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DECAY OF NON-QOSCILLATING SOLUTIONS
TO THE MAGNETO-HYDRODYNAMIC EQUATIONS

M.E. SCHONBEK
University of California, Sonta Cruz, California, CA 95060
E-mail: schonbek@math.ucsc.edu

In this paper we study the decay of solutions to the Magneto-Hydrodynamic equa-
tions. We show that if the magnetic energy decays to alimit L; that is, if the energy
of the magnetic field is non-oscillating, then the energy of the velocity decays to

ZeTo.

1 Introduction

In this paper we study the large time behavior of solutions to the Magneto-
Hydrodynamic equations in all of R®-space

4 +u Vu—B -VB+Vp=Au
Bi+u-VB-B - Vu=10 (1)
dive=divB =0

with the initial conditions
(u(:r:, 0), B(z, 0)) = (UU(:‘C)! Bo(z)) € X

where X will be described below. We show that if the magnetic energy

Jrs |B(z,1){? dz tends to L as time goes to infinity then the energy of the
velocity fRrs |u(x,t)}? dz tends to zero at the same rate. This establishes a
conjecture described in Moffat’s paper®. We will present the proof for smooth
solutions. The proof is also valid for weak solutions for which a sequence of
smooth approximating solutions can be constructed which converge weakly in
I2. In the second case one applies the proof we give to the approximating
solutions and then passes to the limit. The proof is based on the Fourier
splitting method >4. Here we use the modified version which permits to treat
the integrated equations®.

We will use the notation

ol = [ e,
RS
lulzm = Y ]m |D%u|? dx.

lelgm

The main theorem we establish in this paper is the following
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Theorem 1 Let (u{x,t), B(z,t)) be a smooth solution to (1) with data (ug, B,
|-, )]l = 0 for t — co.

2 The decay

In this section we establish Theorem 1. As was said in the mtroduction, the
main tool is the Fourier splitting method. The proof we present can be uged
for solutions in R*, n > 3.

In what follows we suppose the existence of smooth solutions, Such solu-
tions should exist at least for small enough data,

Proof of Theorem 1. The first step is to derive an energy inequality which
involves the energy of the magnetic field, the velocity and the gradient of the
velocity. Multiplying the first equation in (1) by u and the second by B,
integrating in space and adding both equations yields after some integration

by parts:
%j:v (luf® + |B|*} dz = —/Ra |Vu|? dz.

Hence integrating in time over [s,#] we have

f (lu(z, 8)|> + |B(z,1)[?) de

R3
(2)
t
= —2/ |Vu|2dxd3+f (Jufz, s} + |B(z, 5}|%) dx=.
Fl R3

We first need to estimate the Fourier transform of the solution in a neighbor-
hood of the origin in frequency space.

Lemma 2 Let u(z,t) be the first component of a solution to the MHD equa-
tions (1) satisfying the conditions of the Theorem. Then

; 1
[a(g, 1)l < (1+g)'

Proof. Taking the Fourier transform of the equation we derive an ordinary
differential equation which yields for #(¢, ¢)

(€, 1) = age=lél" _ f H(E, s)eEPt-9) gg (3)
1]

where A o o .
H(E,s) = uVu(é,s) — BVB(E,3) + Vp(€, 5).

) €
(L2(R3) n LY(R3) N H2(R3))2. Suppose that || B(-,t)||lz = L fort -+ co. Then

e T

Not

it fe

and

Hen

so tl

Here

with
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Noting that the pressure p satisfies the elliptic equation

E 6:. {uiu; — By Bj),

it follows that . .
Vip=&p=1  &&ii(iu; — BiB;)

1.
and hence o o
|Vxp| < ClEI(ji4;] + | B B;)-
Hence
(] < Coléi(lam;| +1B:B;])
< Col[{l|=olf? + 1| BIi3)
so that

ja(€, 1) < C+CDA el (lluli2 + || BIIZ)e~ €7 ¢=) ds

C.
€l

Here we used that ug € L' and hence i € L. O
Returning to the proof of Theorem 1, we use the Fourier splitting method

with the modification introduced by Wlegner
Let v(s)} = [ju(s)||3 + || B(5)||3, then (2} reads

v(t) — v(s) f/ (Vu|? dzds.

1/2
Let S(#) = {€ : |€] € [ggl

by the Fourier splitting method, we have

<C+

}, where g(t) will be specified below. Hence,

oft) = o(s) + [ o lutr)lar
)

f o(r) [ n)I? dedr < j o PIC (o) + g )] dr
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where we need (3) for the last inequality. Now following Wiegner let
e(t) = ef 9(r)’* dr

hence t

e(t) —e{t —h} = et — h) - g(r)? dr + he(h) (6)

where e(h) = 0 as k — 0. Now write

e(t)(ult) = L) — et — B)(o{t — h) ~ L) =
(e(t) — elt = h))(v{t) — L) +e{t — h)((v(t — k) — L} — (v(t + k) - L))
so that by (6)
e(t)({t) ~ L) — eft — h)(u(t — h) —

e(t — h) /“h g(r)* dr{v(t) — L) + e(t — h)(v(t) — v{t — h))he(h)(v(t) — L)=
et [ [ aete) ~ e+ 000~ u(e— 1
+ l_hg(r) (v(r) — L) dr] + he(h)(v(t) — L).

Witing o(r) — L = () + (1B - L), we get
ele)(o(8) — 1) = et ~ o(t ~ h) — I} =
=) | [ g0)(0) - vl 4 o(t) = oft - 1
g
b 2 uyr 2 r el — r 2 T 2 - T

+ [ s ar] +ee- 1) [ g7 mEE -

+he(h)(v(t) — L).
Let g(¢)* = a{t + 1)~1, with o sufficiently large. Then

eft)y = e Jo H = (1 4 1),

Let Ty be such that for ¢ > Tp) we have ||| B(t)(|3 - L| < €. From (5} and (7) it
follows that, for ¢t > T,

e(t)v(t) — L] — e(t — A){v(t — k) — L]




following Wiegner let

(r)* dr + he(h) (6)

-hY—LYy—{v(t+ h)— L))

— vt — h))he(h)(v(t) — L)

—h)

: get

t) —w(t —h)
(7}
g(r*(IB(r)lI3 — L) dr

. Then
1),
- LI < €. From (5} and (7) it
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< e[t —h) ./:-h g(r)i’[v(t) —v{r)jdr+ C/.;l B(r)(r + 1)—nf2 dr
+ ce(t — A) /‘_h_(;'{:r']2 dr + he(h){v(t) ~ L). (8)

Note that
lo(t) — v(r}) < O(h) if [t—r|<h
since, by (5},
¢

lo(t) — v(t — B)] < /t_h(r+ 1)="/2 < Ch,

Hence summing (8) over intervals of length A it follows that for ¢t > T
e(t)(v(t) — L] — e(T)[w(T) - ]
t ¢ t
< O(h)fT e(r)g(r)? dr +/T e(r)(r + 1)~ 2 dr + ffT o(r)?e(r) dr
+ e(h}[v{0) — L]
Let A — 0, then
e(Ovlt) - L] < e(D)o(T) ~ L]+ C(t+ 17~/ 4 Coelt).  (9)

Here we used that

'/tg(‘.f')?re(r) dr = Cg ]t(r' -+ 1)“—1 dr < C(f + l)a'
T T

Dividing by e(t) yields
e(T)
e(t)

[woias+ [1Bora-1< 8w + 1) +car )t

concluding the proof of Theorem 1.
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