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Abstract. In this paper, we exclude the possibility of existence of a singular solution of the

selfsimilar type proposed by Jean Leray. More precisely, using a slightly stronger hypothesis we give

a simpler proof to the analogous result established by J. Ne�cas, M. R�u�zi�cka and V. �Sver�ak. We also

discuss the possible existence of a singular solution of pseudo-selfsimilar type.

1. Introduction

In their recent paper, Ne�cas, R�u�zi�cka and �Sver�ak [5] excluded the possibility of
existence of non-zero singular solutions to the Navier{Stokes equations in the form

u(t;x) = 1p
2a(T�t)

U

�
xp

2a(T�t)

�
p(t;x) = 1

2a(T�t)P

�
xp

2a(T�t)

� a > 0 ;(1.1)

for t 2 (�1; T ) and x 2 IR3. Solutions of this type would blow up at the time T 2 IR.
The construction of a singular solution of the type (1.1) was proposed originally by
Leray [4]. Since that time it is known that if the system

divU = 0

aU+ ayk
@U

@yk
� ��U + Uj

@U

@yj
+rP = 0(1.2)
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had a non-trivial solution U = (U1; U2; U3) (in the class of weak solutions) then u =
(u1; u2; u3) of the form (1.1)1, extended by zero for t > T would be a weak solution1

to the Navier{Stokes equations

divu = 0
@u

@t
+ uj

@u

@xj
� ��u + rp = 0 ;(1.3)

for which
lim
t!T�

kruk2 =1 :

In other words, if U had been a non-zero solution to (1.2), then u of the form (1.1)1
would be a counter-example to the possible global existence of the strong (and conse-
quently smooth) solution of (1.3).
Ne�cas, R�u�zi�cka and �Sver�ak [5] proved that under the assumption

U 2 L3(IR3) \W1;2
loc(IR

3) ;(1.4)

(1.2) has only the trivial solution.

The objective of this paper is twofold. First, we will present an alternative proof of
U being identically zero under the stronger but natural2 condition

U 2W1;2(IR3) :(1.5)

More precisely, condition (1.5) allows us to present a simpler (and detailed) proof here.
The proof consists of three parts: in Section 2 it is shown that (1.5) implies (even
in more general situations) U 2 W2;2(IR3) \ L1(IR3) and some further regularity

properties for P and U. In Section 3 a maximum principle for the quantity jUj2

2 +
P + aUiyi is derived. This is the crucial step to prove that U � 0 as shown �nally in
Section 4.
The second aim of the paper is to discuss the possible existence of singular weak

solutions in the more general form

u(t;x) = �(t)U(�(t)x) ;

p(t;x) = �2(t)P (�(t)x) :(1.6)

In fact, if instead of (1.6)2 it is assumed that p(t;x) has the form

p(t;x) = �(t)P (�(t)x)(1.7)

it is easy to observe that � coincides with �2 up to a constant multiplier.
Hereafter, the solutions of the type (1.6) are called pseudo-selfsimilar solutions to

(1.3). This is motivated by the fact that if � = � then (1.6) reduces to the selfsimilar
solution (1.1), as will be clari�ed in Section 5.
Assuming �, � 2 C1(�1; T ), we will also show in Section 5 that the following

possibilities can happen:

1 For the both systems, the functions p and P are eliminated by divergence{free test functions.
2 Condition (1.5) holds provided for example that u 2 L2(I ;W1;2(IR3)), which is the usual space

of functions where weak solutions to (1.3) exist.
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1. u has the Leray form (1.1)1 (and as mentioned above, U must be identically
zero);

2. U � 0 due to some trivial arguments;

3. u is a non-singular selfsimilar solution. The solutions of this form have been
recently studied by Cannone, Meyer, Planchon and Barraza, see Cannone [2]
for details and further references;

4. The Fourier transform of U has a special form in spherical coordinates.

Before ending this introductory part, we recall the notations of some function spaces.
The symbol D(IR3) is used to denote the space of smooth vector-valued functions
having compact support in IR3. Let p > 1 and k 2 IN, then (Lp(
); k � kp) denotes the
Lebesgue spaces while (W k;p(
); k�kk;p) denotes the Sobolev spaces of scalar functions.
We write vectors, vector-valued functions and their corresponding function spaces in
boldface in order to avoid confusion.
The space of divergence-free vector functions belonging to W1;2(IR3) is denoted by

V, while V� denotes its dual space.
As seen above we use also the summation convention.

