�2

. (2.2$)

Remark. If n=2 and #=0 in Lemma 2.1, the case p=� is excluded.
In this case, the weak solution becomes bounded and regular. However, a
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bound like (2.1) seems too difficult to obtain. But if we assume that
f # L log L, a bound similar to the one in Lemma 2.1 can be obtained.

A straightforward consequence of Lemma 2.1 is the following apriori
estimate:

Proposition 2.2. Let 0�s�t<� and suppose f satisfies Assumption A.1.
Then for all u # L�(0, T ; L2

_) & L2(0, T ; H4 1
_) satisfying the strong energy

inequality

&u(t)&2
2+2 |

t

s
&{u({)&2

2 d{�&u(s)&2
2+|

t

s
|( f ({), u({)) | d{ (2.3)

for almost all s>0 with s=0 and all t�s, we have the following apriori
estimate on u:

E(t)= sup
0�{�t

&u({)&2�C1 , (2.4)

|
t

s
&{u({)&2

2 d{�C1 . (2.5)

Interpolating (2.4) and (2.5), for 2�q�2n�(n&2) and n�q+2�_=n�2,

&u&L_, q�C1 , (2.6)

where C1 is a constant that only depends on &a&2 and &\#f &L %$, p$ .

Proof of Proposition 2.2. Note that 2�% and (1&*)(1&#)�1 in
Lemma 2.1. Hence the apriori estimate (2.4) and (2.5) can be obtained by
applying Lemma 2.1 to (2.3).

By Proposition 2.2, we note that the solution is bounded in
L2+4�n(0, � : L2+4�n). It is well known that the exponent of (2.6) in n�3
has a gap to the condition of the regularity criteria n�q+2�_�1 for an L p

weak solution. For the regularity criteria, see Serrin [21] and Giga [4].
We now state the existence result:

Proposition 2.3 (Existence and Generalized Energy Inequality). Let
a # L2 and f satisfy Assumption A.1. Then there exists a weak solution u to
(NS) in L�(0, �; L2

_) & L2(0, �; H4 1
_) satisfying the strong energy inequality

(E). For E(t) # C1(R; R+) with E(t)�0 and � # C1(R; C1 & L2), the weak
solution satisfies

333THE NAVIER�STOKES EQUATION



File: 580J 301110 . By:CV . Date:18:03:97 . Time:08:23 LOP8M. V8.0. Page 01:01
Codes: 2153 Signs: 879 . Length: 45 pic 0 pts, 190 mm

E(t) &�(t) V u(t)&2
2�E(s) &�(s) V u(s)&2

2+|
t

s
E$({) &�({) V u({)&2

2 d{

+2 |
t

s
E({) |(�$({) V u({), �({) V u({))

&&{�({) V u({)&2
2 | d{

+2 |
t

s
E({)( |(u } {u({), �({) V �({) V u({)) |

+|( f ({), �({) V �({) V u({)) | ) d{ (2.7)

for 0�s<t<�.

Proof of Proposition 2.3. Following the argument of Leray [14] and
Cafarelli et al. [2], we consider the approximated equation to (NS). For
some fixed T>0, let uk be a solution of

{
�uk

�t
&2uk+vk } {uk+{pk=f

div uk=0
uk(0)=a,

in x # Rn, 0<t<T,

in x # Rn, 0<t<T,
(2.8)

where vk=9k(uk) is the approximation of uk obtained through a retarded
mollifier:

9k(h)=k&1&n |
t

0
|

R n
\ \t&s

k
,
x&y

k + h(s, y) dy ds, k=1, 2, ... .

The construction of a smooth solution to (2.8) is well known (see [17, 22,
24]). Moreover, it is shown in [2] that for small $>0,

uk � u L2(0, T ; L2) & L2+4�n&$(0, T; L2+4�n&$)

{ and weak*-L�(0, T ; L2), (2.9)

{uk � {u weak-L2(0, T ; L2),

and

vk � u L2(0, T ; L2) & L2+4�n&$(0, T ; L2+4�n&$).
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The limit function u satisfies (NS) in the sense of distributions. To show the
energy estimate, we multiply (2.8) by E(t) � V � V uk and integrate by parts
to get

d
dt

E(t) &� V uk(t)&2
2=E$(t) &� V uk(t)&2

2+2E(t)[(�$({) V uk({), �({) V uk)

&&{�({) V uk&2
2]&2E(t)(vk } {uk , � V � V uk)

+2E(t)( f, � V � V uk). (2.10)

Integrating (2.10) over (s, t), we have

E(t) &� V uk(t)&2
2+2 |

t

s
E({) &{� V uk({)&2

2 d{

�E(s) &� V uk({)&2
2+|

t

s
E$({) &� V uk({)&2

2 d{

+2 |
t

s
E({)[ |(�$({) V uk({), �({) V uk({)) |

+|(vk } {uk , � V � V uk) |+|( f, � V � V uk ) |] d{. (2.11)

We then take the limit as k � �. The nonlinear term in (2.11) converges
to the one involving the limit function provided {(� V �) # L�(0, �; L2).
In fact, since div vk=0, we have

