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Abstract. In this paper we study the large time behaviour of solutions to a generalization of the Boussi-
nesq system of equations in n � 2 spatial dimensions. We establish existence and algebraic decay of the
L2-norm of the solution.

1. Introduction

In this paper we study the large time behaviour of solutions to a generalized Boussinesq

system of equations with dissipation of the form

(1.1)

8>>>><
>>>>:
!t +

nX
i=1

(!u)xi = ��!;

ut +
nX
i=1

(! +
u2

2
)xi = (�1)p+1

X
j�j=2p

D�ut + ��u+�p+1u;

where 2p > n and (x; t) 2 IRn � R+: As � ! 0 our decay estimates will not work, so

without loss of generality we can assume that � � 1: Notice that when n = 1 and the

dissipative terms expressed by the Laplacian of ! or of u and the biharmonic of u are not

included, (1.1) represents the model proposed by Boussinesq for the two way propagation

of long surface waves in a channel of constant depth. More precisely, if we let � = ! � 1

then (1.1) is the usual Boussinesq system given by

�t + ux + (u�)x = 0;

ut + �x + uux � uxxt = 0:

If we do not add the term �u in the second equation the decay will be of order (t+ 1)�
n
4

instead of (t + 1)�
n
2 : Here u(x; t) represents the velocity and !(x; t) = 1 + �(x; t) is the

height of the free surface of the 
uid above the bottom. Formally the Boussinesq system

can be viewed as a perturbation of the one-dimensional wave equation in which dispersive

and non-linear e�ects are of the same order. We obtain the system (1.1) by generalizing

the one-dimensional model to higher dimensions by considering a natural extension for the

nonlinear terms so that their structure is same as the nonlinear terms in the compressible

Navier Stokes equations.
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The purpose of this paper is to establish algebraic bounds for the rate of decay for the

energy of the system (1.1). More precisely we obtain L2 rates of decay for (! � �!; u� �u)

where (�!; �u) are the equlibria to which the data (!0; u0) tend to as jxj �! 1: Let

X� =
�
(u0; !0) : ju0(t) � �uj2L2 � C(t+ 1)�� ; j!0(t) � �!j2L2 � C(t+ 1)��

	
where !0(t) is the solution to the heat equation with data !0 and u0(t) is the solution to

the linearized regularized long-wave equation with data u0:

We show that for data in L2 \ X�(IRn) and n > 2 the solution of (1.1) satis�es

(1.2) ku(t)� �uk22 + kDpu(t)k22 + k!(t)� �!k22 � C(t+ 1)�
1
2 :

If n = 2; we show that the solution decays at a logarithmic rate. More precisely, we show

that

(1.3) ku(t) � �uk22 + kDpu(t)k22 + k!(t) � �!k22 � C[ln(t+ e)]m

for all m � 3: One can construct solutions to the linear part of the equations decaying at

any rate (t+1)��: As in the case of the heat equation, this depends on the order of the zero

at the origin for the Fourier transform of the data. In particular, if (!0��!; u��u) 2 L1\L2

then � = n
2
: This will follow using the Fourier Splitting method [5], [6].

The method that we present here seems to have some shortcomings in the one-dimensional

case. A di�erent approach is needed in this case and the problem will be considered in a

forthcoming paper.

To establish the decay (1.2) we �rst need to construct a positive convex entropy �

for the hyperbolic part of the equation. We recall that the underlying hyperbolic system

admits an entropy [7] (in the sense of Lax [3]) of the form ~�(u; !) = u2

2 + ! ln!: This

entropy is not positive but yields a convex positive one if we subtract the linear part that is,

by de�ning � = ~�- the linear part at (�!; �u): Hence formally, standard multiplier methods

then yield

(1.4)

d

dt

�Z
IRn

�(u; !)(�; t)dx +

Z
IRn

jDpu(�; t)j2dx
�
= �

Z
IRn

�jruj2 + �000 jr!j2

+ jrDpuj2 ) dx:

Here, to simplify the notation we have used jDjuj2 =
P
j�j=j jD�u(�; t)j2 and jrDjuj2 =

rPj�j=j jD�u(�; t)j2: Once (1.4) has been obtained, we estimate the term �000 jr!j2 so as

to reduce it a form to which the Fourier splitting method can be applied, �rst developed

by one of the authors (M.E.S) to obtain upper bounds for the rate of decay for solutions to

parabolic conservation laws as well as for obtaining upper and lower bounds of decay for
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the solutions to the Navier-Stokes equations. We will apply the method to approximated

solutions and then pass to the limit to derive the decay for the weak solutions.