2. Regularity results for the Leray system

The aim of the present section is to improve the regularity conditions for U and P
under the assumptions that U 2 W1;2(IR3) and (U; P ) is a weak solution to (1.2).
Let us note that we will only prove the regularity needed later on. However, both
quantities belong to Wk;2(IR3) for all k 2 IN.
The idea of the proof is very simple: using the transformation (1.1) we can easily

observe that
u 2 C([t1; t2];W

1;2(IR3))(2.1)

for all t1, t2 such that �1 < t1 < t2 < T . It is well known that (2.1) is certainly
a su�cient condition to get full regularity of the solution of (1.3) on (t1; t2). Using
this and (1.1) (now, reading the properties of U from u) we get easily the expected
regularity for U and consequently for P .
Let us remark that the proof does not change if (1.1) is replaced by (1.6) assuming

that �, � 2 C(�1; T ). Then, again, U 2W1;2(IR3) implies (2.1).
Let us �nally recall that a function u 2 L1(t1; T ;L

2(IR3))\L2(t1; T ;V) with
@u
@t 2

L4=3(t1; T ;V
�) is a weak solution to (1.3) if

h@u(t)
@t

;'i
V �;V

+

Z
IR3

uk(t)
@u(t)

@xk
�' dx+ �(ru(t);r') = 0(2.2)

holds for all ' 2 D(IR3) satisfying div' = 0, and a.a. t 2 (t1; T ).
If (2.1) holds, it is easy to check that @u

@t 2 L2(t1; T ;V
�). Thus, (2.2) is valid for all

' 2 V and we can use u(t) as a test function in (2.2).
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We are ready to prove the following statement.

Lemma 2.1. Assume that U 2 W1;2(IR3) is a weak solution to (1.2). Let u be
given either by (1.1) or by (1.6), where we assume �, � 2 C1(�1; T ). Then

U 2W2;2(IR3) \ L1(IR3) and P 2W 1;2(IR3) :(2.3)

Proof. Let us take t1, t2 such that �1 < t1 < t2 < T and set I � (t1; t2). By the
assumptions on � and � we see that

u 2 C(I;W1;2(IR3)) :(2.4)

Let us denote (for a z(t) 2W1;2(IR3))

�h
rz(t) �

z(t;x+ her)� z(t;x)

h
; r = 1; 2; 3;

where er , r = 1; 2; 3, are unit vectors (1; 0; 0), (0; 1; 0), (0; 0; 1). From the weak
formulation (2.2) we get

h @
@t
�h
ru(t);'iV �;V + �(�h

rru(t);r')

+
1

h

Z
IR3

�
(uk

@ui
@xk

)(t;x+ her)� (uk
@ui
@xk

)(t;x)

�
'i(x)dx = 0 :(2.5)

Taking �h
ru(t) in (2.5) instead of ', we obtain (for simplicity we write �h

ru instead
of �h

ru(t))

1

2

d

dt
k�h

ruk22 + �k�h
rruk22 = �

Z
IR3

�h
ruk

@ui(t;x+ her)

@xk
�h
ruidx � Y ;

where we used the fact that
R
IR3 uk

@(�h
rui)

@xk
�h
ruidx = 1

2

R
IR3 uk

@j�h
ruj

2

@xk
= 0, which can

be checked after integration by parts since u satis�es (2.4) and C(I;D(IR3)) is dense
in C(I;W1;2(IR3)).

Further, using the interpolation inequality kzk4 � kzk 1
4

2 kzk
3
4

6 , the continuous imbed-
ding of W1;2(IR3) into L6(IR3), and the Young inequality, we obtain

jY j � k�h
ruk24kruk2 � k�h

ruk
1
2

2 kruk2k�h
ruk

3
2

6

� ckr�h
ruk

3
2

2 k�h
ruk

1
2

2 kruk2 �
�

2
k�h

rruk22 + ckruk42k�h
ruk22 :

Hence
d

dt
k�h

ruk22 + �k�h
rruk22 � ckruk42k�h

ruk22 :

Since kruk42 2 L1(I) due to (2.4), we obtain by the Gronwall inequality

u 2 L2(I;W2;2(IR3)) :(2.6)
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Analogously, applying the di�erence quotient method with respect to t, we get from
(2.2) (formally by testing by @u

@t
)

@u

@t
2 L2(I;L2(IR3)) :(2.7)

Hence, using (1.3), (2.6) and (2.7) we have

rp 2 L2(I;L2(IR3)) :(2.8)

Taking an arbitrary t 2 I and using the formulas (1.1) respectively (1.6) (in fact we
express U and P by means of u and p) we can easily conclude that (2.6) and (2.8)
imply U 2 W2;2(IR3) and P 2 W 1;2(IR3). Applying �nally the Agmon inequality

(Agmon [1]) kUk1 � kUk1=21;2 kUk1=22;2 we see that (2.3) is valid. The proof of Lemma
2.1 is complete. 2

Next, using the Riesz transformation, some more regularity properties for the self-
similar pressure P are obtained.