} |
t

s
(vk } {uk , � V � V uk) ds&|

t

s
(u } {u, � V � V u) ds }

�|
t

s
[ |( (vk&u) } {uk , � V � V uk ) |+|(u } {(uk&u), � V � V uk) |

+|(u } {u, � V � V (uk&u)) |] d{

=|
t

s
|( (vk&u) } {(� V �) V uk , uk) | d{

+|
t

s
|(u } {(� V �) V uk , uk&u) | d{

+|
t

s
|(u } {(� V �) V (uk&u), u) | d{

#I1+I2+I3 . (2.12)
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Then (2.9) and the Hausdorff�Young inequality give us

I1�|
t

s
&(vk&u) } {(� V �) V uk&2 &uk&2 d{

�|
t

s
&vk&u&2 &{(� V �) V uk&� &uk&2 d{

�|
t

s
&{(� V �)&2 &uk&2

2 &vk&u&2 d{

�C |
t

s
&vk&u&2 d{�C(t&s)1�2 \|

t

s
&vk&u&2

2 d{+
1�2

� 0

as k � �. (2.13)

Similarly

I2�|
t

s
&u&2 &{(� V �)&2 &uk&u&2 &uk&2 d{

�C |
t

s
&uk&u&2 d{�C(t&s)1�2 \|

t

s
&uk&u&2

2 d{+
1�2

� 0

as k � �, (2.14)

I3�|
t

s
&{(� V �)&2 &uk&u&2 &u&2

2 d{

�C |
t

s
&uk&u&2 d{�C(t&s)1�2 \|

t

s
&uk&u&2

2 d{+
1�2

� 0

as k � �. (2.15)

Therefore, (2.12)�(2.15) imply

|
t

s
(vk } {uk , � V � V uk) ds � |

t

s
(u } {u, � V � V u) ds. (2.16)

From (2.9), we have

&� V uk(t)&2
2 � &� V u(t)&2

2 almost every t�s, (2.17)

|
t

s
E({) &{� V u({)&2

2 d{� �
k � � |

t

s
E({) &{� V uk({)&2

2 d{. (2.18)
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Using (2.16)�(2.18) in (2.11), we obtain inequality (2.7) for almost all t
and s. Since the solution is weakly continuous in L2, we obtain the desired
inequality.

Proposition 2.4. Let E(t) # C1(R+; R) and �� # C1(0, �; L�) such that
(1&�� 2) # L�(0, �; L2) and {F&1(1&�� 2) # L�(0, �; L2). Then the weak
solution constructed in Proposition 2.3 also satisfies

E(t) &�� (t) û(t)&2
2�E(s) &�� (s) û(s)&2

2+|
t

s
E$({) &�� ({) û({)&2

2 d{

+2 |
t

s
E({) |(�� $({) û({), �� û({))&&!�� ({) û({)&2

2 | d{

+2 |
t

s
E({)( |( u } {u@({), (1&�� 2) û({)) |

+|( f� ({), �� ({)2 û({)) | ) d{, (2.19)

for almost all s>0 with s=0 and all t�s. In particular, the weak solution
satisfies

E(t) &u(t)&2
2�E(s) &u(s)&2

2+|
t

s
E$({) &u({)&2

2 d{

&2 |
t

s
E({) &{u({)&2

2 d{+2 |
t

s
E({) |( f ({), u({)) | d{, (2.20)

for almost all s�0 and all t�s.

Proof of Proposition 2.4. We consider the approximated equation (2.8)
in the proof of Proposition 2.3. Recall that the solution uk are smooth in
L2, and if necessary, by approximating f by a sequence of functions in L2,
we can consider the Fourier transform of the equation (2.8). Multiplying
the Fourier transform of (2.8) by E({) �� 2 ûk({), we get

d
dt

E({) &�� ûk({)&2
2=E$({) &�� ûk({)&2

2+2E({)[(�� $({) ûk({), �� ({) ûk)

&&!�� ({) ûk&2
2]&2E({)(F(vk } {uk), �� 2 ûk )

+2E({)( f� , �� 2 ûk) . (2.21)
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Again integrating (2.21) over (s, t) and noting that (F(vk } {uk ), ûk)=0,
we have

E(t) &�� ûk(t)&2
2+2 |

t

s
E({) &!�� ûk({)&2

2 d{

�E(s) &�� ûk(s)&2
2+|

t

s
E$({) &�� ûk({)&2

2 d{

+2 |
t

s
E({) |(F(vk({) } {uk)({), (1&�� 2) ûk({)) | d{

+2 |
t

s
E({) |( f� ({), �� 2 ûk({)) | d{. (2.22)

The conditions 1&�� 2 # L�(0, �; L2) and {F&1(1&�� 2) # L�(0, �; L2)
are necessary in order to obtain the convergence of the nonlinear term,
since we estimate it as in Proposition 2.3. Using the same argument as in
Proposition 2.3, we see that

|
t

s
(F(vk } {uk), (1&�� 2) ûk ) ds

=|
t

s
(uk } {uk , F&1(1&�� 2) V uk) ds

� |
t

s
(u } {u, F&1(1&�� 2) V u) ds.

Therefore by passing to the limit as k � � in (2.22), (2.19) follows. The
second inequality (2.20) is obtained by setting �� #1 in (2.19).