In order to establish the existence of weak solutions to (1.1) we construct a sequence

of approximate solutions. For this we smooth out the nonlinear terms in the equation by

using a \retarded molli�er." The construction of such approximations was used earlier by

Ca�arelli, Kohn and Nirenberg [1] to establish the existence of a weak solution for the

Navier-Stokes equations. A similar construction can be found in the work of Leray [4] as

well, again, for weak solutions of the Navier-Stokes equations.

The plan of the paper is as follows. In section 2, the existence of the weak solutions is

established. This is done using the approach mentioned above via approximations which

are obtained by using a retarded molli�er to \linearize the equations." The entropy corre-

sponding to the underlying hyperbolic part of the equation yields uniform bounds for the

approximate solutions and hence passing to the limit weak solutions are obtained in the

appropriate Sobolev spaces.

In section 3 the entropy inequality (1.3) is used to obtain an inequality (1.4) relating

the L2-norms of the solution with the L2-norms of the gradient. Then the Fourier splitting

method will yield the decay of the solution in the energy norm. We recall that to use the

Fourier splitting method [5] such an inequality of the type (1.4) is necessary combined

with the knowledge of the behaviour of the Fourier transform solution in a neighbourhood

of the origin. More precisely it is necessary that the solution in frequency space does not

grow too fast or preferably, remains bounded as time goes to in�nity. We have such an

estimate when n � 2:

2 Existence of Weak Solutions

In this section we construct a weak solution to the generalized Boussinesq system of

equations given by,

(2.1)

8>>>><
>>>>:
!t +

nX
i=1

(!u)xi = �!;

ut +

nX
i=1

(! +
u2

2
)xi = (�1)p+1

X
j�j=2p

D�ut +�u+�p+1u

with data (u0(x); !0(x)):

We will �rst construct solutions to approximations to the above system. This will be

done using the \retarded molli�er" technique, developed by Ca�arelli, Kohn and Nirenberg

[1] to construct weak solutions to the Navier-Stokes equations. This technique is similar

to the one introduced by Leray [4]. In what follows we assume

u0(x) �! �u as x!1 and

!0(x) �! �! as x!1:
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For reasons that will be clear below we suppose that �u = 0 and �! 6= 0:

To establish the existence of solutions to (2.1) we will linearize and regularize the

equations. To linearize we use a \retarded molli�er" [1]. We next recall the construction

of such a molli�er. Let  (x; t) 2 C1(IRn+1) be such that  � 0 and
R R

IRn+1  dxdt = 1:

As in [1] we also choose  such that

supp( ) � �
(x; t) j jxj2 < t; 1 < t < 2

	
:

De�ne

 �(f)(x; t) =
1

�n+1

Z Z
IRn+1

 
�y
�
;
�

�

�
~f (x� y; t� � )dyd�

where ~f is de�ned by

~f (x; t) =

(
f(x; t) if (x; t) 2 IRn � (0; T );

0 otherwise:

Note that the values of  �( ~f ) at time t depend only on the values of f(x; t) at times

� 2 (t� 2�; t� �):

We want to obtain a solution for the approximate system

(2.2)

8>>>><
>>>>:
!t +

nX
i=1

( �(u)!)xi = �!

ut +
nX
i=1

(! +  �(u)u)xi =
X
j�j=2p

D�ut +�u + �p+1u:

We notice that we could also have used (2.2) and obtained a solution via a Faedo-Galerkin

method. We prefer to use the parabolic nature of the equations. We �rst need to establish

the existence of solutions to a system of the form

(2.3)

8>>>><
>>>>:
!t +

nX
i=1

(z1!)xi = �!

ut +

nX
i=1

(! + z2u)xi =
X
j�j=2p

D�ut +�u + �p+1u

where z1 and z2 are given smooth functions. Once a solution of (2.3) is obtained the

solutions to (2.2) can be easily constructed.
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Theorem 2.1.