Lemma 2.2. Let U and P be solutions to (1.2) satisfying (2.3). Then

�P = �@Uj
@yi

@Ui
@yj

;(2.9)

P 2 W 2;2(IR3) \ Lq(IR3) for all q 2 (1;1] ;(2.10)

and denoting r = jyj we have Z
IR3

r2
����@U@r

����2 dy <1 :(2.11)

Proof. Taking the divergence of (1.2), equation (2.9) follows immediately thanks to
the regularity of U. Hence

P = RiRj(UiUj) ;

where Rj is the Riesz transformation. (Let us recall that the Riesz transformation

Rj is the singular integral operator given by the Fourier multiplier �i�j

j�j
, see [6] for

details.) As U 2 L2(IR3) \ L1(IR3) we obtain

P 2 Lq(IR3) for all q 2 (1;1)

due to the Marcinkiewicz multiplier theorem (see e.g. Stein [6]). >From (2.9) and
(2.3), �P 2 L2(IR3) and therefore by means of the Agmon inequality above we get

P 2 L1(IR3). Finally, as yk
@U
@yk

= r @U
@r

and all the other terms in (1.2) are square

integrable, we get (2.11). 2
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3. Maximum principle

The objective of this section is to show that the quantity3

X � jUj2
2

+ P + aUiyi(3.1)

is (i) either a positive constant on IR3;
(ii) or a nonpositive function on IR3.

The main tool is the maximum principle for X. The following observation plays an
important role.

Lemma 3.1. The quantity X de�ned by (3.1) satis�es

Uj
@X

@yj
� ��X + ayk

@X

@yk
+ �

�
jrUj2 � @Ui

@yj

@Uj
@yi

�
= 0 :(3.2)

Proof. Equation (3.2) is obtained by the sum of three identities. The �rst one is
obtained by multiplication of (1.2)2 scalarly by U, the second one is derived by the
multiplication of (1.2)2 by ay and the third identity is the pressure equation (2.9)
multiplied by �. 2

Lemma 3.2. There are two possibilities: either X � 0 on IR3 or X is a positive
constant.

Proof. Let us set
X�(y) � X(y)e��jyj

2

; � > 0 :(3.3)

Multiplying (3.2) by e��jyj
2

we get the following equation for X� :

���X� + 2(ajyj2 � 2��jyj2 + Ujyj � 3�)�X� + Uj
@X�

@yj

+ (a� 4��)yj
@X�

@yj
+ �

�
jrUj2 � @Ui

@yj

@Uj
@yi

�
e��jyj

2

= 0 :(3.4)

For R > 0 large enough there exists a �0 such that

(a � 2��)jyj2 + Ujyj � 3� > 0(3.5)

for all � 2 (0; �0) and jyj � R. The last term in (3.4) is non-negative, thus, by (3.5)
it follows

� ��X� + bj(y)
@X�

@yj
+ b(y)X� � 0 ;(3.6)

where bj(y) = Uj(y) + (a � 4��)yj and b(y) = 2�(ajyj2 � 2��jyj2 + Ujyj � 3�) > 0
for jyj � R and � 2 (0; �0).

3 Recall that a is a positive constant occuring in (1.1) and (1.2).
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Let R and � be such that (3.5) holds. Let us further denote M � maxjyj=RX.
Then two possibilities can happen: either M is positive or M is not positive. Assume
�rst M > 0. Then there is an R� > R such that

X� <
M

2
for jyj = R� (jX(y)j � c1jyj+ c2) :(3.7)

We can apply the maximum principle to the inequality (3.6) on BR�
n BR. As (3.5)

holds and �� < 0, all the signs are correct (see Gilbarg, Trudinger [3]) and then
for all % 2 [R;R�] it follows that

max
jyj=%

X� �M e��R
2

:(3.8)

Fix some arbitrary %. Letting � ! 0+ we observe that (R� can tend to in�nity)
maxjyj=%X �M . Hence

max
jyj=%

X �M = max
jyj=R

X � max
jyj�R

X :(3.9)

On the other hand, using the maximum principle for (3.2) (rewritten to a similar
inequality as (3.6)) on B%, we see that

max
jyj�R

X � max
jyj=%

X :(3.10)

Thus, (3.9) and (3.10) yield

max
jyj=%

X = M for all % � R :(3.11)

However (3.9) implies that the maximumis attained inside of B%. The stronger version
of the maximum principle (see Gilbarg, Trudinger [3]) then gives

X �M (const:) > 0 on IR3 ;(3.12)

which veri�es the �rst statement of the lemma.
Secondly, if M � 0 then clearly

sup
jyj�R

X� � 0 :(3.13)

Indeed, for a given " > 0, let us �nd an ~R > R such that supjyj� ~RX� < ". (such ~R

certainly exists since jX(y)j � c1jyj+ c2). Then applying the maximum principle on
B ~R n BR for X� we get supy2B ~RnBR

X� < max(M; ") = ". Since " > 0 is arbitrary,

(3.13) follows.
Inequality (3.13) immediately yields

sup
jyj�R

X � 0 :(3.14)

Applying again the maximum principle to the equation (3.2) on BR we obtain

max
jyj�R

X � max
jyj=R

X =M � 0 :(3.15)

Therefore X � 0 on IR3 and the proof of Lemma 3.2 is complete. 2
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4. Main Theorem

Theorem 4.1. Let U, P be a weak solution to the Leray system (1.2). Then U � 0.