From the generalized energy inequality (2.7) in Proposition 2.3, it
follows that

Corollary 2.5. For a weak solution u and , # L2(Rn), we have

&,8 V u(t)&2
2�&e2(t&s) ,8 V u(s)&2

2+2 |
t

s
( |(u } {u, e22(t&{) ,8 2 V u({)) |

+|( f, e22(t&{) ,8 2 V u({)) | ) d{. (2.23)

Proof of Corollary 2.5. Take E(t)=1 and �({) as

�({)=F&1e&|!| 2 (t+'&{) ,(!), '>0
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in (2.7). Then �({) V u({)=e2(t+'&{) ,8 V u({) and

(�$({) V u({), �({) V u({)) &&{�({) V u({)&2
2

=(2e2(t+'&{) ,8 V u({), e2(t+'&{),8 V u({)) &&{e2(t+'&{),8 V u({)&2
2

=0.

Hence we have

&e2' ,8 V u(t)&2
2�&e2(t+'&s) ,8 V u(s)&2

2

+2 |
t

s
( |(u } {u, e22(t+'&{),8 2 V u({)) |

+|( f, e22(t+'&{),8 2 V u({)) | ) d{. (2.24)

Letting ' � 0 in (2.24), we obtain (2.23).

Remark. If � # L�(0, T ; L2n�(n+2)), then the generalized energy
inequality (2.6) can be derived from the definition of the weak solution and
hence is satisfied by all weak solutions not necessarily satisfying the strong
energy inequality. In fact, Masuda [16] obtained an inequality equivalent
to (2.21), with E#1 and �� (t, !)=e&(t&{)|!| 2

(1+|!| 2)&:�2, and used it to
obtain the non-uniform decay of the weak solutions.

To show uniform decay, the following expression of the weak solution
will be used:

Proposition 2.6. Let u be a weak solution in (NS). Then for almost all
t with 0�s�t<�,

u(t)=e2(t&s) u(s)&|
t

s
e2(t&{) P(u } {u({)&f ({)) d{ (2.25)

in L2
_ , where P=F&1($ij&(!i!j �|!| 2))F is the projection operator from L2

to L2
_ .

Proof of Proposition 2.6. Using 8(t)=Pe2(t+'&{) , for all , # L2 in the
definition of the weak solution (1.1), we have

(u(t), e2' ,) &(e2(t&s)u(s), e2' ,)

=|
t

s
[(u({), 2e2(t+'&{),)&({u({), {Pe2(t+'&{) ,)

&(P(u } {u({), e2(t+'&{) ,) +(Pf ({), e2(t+'&{) ,)] d{

=|
t

s
[&(P(u } {u({), e2(t+'&{) ,)+(Pf ({), e2(t+'&{) ,)] d{.
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Then by taking a limit as ' � 0, e'2, � , in L2 and we conclude that

(u(t), ,) =(e2(t&s)u(s)&|
t

s
e2(t&{) P(u } {u({)&f ({)) d{, ,)

for all , # L2. This shows (2.24).

Finally, we show a variation of the well-known L p&Lq type estimate for
the linear heat equation (see, e.g., Reed�Simon [18] and Kato [10]).

Lemma 2.7 (L p-Lq Estimate). Let h(t)�0 be a smooth function of t and
define

e2h(t)a#F&1e&h(t) |!| 2 â,

D$a#F&1 |!|$ â.

Then for any 1�q�p�� and 0�$, we have

&D$e2h(t) a& p�Ch(t)&(n�2)(1�q&1�p)&($�2) &a&q for a # Lq. (2.25)

In particular, if a # Lq & L2 (1�q<2), then

&e2ta&2�C(1+t)&(n�2)(1�q&1�2) (&a&2+&a&q). (2.26)

Proof of Lemma 2.7. Inequality (2.25) is well known if h(t)=t. For
general h(t), (2.25) is obtained similarly. To obtain (2.26), we set h(t)=t
in (2.25) and combine two cases p=q=2 and q<p=2.

3. NON-UNIFORM DECAY

In this section, we prove the non-uniform decay result:

Theorem 3.1 (Non-uniform Decay). Let a # L2 and f satisfy A.1. Then
the weak solution u to (NS) constructed in Proposition 2.3 satisfies the
energy decay:

&u(t)&2 � 0 as t � �.

We split the proof into two steps, i.e., the estimates for the low frequency
part of the energy and for the high frequency part. In the each step, we use
the generalized energy inequality established in Section 2.
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Proof of Theorem 3.1. To show the decay of the low frequency part of
the energy, we follow an argument due to Masuda [16]. Taking ,(!)=
exp(&|!| 2), we have by Corollary 2.5 and Plancherel's identity that

&,û(t)&2�&e&|!| 2 (t&s) ,û(s)&2

+2 |
t

s
|(u } {u, e22(t&{) ,8 2 V u) | d{+2 |

t

s
|( f, e22(t&{),8 2 V u) | d{

�&e&|!| 2 (t&s),û(s)&2+2 |
t

s
|(,8 2 V u } {u, e22(t&{)u) | d{

+2 |
t

s
|( f, e22(t&{),8 V u) | d{. (3.1)

Since ,8 2 is a rapidly decreasing function, by the Hausdorff�Young, Ho� lder,
and Sobolev inequalities it follows that for n�3,

|(,8 2 V u } {u, e22(t&{) u) |�&,8 2 V u } {u&2 &u&2

�C &,8 2&2n�(n+2) &u } {u&n�(n&1) &u&2

�C &,8 2&2n�(n+2) &u&2 &u&2n�(n&2) &{u&2

�C(,) &u&2 &{u&2
2 . (3.2)