Let (!0 � �!; u0) 2
�
C2
0

�2
and u0 2W p;2 where 0 = limjxij!1 u0(x) and

�! = limjxij!1 !0(x) and �! 6= 0: Let (!; u) be a solution to the system (2.3) with data

(!0; u0) with given (z1; z2) 2 C1( �D; IRn) where �D = IRn � (0; T ): Then there exists a

unique solution

(!� � �!; u�) 2 L1
�
0; T ; C2

�2
:

Proof.

Existence, uniqueness and regularity of solutions to (2.3) follow from the standard theory

for uniformly parabolic systems [See Friedman [2], Chapter 9]. �

Theorem 2.2.

Let (!0; u0); (�!; 0) be as in Theorem 2.1. Then there exists a unique solution (!�; u�) of

(2.2) with data (!0; u0) such that

(!� � �!; u�) 2 L1
�
0; T ; C2

�2
:

Proof.

Solutions (!�; u�) are constructed in successive intervals of length �: For t 2 [0; �] note

that  �(u�) =  �(!�) = 0; hence we have to solve a uniformly parabolic system to

obtain u: The solution in the next interval can now be constructed since  �(u�),  �(!�)

are de�ned for values of (!�; u�) on the interval (t� 2�; t� �) and by construction satisfy

the properties of the functions z1; z2 of Theorem 2.1. Since this process can be repeated

we obtain a solution in the interval [0; T ] satisfying (2.2). �

To obtain necessary bounds for solutions to (2.2) we need several estimates for the

retarded molli�er.

Lemma 2.3

For any u 2 L1(0; T ; H) \ L2(0; T ; V ) \ L1(0; T ; L1) we have

sup0�t�T

Z
IRn

j �(u)j2dx � Csup0�t�T

Z
IRn

juj2dx;Z Z
D

jr �(u)j2dxdt �
Z Z

D

jruj2dxdt;

sup0�t�T

Z
IRn

j �(u)jdx � Csup0�t�T

Z
IRn

jujdx:
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Proof.

The proof follows by construction of the retarded molli�er. (See [1], Lemma [A 8]) �

In order to obtain a solution of (2.2) we will take � = T
N

(as was done in [1]) and let

N ! 1: To show that we converge to a weak solution we need to establish some bounds on

the solutions (!�; u�) which are independent of �: This is done using the entropy-entropy


ux pair corresponding to the underlying hyperbolic system [7]. The natural entropy was

de�ned by

~�(u; !) =
u2

2
+ ! ln! =

u2

2
+ �(!):

We need an entropy which is positive so that we can get estimates in some good Orlicz

space. This entropy given above is strictly convex but not positive since �(!) is not

positive. Hence we construct a new entropy which is positive by subtracting the linear

part i.e., we de�ne a positive entropy � by

�(u; !) = ~�(u; !) � ~�(�u; �!) �r~�(�u; �!) ((u; !)� (�u; �!))

=
(u� �u)2

2
+ ! (ln! � ln �!) + �! � !

=
(u� �u)2

2
+ �0(!; �!)

Recall that q(u; !) is such that

r� � rf = rq
with f = (!u; !+ u2

2 ): In what follows we use the notation H = Closure of C10 in L2(IRn)

and V = Closure of C10 in the norm (
R
IRn juj2) 12 : The entropy-entropy 
ux pair (�; q) that

we have just constructed is for the underlying hyperbolic system for the one-dimensional

equations, i.e, for

Ut + F (U)x = 0

where U =

�
!

u

�
and rF =

�
u !