Proof. The proof uses the results of the previous section. Consider X de�ned in
(3.1). By Lemma 3.3 X can be either a positive constant or a nonpositive function. If
X = const:, then (3.2) gives

jrUj2 � @Ui
@yj

@Uj
@yi

= 0 :(4.1)

Integrating (4.1) over IR3 and using the integration by parts justi�ed below we obtainZ
IR3

@Ui
@yj

@Uj
@yi

dy = �
Z
IR3

@2Ui
@yj@yi

Ujdy :(4.2)

Hence Z
IR3

jrUj2dy = �
Z
IR3

@

@yj
(divU)Ujdy = 0 :(4.3)

This implies U � const: Since U 2 L2(IR3) it follows that U � 0. To verify (4.2) one
can argue for example by the density argument as follows: Let Un 2 D(IR3) be such
that kUn �Uk2;2 ! 0 as n ! 1. Clearly (4.2) is valid for all Un, n 2 IN. Letting
n!1 we easily check (4:2) for U.
It remains to show that U � 0 provided that X � 0.
For the readers convenience, we present �rst a formal proof: Multiplying (1.2)2

scalarly by y and integrating over IR3 yields

a

Z
IR3

Uiyi dy + a

Z
IR3

yk
@Ui
@yk

yi dy+

Z
IR3

Uk
@Ui
@yk

yi dy

��
Z
IR3

yi�Ui dy+

Z
IR3

yi
@P

@yi
dy = 0 :

Now, we use formally the integration by parts, i.e. we assume that all \boundary
terms" vanish. Then one obtains the equality

�3a
Z
IR3

Uiyi dy� 3

Z
IR3

P dy�
Z
IR3

jUj2 dy = 0 ;

which can be rewritten as

�3
Z
IR3

X dy+
1

2

Z
IR3

jUj2 dy = 0 :

Since X � 0 on IR3, we see that U must be identically equal to zero.
In order to justify these formal arguments rigorously we multiply (1.2)2 scalarly by

y

(1 + "r)�
where " > 0 and r = jyj :
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>From the regularity result proved in Section 2, all terms in (1.2)2 belong to L2(IR3).

Evidently, yk
@U
@yk

= r @U@r . If z 2 L2(IR3) then

Z
IR3

ziyi
(1 + "r)�

dy � kzk2
�Z

IR3

r2

(1 + "r)2�
dy

�1=2
<1

provided that � > 5
2 .

Consider therefore � 2 (52 ; 3); the choice of the upper bound will be clear later on.

Multiplying (1.2)2 by
y

(1+"r)� , integrating over IR
3 and using the density argument (as

explained above), we obtainZ
IR3

@Ui
@yk

Ukyi
(1 + "r)�

dy = �
Z
IR3

jUj2
(1 + "r)�

dy+

Z
IR3

�"(Uiyi)2

r(1 + "r)�+1
dy ;(4.4)

�
Z
IR3

�(�Ui)yi
(1 + "r)�

dy =

Z
IR3

�Uiyi
(1 + "r)�

�
3"�

r(1 + "r)
� "2�(�+ 1)

(1 + "r)2

�
dy ;(4.5) Z

IR3

@P

@yi

yi
(1 + "r)�

dy = �
Z
IR3

3P

(1 + "r)�
dy+

Z
IR3

�"rP

(1 + "r)�+1
dy :(4.6)

A �ner argument is necessary to justify the integration by parts in the integral with
the term yk

@Ui
@yk

. It is possible to show (see Lemma 4.2 below) thatZ
IR3

yk
@Ui
@yk

yi
(1 + "r)�

dy = �4
Z
IR3

Uiyi
(1 + "r)�

dy+ �"

Z
IR3

Uiyir

(1 + "r)�+1
dy :

Hence

a

Z
IR3

�
Ui + yk

@Ui
@yk

�
yi

(1 + "r)�
dy

= �3a
Z
IR3

Uiyi
(1 + "r)�

dy + �"a

Z
IR3

Uiyir

(1 + "r)�+1
dy :(4.7)

>From (4.4){(4.7) we �nally obtain (X is de�ned in (3.1))Z
IR3

X

(1 + "r)�

�
�3 + �"r

(1 + "r)
+

�

ar

3�"

(1 + "r)
� �

a

"2�(�+ 1)

(1 + "r)2

�
dy

+

Z
IR3

P

(1 + "r)�

�
�

a

"2�(�+ 1)