Similarly if n=2 we have

|(,8 2 V u } {u, e22(t&{) u) |�|(u } {,8 2 V e22(t&{) u, u) |

�&u&2
4 &,8 2 V e22(t&{){u&2

�&,8 2 &� &u&2
4 &{u&2

�C(,) &u&2 &{u&2
2 . (3.3)

Hence by (3.1)�(3.3) and Lemma 2.1,

&,û(t)&2
2�&e&|!| 2 (t&s) ,û(s)&2

2+2 |
t

s
C(,) E({) &{u&2

2 d{

+CE(1&*)(1&#)(t) \|
t

s
&\#f &%$

p$ d{+
1�%$

\|
t

s
&{u&2

2 d{+
1�%

. (3.4)
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Since lim t � � &e&|!| 2 (t&s) ,û(s)&2
2=0, we have by taking a limit t � � in

(3.4) that

lim
t � �

&,û(t)&2
2�C sup

t
E(t) |

�

s
&{u&2

2 d{

+C sup
t

E(1&*)(1&#)(t) \|
�

s
&\#f &%$

p$ d{+
1�%$

\|
�

s
&{u&2

2 d{+
1�%

.

(3.5)

By Proposition 2.2, the right hand side of (3.5) converges 0 as s � �.
Next, the Fourier splitting method ([19]) is used to estimate the high

frequency part of the energy. Choose �� =1&exp(&|!| 2) and let /(t)=
[! # Rn ; |!|�G(t)]. Then inequality (2.19) yields that

E(t)&(1&,) û(t)&2
2�E(s)&(1&,) û(s)&2+|

t

s
E$({) |

/({)
|(1&,) û({)| 2 d! d{

+|
t

s
E$({) |

R n"/({)
|(1&,) û({)| 2 d! d{

&2 |
t

s
E({) &!(1&,) û({)&2

2 d{

+2 |
t

s
E({)( |(F(u } {u), (1&(1&,)2) û({)) |

+|( f� , (1&,)2 û({)) | ) d{

�E(s) &(1&,) û(s)&2
2+|

t

s
E$({) |

/({)
|(1&,) û({)| 2 d! d{

+|
t

s
(E$({)&2E({) G2({)) |

R n"/({)
|(1&,) û({)| 2 d! d{

+2 |
t

s
E({)( |(F(u } {u), (1&(1&,)2) û({)) |

+|( f, u({)) | ) d{. (3.6)

Since F&1(1&(1&,)2)#� is a rapidly decreasing function, the fourth
term of the right hand side of (3.6) is estimated as follows if n=3, 4:
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|
t

s
E({) |(u } {u, � V u({)) | d{

�|
t

s
E({) &�&2n�(n+2) &u } {u&n�(n&1) &u&2 d{

�C(,) E(t) |
t

s
E({) &u&2n�(n&2) &{u&2 d{

�C(,) E(t) |
t

s
E({) &{u&2

2 d{. (3.7)

If n=2, by the Gagliardo�Nirenberg inequality, it follows that

|
t

s
E({) |(u } {u, � V u({)) | d{

=|
t

s
E({) |(u } � V {u({), u({)) | d{

=|
t

s
E({) &�&� &u&2

4 &{u&2 d{

�C(�) |
t

s
E({) &u&2 &{u&2

2 d{

�CE(t) |
t

s
E({) &{u&2

2 d{. (3.8)

Since E(t)�0, from (3.6)�(3.8) we have

&(1&,) û(t)&2
2�

E(s)
E(t)

&(1&,) û(s)&2
2+

1
E(t) |

t

s
E$({) |

/({)
|(1&,) û({)| 2 d! d{

+
1

E(t) |
t

s
(E$({)&2E({) G2({)) |

Rn"/({)
|(1&,) û({)| 2 d! d{

+2
C(,) E(t)

E(t) |
t

s
E({)&{u&2

2 d{

+
1

E(t) |
t

s
E({)|( f, u({)) | d{. (3.9)

We now choose E(t)=(1+t):, G2(t)=:�2(1+t) in (3.9). Since E$(t)=
2E(t) G2(t), it follows from (3.9) and (2.2) that
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&(1&,) û(t)&2
2�\1+s

1+t+
:

&(1&,) û(s)&2
2+

:
(1+t):

_|
t

s
(1+{):&1 |

/({)
|(1&,) û| 2 d! d{

+C(,)
1

(1+t): E(t) |
t

s
(1+{): &{u&2

2 d{

+C sup
t, !

|(1&,)2 | |
t

s \
1+{
1+t+

:

|( f� , û) | d{

�\1+s
1+t+

:

&(1&,) û(s)&2
2+

:
(1+t): |

t

s
(1+{):&1

_|
/({)

|(1&,) û| 2 d! d{+C(,) E(t) |
t

s
&{u&2

2 d{

+C sup
t

E(1&*)(1&#)(t) \|
t

s
&\#f &%$

p$ d{+
1�%$

\|
t

s
&{u&2

2 d{+
1�%

,

(3.10)

where #, p, and % are defined in Assumption A.1. Observing that |1&,|�
|!| 2 if |!|<1, we have

|
/({)

|(1&,) û| 2 d!�CG({)4 |
/({)

|û| 2 d!�CE({)(1+{)&2. (3.11)

Therefore by letting t � � in (3.10), (3.10) and (3.11) we get, if p>2,

lim
t � �

&(1&,) û(t)&2
2� lim

t � � \1+s
1+t+

:

sup
t

E(t)

+C sup
t

E(t) lim
t � � \ 1

(1+t): |
t

s
(1+{):&3 d{+

+C sup
t

E(t) |
�

s
&{u({)&2

2 d{

+C sup
t

E(t)1&* &\#f &L %$, p$ \|
�

0
&{u({)&2 d{+

1�%

�C sup
t

E(t) |
�

s
&{u({)&2

2 d{

+C sup
t

E(t)1&* &\#f &L %$, p$ \|
�

s
&{u({)&2 d{+

1�%

.

(3.12)
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Since the first term vanishes, letting s � �, the last two terms on the right-
hand side of (3.12) tend to 0. If p=2, the last inequality reduces to

lim
t � �

&(1&,) û(t)&2
2�C sup

t
E(t) |

�

s
&{u({)&2

2 d{

+C sup
t

E(t) |
�

s
& f ({)&2 d{,

which also converges to zero as s � �. This proves Theorem 3.1.

A simple consequence of Theorem 3.1 leads to the following

Corollary 3.2. Suppose that f satisfies the same conditions as in
Theorem 3.1. Let u be a solution satisfying the strong energy inequality. Then

1
t |

t

0
&u({)&2 d{ � 0 as t � �. (3.13)

Proof. For any =>0, we can choose s sufficiently large so that

&u({)&2�= for {�s.

Then

1
t |

t

0
&u({)&2 d{=

1
t |

s

0
&u({)&2 d{+

1
t |

t

s
&u({)&2 d{

�
1
t |

s

0
&u({)&2 d{+=

t&s
t

� = as t � �.

Remark. A similar result was obtained by Kato [10] for small data
and no external force. Miyakawa and Sohr [17] showed that the average
decay (3.13) implies non-uniform decay. Our result extends the class of
functions f for which Miyakawa and Sohr had previously obtained (3.13).

4. UNIFORM DECAY

In this section, we obtain uniform rates of decay for the solutions using
the Fourier splitting method under assumptions A.2 and A.3. More
precisely, we prove:
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Theorem 4.1 (Uniform Decay). Let u be the weak solution constructed in
Theorem 1.1. Suppose that the initial data a # L2 & Lq, with q�2n�(4=+n).

(1) If f satisfies assumptions A.2 and A.3, then

&u(t)&2�{C(1+t)&=

C(log(e+t))&1�2

if n=3, 4,
if n=2,

where the constant C only depends on a and f.

(2) If we further restrict f by assuming f # L1(0, �; L1), then the decay
in two dimensions can be improved to yield

&u(t)&2�C(t+1)&=.

Proof of Theorem 4.1. We first treat the case when f satisfies assump-
tion A.3(1). Recall that /(t)=[! # Rn ; |!|<G(t)]. Let E(t) satisfy E$(t)=
2G2(t) E(t). Using this in (2.20) it follows that

E(t)&u(t)&2
2�E(0)&a&2

2+2 |
t

0
E$({) _|/({)

|û| 2 d!& d{

+2 |
t

0
E({)|( f ({), u({)) | d{. (4.2)

By Proposition 2.6, we see that

|F(u({))|�|F(e2{ a)|+ } |
{

0
e&|!| 2 ({&_)(F(P(u } {u&f )) d_ }

�|e&|!| 2 { â|+|
{

0
e&|!| 2 ({&_) }\$ij&

!i!j

|!| 2+ !kF(ujuk)&f� j } d_

�|e&|!| 2 { â |+|
{

0
e&|!| 2 ({&_)( |!k | |F(ujuk)|+|!| | ĝ| ) d_

�|e&|!| 2 { â|+|
{

0
e&|!| 2 ({&_) |!| d_ (sup

t
&F(ujuk)&�+&ĝ&�).

Therefore, by Ho� lder's inequality, the second term of the right hand side of
(4.2) is
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4 |
t

0
E$({) _|/({)

|e&|!| 2 { â| 2 d!+(sup
t

&ujuk &1+&g&1)2

_|
/({)

{ |
{

0
e&2 |!| 2 ({&_) |!| 2 d_ d!& d{

�C |
t

0
E$({)[&e2{ a&2

2+sup(&ujuk &1+&g&1)2 {G({)n] d{. (4.3)

Combining (4.2) and (4.3), we have

E(t) &û(t)&2
2�E(0) &a&2

2+C |
t

0
E$({) &e2{ a&2

2 d{+C(&u&4
2 , &g&1)

_|
t

0
{E$({) G({)n d{+2 |

t

0
E({) |( f ({), u({)) | d{. (4.4)

Suppose that n=3 and 4. Let E(t)=(1+t): again. The assumption on the
initial data that a # L2 & Lq, combined with the Lp&Lq estimate (2.6) for
the second term on the right-hand side of (4.4), yields

(1+t): &û(t)&2
2�C &a&2

2+|
t

0
(1+{):&1&n(1�q&1�2) [&a&2

2+&a&2
q] d{

+C |
t

0
(1+{):&n�2 d{+|

t

0
(1+{): |( f ({), u({)) | d{

#I1+I2+I3+I4 . (4.5)

Hypothesis A.2 and Proposition 2.2 imply

I4�|
t

0
(1+{): &\#f & p$ &u({)& (1&*)(1&#)