(1 + "r)2
� �

ra

3�"

(1 + "r)

�
dy(4.8)

+
1

2

Z
IR3

jUj2
(1 + "r)�

�
1� �"r

(1 + "r)
� �

ra

3�"

(1 + "r)
+
�

a

"2�(�+ 1)

(1 + "r)2

�
dy � 0 :

The sign of the inequality in (4.8) is due to omitting the last integral from (4.4) which
is positive.
Since � < 3, "r

(1+"r) � 1 and "
r(1+"r) � 1

r2 , we see that there exists an r1 large enough

such that

Z � �3 + �"r

(1 + "r)
+

�

ar

3�"

(1 + "r)
� �

a

"2�(�+ 1)

(1 + "r)2
� 0
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for all r � r1. Rewrite (4.8) asZ
Br1

X

(1 + "r)�
Zdy +

Z
IR3nBr1

X

(1 + "r)�
Zdy

+

Z
IR3

jUj2
(1 + "r)�

(�1

2
Z � 1)dy

+
��

a

Z
IR3

P

(1 + "r)�

�
"2(�+ 1)

(1 + "r)2
� 3"

r(1 + "r)

�
dy � 0 :(4.9)

Now, using the fact that U 2 L2(IR3) \ L1(IR3) and P 2 Lq(IR3) for all q > 1, it is
not di�cult to check (using the di�erent arguments close to the origin and far of it)
that the integrals

I1 �
Z
IR3

1

r

jP j
(1 + "r)�+1

dy ; I2 �
Z
IR3

1

r2
jP j

(1 + "r)�
dy ; I3 �

Z
IR3

1

r

jUj2
(1 + "r)�+1

dy

are bounded independently of ". To be more precise, we verify the uniform estimate
of I1. On B1, as (1 + "r)�(1+�) � 1, we have

Z
B1

jP j
r
dy � kPkq

�Z
B1

1

rq=(q�1)
dy

�q�1
q

� ckPkq
�Z 1

0

1

r�2+q=(q�1)
dr

�q�1
q

;

and the last term is �nite for q > 3
2 . On IR3 nB1, the H�older inequality gives

I1 � kPk2
 Z

IR3nB1

1

r2(1 + "r)2�
dy

!1=2

� ckPk2
�Z 1

1

1

(1 + "r)2�
dr

�1=2
;

which is certainly �nite for � > 5
2 . The estimates of I2 and I3 and the �rst integral

in (4.9) are similar and we can pass to the limit " ! 0. Finally, since XZ � 0 on
IR3 nBr1 the Fatou Lemma justi�es the limit process in the second integral of (4.9).
Thus we observe �rst that

�
Z
IR3

Xdy <1 ;

and then (passing to the limit in (4.9) once more) one has

�3
Z
IR3

Xdy+
1

2

Z
IR3

jUj2dy � 0 :

However, X � 0 on IR3 by the assumption, so U � 0. The proof of Theorem 4.1 is
now complete. 2

Lemma 4.2. Assume that yk
@U
@yk

2 L2(IR3) and U 2 L2(IR3) \W2;2(IR3). Let

� 2 (52 ; 3) and r � jyj. Then it holdsZ
IR3

yk
@Ui
@yk

yi
(1 + "r)�

dy = �4
Z
IR3

Uiyi
(1 + "r)�

dy+ �"

Z
IR3

Uiyir

(1 + "r)�+1
dy :(4.10)
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Proof. We haveZ
IR3

yk
@Ui
@yk

yi
(1 + "r)�

dy = lim
R!1

Z
BR

yk
@Ui
@yk

yi
(1 + "r)�

dy ;

where BR is a ball with the diameter R. Using the Green formula we get

lim
R!1

Z
BR

yk
@Ui
@yk

yi
(1 + "r)�

dy = lim
R!1

Z
@BR

ykyiUi
(1 + "R)�

yk
R
dS

� lim
R!1

�
4

Z
BR

Uiyi
(1 + "r)�

dy� �"

Z
BR

Uiyiyk
(1 + "r)�+1

yk
r
dy

�
:(4.11)

All limits of the volume integrals in (4.11) exist and give exactly (4.10). In order to
�nish the proof of this lemma it remains to show that the surface integral in (4.11)
tends to zero as R tends to in�nity.
Let us take �1 such that 3 > � > �1 >

5
2 . Using spherical coordinates, we �x the

angles ' and # for a moment. For any R > 1 and i = 1; 2; 3

R4��1jUi(R;'; #)j = jUi(1; '; #)j+
Z R

1

@

@r

��r4��1Ui(r; '; #)��dr
� jUi(1; '; #)j+

Z R

1

����@Ui@r
(r; '; #)

����r4��1dr + (4� �1)

Z R

1
jUi(r; '; #)jr3��1dr :

Integrating over ' and # and using the H�older inequality we obtain

R4��1

Z 2�

0

Z �

0

jUi(R;'; #)j sin#d#d' �
Z
@B1

jUijdS

+
�Z

BRnB1

����@Ui@r

����2 r2dy�1
2
�
4�

Z R

1

r4�2�1dr
�1
2

+ (4� �1)
�Z

BRnB1

jUij2dy
� 1

2
�
4�

Z R

1

r4�2�1dr
� 1

2

:(4.12)

Evidently, all terms in the right-hand side of (4.12) are bounded independently of R.
Thus ���Z

@BR

ykyiUi
(1 + "R)�

yk
R
dS
��� � cR4��

Z 2�

0

Z �

0

jU(R;'; #)j sin#d#d' �

� cR4��1

�Z 2�

0

Z �

0

jU(R;'; #)j sin#d#d'
�
R�1�� � c1R

�1��

Finally, letting R!1 yields��� lim
R!1

Z
@BR

ykyiUi
(1 + "R)�

yk
R
dS
��� � lim

R!1
c1R

�1�� = 0 :

The proof of Lemma 4.2 is complete. 2
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5. Pseudo-selfsimilar solutions

In this section singular pseudo-selfsimilar solutions to (1.3) in the form (1.6) are
investigated under the supposition that �, � 2 C1(�1; T ). It is not di�cult to see
that � and � cannot change sign. Indeed, if �(t0) = 0 (or �(t0) = 0) for some t0 < T ,
then u(t; �) has to be necessarily zero for all t � t0 and no singularity can occur as
t! T�. Hence we can assume that � is positive without loss of generality.
Assume for a moment that u is given by (1.6)1, p by (1.7) and U 2W1;2(IR3). By

Lemma 2.1, we have U 2 W2;2(IR3) \ L1(IR3) and P 2 W 1;2(IR3). Inserting (1.6)
into (1.3) we obtain

divU = 0

�0U+
�

�
�0yk

@U

@yk
� ���2�U + �2�Uj

@U

@yj
+ ��rP = 0 :(5.1)

Taking div of (5.1)2, we obtain

�

�2
�P = �@Uj

@yi

@Ui
@yj

:

Since the right-hand side of the last equation is independent of t we see that �
�2

must be
a constant function. Moreover, rede�ning P if necessary we can assume that �

�2 = 1.

Thus, p reduces to (1.6)2. Multiplying (5.1)2 by
1

�2�
yields

divU = 0
�0

�2�
U+

�0

��2
yk
@U

@yk
� �

�

�
�U+ Uj

@U

@yj
+rP = 0 :(5.2)

A natural question appears: Is it possible to construct pseudo-selfsimilar solutions
to the Navier{Stokes equations which are singular and which do not have the Leray
form (1.1)?
Partial answers to this question are contained in the following exposition.

Assume that u(t;x) is a singular Leray-Hopf weak solution of (1.3). This means that
u 2 L1(t1; T ;L

2(IR3))\L2(t1; T ;W
1;2(IR3)) for t1 2 (�1; T ), and limt!T� kruk2 =

1. Using the relations kuk22 = �2(t)
�3(t)kUk22 and kruk22 = �2(t)

�(t) krUk22, we obtain the

following restrictions on � and �:

�2(t)

�3(t)
� const on (t1; T ) (u 2 L1(t1; T ;L

2(IR3))) ;(5.3) Z T

t1

�2(t)

�(t)
dt <1 (u 2 L2(t1; T ;W

1;2(IR3))) ;(5.4)

lim
t!T�

�2(t)

�(t)
=1 ( lim

t!T�
kruk2 =1) :(5.5)

Finally, multiplying (5.2) by U, integrating over IR3, integrating by parts and using
divU = 0, we obtain

�0

�2�
� 3

2

�0

��2
= ��

�
K3� ;(5.6)
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where K3 � krUk22
kUk2

2

must be a positive constant, otherwise U � 0.

Now, if �(t)
�(t) � const then (5.6) leads to the Leray solution (1.1). Indeed, let

�(t)
�(t) = �A, where A > 0. Equation (5.6) then reduces to �0(t)

�3(t) = a with a � 2A2K3�.

Since �2(t)!1 as t! T� (otherwise we would reach a contradiction with (5.3) and
(5.5)), we have �(t) = 1p

2a(T�t)
. Since �(t) = �A�(t) and u(t;x) = �(t)U(�(t)x), we

obtain the Leray form (1.1) by changing scale from x to � 1
Ax if necessary4 .