2 &{u({)&2�%$
2 d{

�CE(t)(1&*)(1&#) |
t

0
(1+{):&; &{u({)&2�%$

2 d{

�CE(t)(1&*)(1&#) \|
t

0
(1+{)(:&;)%$ d{+

1�%$

\|
t

0
&{u({)&2

2 d{+
1�%

�C, (4.6)

provided :<;&1�%$==([%+2]�%). On the other hand, I2 and I3 are
bounded if :<min((n�2)&1, n(1�q&1�2)).
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Choosing

:<min {n
2

&1, n \1
q

&
1
2+ , = \%+2

% +=#:0

and combining this with (4.5) and (4.6) we can conclude that

(1+t): &u(t)&2
2�&a&2

2+C[&a&2
2+&a&2

p+sup
t

E(t)

+sup
t

E4(t)+sup
t

&g&2
1+sup

t
E(t)(1&#)(1&*) &{u&2�%$

L 2, 2 ]

�C, (4.7)

where the constant C is independent of t. Hence we obtain

&u(t)&2�C(1+t)&:0.

We assume that = is small and the minimum value of :0 is =([%+2]�%).
Hence we obtain, by setting '=(%+2)�%,

&u(t)&2�C(1+t)&(=�2)'. (4.8)

Substituting (4.8) into the last term in (4.5) and setting }=(1&*)(1&#),
we have

|
t

0
(1+{): |( f ({), u({)) | d{

�|
t

0
(1+{): &\#f & p$ &u({)& (1&*)(1&#)

2 &{u({)&2�%
2 d{

�|
t

0
(1+{):&=}'�2 &\#f & p$ &{u({)&2�%

2 d{

�C |
t

0
(1+{):&='}�2&='&1�%$ &{u({)&2�%

2 d{

�C \|
t

0
(1+{)%$(:&='(1+}�2))&1 d{+

1�%$

\|
t

0
&{u({)&2

2 d{+
1�%

�C, (4.9)
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if :<='(1+}�2). We then obtain

&u(t)&2�C(1+t)&(=�2)(1+(}�2))'.

Noting }=1&#&(n( p&2)�2p)=1&(2�%), we continue to iterate the
above estimate to obtain

&u(t)&2�C(1+t)&(=�2)'(1+(}�2)+(}�2)2+ } } } )

�C(1+t)&='(%�(%+2))

�C(1+t)&=.

When n=2, we choose E(t)=(log(e+t)): (:>1) and G 2(t)=
:(2(e+t) log(e+t))&1. From (4.4),

(log(e+t)): &û(t)&2
2�C &a&2

2+|
t

0
(log(e+{)): (e+{)&1&2(1�q&1�2)

_[&a&2
2+&a&2

q] d{+C |
t

0
(log(e+{)):&1

_[(e+{) log(e+{)]&1 d{+|
t

0
(log(e+{)):

_|( f ({), u({)) | d{

#I1+I2+I3+I4 . (4.10)

Clearly, I1 and I2 are bounded, while

I3=C |
t

0

log(e+{):&2

e+{
d{�C(log(e+t)):&1. (4.11)

By Assumption A.2 and Proposition 2.2, we have

I4�|
t

0
(log(e+{)): &\#f & p$ &u({)& (1&*)(1&#)

2 &{u({)&2�%
2 d{

�CE(t)(1&*)(1&#) |
t

0

log(1+{):

(e+t); &{u({)&2�%
2 d{

�CE(t)(1&*)(1&#) \|
t

0

(log(e+{)):%$

(e+{)1+'=%$ d{$+
1�%$

\|
t

0
&{u({)&2

2 d{+
1�%

�C. (4.12)
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Therefore from (4.10)�(4.12), it follows that

&u(t)&2�C log(e+t)&1�2.

Next we discuss the case we assume f # L2(0, �; L1). To show the decay
in this case, we use inequality (2.20) with ,(!)=e&h(t)|!| 2

, where h(t) will
be determined later. We write the second term on the right-hand side of
(2.20) as follows:

|
t

0
E$({) |

R n
|,(!) û(!)| 2 d! d{

+|
t

0
E$({) |

R n
|(1&,2(!))1�2 û(!)| 2 d! d{. (4.13)

Since (1&,2) behaves like 2h(t)|!| 2 near |!| &0, by choosing E({) such
that h({) E$({)�E({), it follows from (4.13) and (2.19) that

E(t)&u(t)&2
2�E(0)&a&2

2+|
t

0
E$({) |

Rn
|,(!) û({)| 2 d! d{

+2 |
t

0
E({)|( f ({), u({)) | d{. (4.14)

We proceed to estimate the second term of right hand side in (4.14). Using
the expression of the solution in Proposition 2.6, we have

|
Rn

|,(!) F(u({))|2 d!�2 |
R n

|,(!) { |F(e2{a)| 2+ } |
{

0
e&|!| 2 ({&_)

_\\$ij&
!i !j

|!|2+ F(u } {u&f )+ d_ }
2

= d!

�2 |
Rn

,(!)2 e&2{ |!| 2
|â| 2 d!+2 |

Rn
,(!)2 {

_|
{

0
e&2({&_)|!| 2 [ |F(u } {u)|+| f� |]2 d_ d!

350 OGAWA, RAJOPADHYE, AND SCHONBEK



File: 580J 301127 . By:CV . Date:18:03:97 . Time:08:23 LOP8M. V8.0. Page 01:01
Codes: 2197 Signs: 649 . Length: 45 pic 0 pts, 190 mm

�2 |
R n

,(!)2 |e&|!| 2 { â| 2 d!