In order to have the possibility to construct singular pseudo-selfsimilar solutions
which are not of the Leray type one can de�ne the space H by

H �
�
� 2W1;2(IR3) ;

Z
IR3

Ui�idy =

Z
IR3

@Ui
@yk

yk�idy = 0

�
and consider the following condition:

There exists some � 2 H satisfying

Z
IR3

r�irUidy 6= 0 :(5.7)

If (5.7) holds, then multiplying (5.2)2 by � and integrating over IR3 we obtain

�
�

�

Z
IR3

rUir�idy+
Z
IR3

�
Uj

@Ui
@yj

�i +
@P

@yi
�i

�
dy = 0 ;

which implies
�(t)

�(t)
� const :

If �(t)
�(t) is not constant, then (5.7) does not hold, i.e.

for all � 2 H necessarily

Z
IR3

r�irUidy = 0 :(5.8)

We then de�ne two functionals

hF 1;�i =

Z
IR3

Ui�idy

hF 2;�i =

Z
IR3

@Ui
@yk

yk�idy :(5.9)

Let us remark that thanks to (2.11) @U
@yk

yk 2 L2(IR3), and therefore (5.9)2 is well
de�ned. We can rewrite H as

H =
�
� 2W1;2(IR3) ; hF 1;�i = hF 2;�i = 0

	
:

4 If �(t)
�(t) � const, but the energy equation (5.6) is not attainable (this happens for example if

we would assumeU 2W1;2
loc

(IR3)\L3(IR3), then it follows directly from (5.2) that
�0(t)
�3(t)

� B, where

B is a constant. If B > 0, then the calculations just presented lead to the Leray form (1.1) of a
singular solution. If B < 0, then one observes that there are solutions only for t > T and they are of
the form �(t) = 1p

2B(t�T )
. Note that limt!T+ kruk2 =1 for such solutions. If T=0, one obtains

self-similar solutions studied in Cannone [2] and related papers cited therein.
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By the Riesz theorem we have

hF 1; i = (U1; ) + (rU1;r )
hF 2; i = (U2; ) + (rU2;r )(5.10)

for certain U1 and U2 2W1;2(IR3) and all  2W1;2(IR3). Because of the regularity
of U and (5.9), equality (5.10) can be rewritten as

U1 ��U1 = U

U2 ��U2 =
@U

@yk
yk :

>From (5.8) follows that U belongs to the orthogonal complement of H inW1;2(IR3);
therefore U must be a linear combination of U1 and U2, i.e.

U��U = c1U+ c2
@U

@yk
yk :(5.11)

Taking the Fourier transform of (5.11) (in the sense of L2(IR3)) we have

bU+ j�j2 bU = c1 bU� c2(3 bU+ �k
@ bU
@�k

) :(5.12)

Considering bU in spherical coordinates, i.e. bU = bU(r; �r ), (where r = j�j and �
r

denotes angle variables), and denoting � = 1� c1 + 3c2 we get a di�erential equation

bU(� + r2) + c2r
@ bU
@r

= 0 ;

the solution of which has the form

cUi = Si(
�

r
)r�

�

c2 e�
r2

2c2 :(5.13)

Since
R
IR3
bU(�)d� =

R1
0

R
@B1(0)

bU(r; �r ) dS(
�
r ) dr and U 2 L2(IR3), we see that

c2 > 0 ;
�

c2
<

3

2
and 
 �

Z
@B1(0)

Si(
�

r
)Si(

�

r
) dS(

�

r
) <1 :(5.14)

In addition, due to the divergence-free condition cUi�i = 0, we have

Si(
�

r
)�i = 0 :(5.15)

The Fourier transform of (5.2) gives

d
Uj

@U

@yj
+ i� bP +

�0

�2�
bU� �0

��2

"
3 bU+ �k

@ bU
@�k

#
+ �

�

�
j�j2 bU = 0 ;(5.16)
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here i denotes the complex unit. We continue as follows: we multiply (5.16) scalarly
by S, integrate over @B1(0), use (5.15) and �nally multiply the obtained equation by
1


r

�

c2 e
r2

2c2 . Thus, denoting

J(r) � � 1



r

�

c2 e
r2

2c2

Z
@B1(0)

d
Uj

@Ui
@yj

(r;
�

r
)Si(

�

r
) dS(

�

r
)

we obtain �
�0

�2�
� 3

�0

��2
+

�0

��2
�

c2

�
+

�
�
�

�
+

�0

��2
1

c2

�
r2 = J(r) :(5.17)

For all r 2 [0; 1] (and t 2 (�1; T )) the left-hand side of (5.17) is bounded and

lim
r!0+

(LHS of (5:17)) =
�0

�2�
� 3

�0

��2
+

�0

��2
�

c2
:

Consequently lim
r!0+

J(r) exists and is equal to some constant K1. Therefore,

�0

�2�
� 3

�0

��2
+

�0

��2
�

c2
= K1 :(5.18)

Multiplying (5.17) by r�2, and arguing analogously (now for r!1) we obtain

�
�

�
+

�0

��2
1

c2
= K2 :(5.19)

Equations (5.6), (5.18) and (5.19) are linearly dependent. To see this, we �rst multiply