+4{ |
{

0
|

Rn
,(!)2 e&2({&_)|!| 2

|!| 2 |F(ujuk)|2 d! d_

+4{ |
{

0
|

Rn
,(!)2 e&2({&_)|!| 2

| f� | 2 d_ d!

#I1+I2+I3 .

Suppose that n=3, 4. Then we have

I1�C |
Rn

e&2({+h({))|!| 2
|â| 2 d!

�C &e({+h({))2a&2
2

�C({+h({))&n�2 &a&2
1 , (4.15)

I2�C{ |
{

0
|

R n
e&2({&_+h({))|!| 2

|!| 2 |F(ujuk)| 2 d! d_

�C{ sup
{

&F(ujuk)&2
� |

{

0
|

R n
e&2({&_+h({))|!| 2

|!| 2 d! d_

�C{ sup
{

&u&4
2 |

{

0
(h({)+{&_)&(n�2)&1 d_, (4.16)

I3�C{ |
{

0
|

R n
e&2({&_+h({))|!| 2

| f� | 2 d! d_

�C{ |
{

0
&e2({&_+h({)) f &2

2 d_

�C{ |
{

0
({&_+h({))&n�2 & f (_)&2

1 d_. (4.17)

We choose h({)=(1+{) and E({)=(1+{): ; then from (4.15)�(4.17) we
get

I1+I2+I3�C(1+2{)&n�2 &a&2
1+C{(1+{)&n�2 sup

{
&u&4

2

+C{(1+{)&n�2 |
{

0
& f (_)&2

1 d_. (4.18)
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Hence it follows from (4.13), (4.14), and (4.18) that

(1+t): &û(t)&2
2�C &a&2

2+C |
t

0
(1+{):&1 _(1+{)&n�2 &a&2

1+{(1+{)&n�2

_{sup
{

&u&4
2+|

{

0
& f (_)&2

1 d_=& d{

+|
t

0
(1+{): |( f ({), u({)) | d{

�C &a&2
2+C &a&2

1 |
t

0
(1+{):&1&(n�2) d{

+C {sup
{

&u&4
2+|

�

0
& f (_)&2

1 d_= |
t

0
(1+{):&(n�2) d{

+C |
t

0
(1+{): &u& (1&*)(1&#)

2 &\#f & p$ &{u&2�%
2 d{

�C0+C1 |
t

0
(1+{):&1&(n�2) d{+C2 |

t

0
(1+{):&(n�2) d{

+C3E(t)(1&*)(1&#) \|
t

0
(1+{)(:&=')%$&1 d{+

1�%$

�C (4.19)

if :<min(n�2, n�2&1, ='). We assume, for = sufficiently small,

&u(t)&2�C(1+t)&(=�2)'. (4.20)

Substituting (4.20) into (4.19), we obtain a better rate of decay:

&u(t)&2�C(1+t)&(=�2) '(1+(}�2)).

Iterating this argument, the desired estimate is obtained.
When n=2, we choose h({)=(1+{)(log(e+{)) and E({)=(log(e+{)):

with :>1. Then by (4.15)�(4.17), it follows that
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|
R n

|,(!) F(u({))| 2 d!�I1+I2+I3

�C(1+{+{ log(e+{))&1 &a&2
1

+C(log(e+{))&2 sup
{

&u&4
2

+C(log(e+{))&1 |
�

0
& f (_)&2

1 d_. (4.21)

Hence from (4.14) and (4.21) we have

(log(e+{)): &û(t)&2
2�&a&2

2+C |
t

0
(log(e+{))a&1 (e+{)&1

__(1+{+{ log(e+{))&1 &a&2
1+(log(e+{))&2

_sup
{

&u&4
2+(log(e+{))&1 |

{

0
& f (_)&2

1 d_& d{

+|
t

0
(log(e+{)): |( f ({), u({)) | d{

�&a&2
2+C &a&2

1 |
t

0

log(e+{):&2

(e+{)2 d{+C sup
{

&u&4
2

_|
t

0

log(e+{):&3

e+{
d{+C & f &2

2, 1 |
{

0

log(e+{):&2

e+{
d{

+C |
{

0
(log(e+{)): &u& (1&*)(1&#)

2 &\#f & p$ &{u&2�%
2 d{

�C+C(log(e+t)):&1, (4.22)

if :�1. Thus,

&u(t)&2�C(log(e+t))&1�2. (4.23)

To prove the second part of the theorem, we start the inequality (4.2)
again (cf. Zhang [28]).

From (2.25) in Proposition 2.6 and the Ho� lder inequality, it follows that

353THE NAVIER�STOKES EQUATION



File: 580J 301130 . By:CV . Date:18:03:97 . Time:08:23 LOP8M. V8.0. Page 01:01
Codes: 2212 Signs: 716 . Length: 45 pic 0 pts, 190 mm

|
/({)

|F(u(t))| d!�2 |
/({)

|e&|!| 2 { â| 2 d!

+2 |
/({) {|

{

0
e&2 |!| 2 ({&_)( |!|&F(ujuk)&�+& f &�) d{=

2

d!

�2 &a&2
1 |

/({)
d!+2 |

/({)
|!| 2 d! \|

{

0
&u(_)&2

2 d_+
2

+2 |
/({)

d!

_\|
{

0
& f (_)&1 d_+

2

�2 |/({)| {&a&2
1+\|

{

0
& f (_)&1 d_+

2

=
+2{ |

/({)
|!| 2 d! \|

{

0
&u(_)&4

2 d_+ . (4.24)

Set E(t)=(1+t)2 and G2(t)=2�(1+t). Using the logarithmic decay (4.23)
and estimate (4.24) and plugging in (4.2), we have

(1+t)2 &u(t)&2
2�&a&2

1+C |
t

0
(1+{) _(1+{)&1 {&a&2

1+\|
{

0
& f (_)&1 d_+

2

=
+2{(1+{)&2 |

{

0
&u(_)&2

2 (log(e+_))&1�2 d_& d{

+2 | (1+{)2 |( f ({), u({)) | d{

�C0+C1(1+t) \&a&2
1+\|

t

0
& f (_)&1 d_+

2

+C(1+t) |
t

0
&u(_)&2

2 (log(e+_))&1�2 d_

+CE(t)(1&*)(1&#) \|
t

0
(1+{)(2&=')%$&1 d{+

1�%$

_\|
t

0
&{u&2

2 d{+
1�%

�C0+C1(&a&2
1 , & f &2

1, 1)(1+t)+C2(1+t)

_|
t

0
&u(_)&2

2 (log(e+_))&1�2 d_+C3(1+t)2&='. (4.25)
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Hence we have

(1+t)&u(t)&2
2�C0(1+t)&1+C1+C2 |

t

0
&u(_)&2

2 (log(e+_))&1 d_

+C3(1+t)1&='. (4.26)

Applying the Gronwall inequality, (4.26) implies that

(1+t)&u(t)&2
2�C log(e+t)+C(=) log(e+t)2m |

t

0

d{
(e+{)=' log(e+{)2m

�C log(e+t)+C(=)(e+t)1&=' log(e+t)2m,

where m is some integer which depends on the constant C2 in (4.26). Hence
we obtain

&u(t)&2�C(1+t)&='�2 log(e+t)m. (4.27)

Here the constant C depends on the norm of the initial data a and the external
force f in the conditions A.2 and A.3(2).

We reiterate by substituting this decay (4.27) into (4.25). As in (4.9), we
see that

|
t

0
(1+{)2 |( f ({), u({)) | d{

�|
t

0
(1+{)2 &\#f & p$ &u&}

2 &{u&2�%
2 d{

�|
t

0
(1+{)2&;&='}�2 log(1+{)m}�2 &{u&2�%

2 d{

�C \|
t

0
(1+{)%$(2&='(1+}�2))&1 log(e+{)m}%$�2 d{+

1�%$

�C(1+t)2&='(1+}�2) log(e+t)m}�2. (4.28)

Noting that there is a constant C such that (1+t)&='�4 log(1+t)m�C, we
have from (4.25), (4.27), and (4.28) that

(1+t)&u(t)&2
2�C0(1+t)&1+C1

+C2 |
t

0
(1+{)&u({)&2 (1+{)&1&='�4 d{

+C3(1+t)1&='(1+}�2) log(1+t)m}�2.
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We again solve this inequality by using Gronwall's lemma and it follows that

(1+t)&u(t)&2
2�Ce&(C�_)(1+t) &_

+Ce&(C�_)(1+t)&_

_|
t

0
(1+{)&$ log(1+{)l e(C�_)(1+{)&_ d{

�C+C(1+t)1&='(1+(}�2)) log(1+t)m(}�2), (4.29)

where we have put _=='�4, $=='(1+}�2), and l=m}�2. Hence

&u(t)&2
2�C(1+t)&='(1+(}�2)) log(1+t)m(}�2). (4.30)

Repeating this procedure l times, we have

&u(t)&2
2�C(1+t)&='(1+(}�2)+(}�2) 2+ } } } +(}�2) l ) log(1+t)m(}�2) l

.

Since }=(1&*)(1&#)�1, we conclude by taking the limit as l � � that

&u(t)&2�C(1+t)&=. (4.31)

This proves the last part of the theorem.

Finally we should remark that the condition A.3 on f can be generalized
in the following form:

A.3$. f is expressed as f=D$g#F&1|!|$ ĝ, where g # L&(0, �; Lr) and
the exponents $, & and r satisfy

2
&

+n \1
r
&

1
2++$>=+1. (4.32)

Under the above general condition, the estimate from the term including
g in (4.5) or the estimate for the term I3 in (4.17) goes way as in (4.17)�
(4.19). By using Lemma 2.7,

I3(t)�4{ |
{

0
|

Rn
e&2({&_+h({))|!| 2

| f� | 2 d! d_

�C{ |
{

0
&e2(1+2{&_) |{|$ g&2

2 d_

�C{ |
{

0
(1+2{&_)&n(1�r&1�2)&$ &g&2

r d_
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�C{(1+{)&n(1�r&1�2)&$ \|
{

0
d_+

(&&2)�&

\|
{

0
&g&&

r d_+
1�&

�C(1+{)2&(2�&)&n(1�r&1�2)&$ \|
{

0
&g&&

r d_+
1�&

.

Hence the sufficient condition on the exponent is (4.32)

Proposition 4.2. Suppose that u is a solution to the Navier�Stokes equa-
tion with the condition that the external force f satisfies assumption A.3$. Then
the solution u has the same decay rate as in (4.31).
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