(5.12) by bU and integrate over IR3. After the integration by parts we obtain

K3 =
krUk22
kUk22

=
k j�j bUk22
k bUk22 = �(1� c1 +

3

2
c2) = �� +

3

2
c2 :

Adding (5.18), and (5.19) multiplied by 3
2c2 � � leads to

K1 +K2(
3

2
c2 � �) = 0 :

If K1 = K2 = 0, then a singularity for t ! T� cannot occur. Indeed, if K2 = 0
then (5.19) yields �0 = �c2��3. Hence

� 1

2�2(t)
= �c2�t+ const:(5.20)

We can look at the solution of (5.20) in two di�erent ways. Firstly, assuming �!1 as
t! T� (cf. (5.3) and (5.5)), we have const = c2�T and �2(t) = 1=(2c2�(t�T )), which
makes sense for t > T . Thus, we come again to the solutions studied by Cannone [2]
(cf. footnote 4 before).
Secondly, we �x const in (5.20) at some time t0 < T , i.e. const = �c0+c2�t0, where

c0 = 1=(2�2(t0)). Hence, �2(t) = 1=(2(c2�(t � t0) + c0)). Thus, �(t) is bounded as
t! T� and the corresponding u would not develop a singularity as t! T�.
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We �nish this section by presenting two results:
(i) we will show that if � > �c2 then K1 = 0,
(ii) assuming that �(t) = (T � t)�
 , 
 > 0, we will prove that 
 must be 1=2, �

coincides with � and u is of the form (1.1).
Ad (i). We investigate the behavior of J(r) as r tends to zero. Note that J(r) can be
rewritten as

J(r) = � 1



r

�

c2 e
r2

2c2

Z
@B1(0)

rEj(
�

r
) dUjUi(r; �

r
)Si(

�

r
) dS(

�

r
) ;

where � = rE(�r ) and jEj = 1. Hence

jJ(r)j � 1p


r1+

�

c2 e
r2

2c2

0@Z
@B1(0)

3X
i;j=1

jdUjUi(r; �
r
)j2dS(�

r
)

1A1=2

:

Since kdUjUik1 � ckUk22 we have J(r) ! 0 as r ! 0 if � > �c2. Thus K1 = 0, the
situation that was discussed above.
Ad (ii). Let t1 2 (�1; T ), then solving (5.6) on (t1; t) we obtain

�(t) = L�
3
2 (t)e

�K3�
R
t

t1

�2(�)d�
;(5.21)

where L = �(t1)

�
3
2 (t1)

. Substituting (5.6) and (5.21) into (5.18) yields

�
�

c2
� 3

2

�
�0(t)

�2(t)
= K3��(t) +K1L�

3
2 (t)e

�K3�
R
t

t1

�2(�)d�
:

>From here we can calculate e
�K3�

R
t

t1
�2(�)d�

and insert it into (5.21). Then we see
that

�(t) = L1�(t) + L2�
3
2 (t)

Z t

t1

�
3
2 (� )d� + L3�

3
2 (t) ;(5.22)

where

L1 =
�2�
c2

� 3
�K3�

K1
; L2 =

(K3�)
2

K1
; L3 = L

�
1�

�
2�
c2
� 3
�
K3�

K1L�
1
2 (0)

�
:

It can be seen from (5.3), (5.5), (5.21) and (5.22) that

lim
t!T�

�(t)e
�K3�

R
t

t1

�2(�)d�
=1 and

Z T

t1

�
3
2 (� )d� <1 :

Now, putting �(t) in the particular form

�(t) = (T � t)�
 with 
 > 0
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into (5.21) and (5.22) we see that �(t) has to be of the form

�(t) =
�

K2
(T � t)�
 +




K2c2
(T � t)
�1

and

�(t) = L(T � t)�
3


2 e
�K3�

R
t

0
(T��)�2
d�

;

which is possible only if 
 = 1
2 . Thus the Leray form (1.1) is obtained.

We can conclude our observations:

(1) It is not possible to construct any singular solution to (1.3) in the Leray form
(1.1) provided that U, as a solution of (1.2), belongs either to W1;2(IR3) or to
L3(IR3) \W1;2

loc (IR
3) (cf. [5]).

(2) A singular solution u to (1.1) in the pseudo-selfsimilar form

u(t;x) = �(t)U(�(t)x)

is not excluded: the Fourier transform of U must satisfy

bU(r;
�

j�j ) = j�j� �

c2 e�
j�j2
2c2 S(

�

j�j) ;

where c2 > 0 and � � �c2. A function S depending only on angles is square
integrable on the unit sphere in IR3 and satis�es Si(

�

j�j
)�i = 0. The functions �

and � must solve equations (5.6) and (5.19) with caveat that � cannot be in a
simple form �(t) = (T � t)�
 , 
 > 0.
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