1 u
2

�
: We note that this pair (�; q) can also be used

for the extension to higher dimensions. In other words it will still give us the necessary

apriori bounds. Recall that our new underlying hyperbolic system is

Ut +

nX
i=1

F (U)xi = 0:

Since r�rF = rq we have the new conservation law

�t +
nX
i=1

qxi = 0:
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Thus integrating we have by supposing that limjxij!1 q(x) = 0

d

dt

Z
IRn

�dx � 0:

We also need to show that !�(x; t) � 0: This is to ensure that !� ln!� is well de�ned.

For this we �rst note that standard parabolic techniques yield bounds for ju�j1 and hence

it follows that j �(u)j1 � C: Now the usual parabolic methods will show that !� � 0:

More precisely,

Corollary 2.4

Let !0(x) � 0 and �! > 0: Let !0(x) and u0(x) be as in theorem 2.1. Let (!�; u�) be the

solution to (2.3). Then for all �

!�(x; t) > 0 in IRn � [0; T ]; T > 0:

Proof.

See Friedman [2] Chapter 2. Section 4 Lemma 5.

Corollary 2.5

Let (!0; u0) be as in Corollary 2.4 with �! > 0: Let (!�; u�) be a solution to (2.2). Then

for all �

!�(x; t) > 0 in IRn � [0; T ]; T > 0:

Theorem 2.6.

Let (!0� �!; u0) 2
�
C2
0 \ L2 \ L1(IRn)

�2
; u0 2 W p;2 and limjxj!1(!0; u0) = (�!; 0) and

�! 6= 0: Let (!�; u�) be a solution of the system (2.2) with data (!0; u0): Then

(!� � �!; u�) 2 L1(0; T ; H) \ L2(0; T ; V ):

Moreover,

(2.4)

d

dt

�
1

2

Z
IRn

ju�j2dx+ 1

2

Z
IRn

jDpu�j2dx +
Z
IRn

�0(!
�; �!)dx

�

+

Z
IRn

jru�j2dx +
Z
IRn

jrDpu�j2dx+
Z
IRn

�000 jr!�j2dx
� �(�)t
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with �(�)! 0 as � ! 0: Here �0(!�; �!) = !�
�
ln!� � ln �!

�
+ �! � !�:

Proof. Multiply equation (2.2) by r� and integrate in space and time to get

(2.5)

Z
IRn

�tdx+
nX
i=1

Z
IRn

�
ln!� � ln �!

� �
 �(u

�)!�xi + �!u�xi
�
dx

+

Z
IRn

jDpu�j2dx+
nX
i=1

Z
IRn

(u� � �u) �(u
�)u�xidx

= �
Z
IRn

�
00

0 jr!�j2dx �
Z
IRn

jru�j2dx �
Z
IRn

jrDpu�j2dx:

Hence we need to show that

(2.6)
nX
i=1

Z
IRn

�
ln!� � ln �!

�
( �(u

�!�)xi +
nX
i=1

Z
IRn

u� �(!
�)xi = I + II = 0

and that

(2.7) III =
XZ

(u�) �(u
�)u�xidx = 0:

Note that in (2.5) we have used the fact that

(2.8)

d

dt

�Z
IRn

ju�j2 +
Z
IRn

�0(!
�; �!)dx +

Z
IRn

jDpu�j2dx
�

=

Z
IRn

u�u�t +

Z
IRn

�0t(!
�; �!)dx +

Z
IRn

Dpu�Dpu�t :

Here III = 0 is a consequence of u� �(u�)u�xi being an exact derivative i.e., let

G(u�(x); t) =

Z u�(x)

�u

s �(s)ds:

Then limjxj!1G(u(x); t) = 0 since limjxj!1 u� = 0 and @
@xi

G = (u�) �(u�)u�xi : Note

that since limjxj!1 u0 = 0 by construction and by the Lebesgue dominated convergence

theorem the solution satis�es limjxj!1 u�(x; t) = 0: We need to estimate I + II: Using

the de�nition of I and integrating by parts yields

(2.9)

I =

Z
IRn

�
ln!� � ln �!

� nX
i=1

( �(u
�)!�

!
xi

dx

= �
nX
i=1

Z
IRn

!�xi
!�

 �(u
�)!�dx

= �
nX
i=1

Z t

0

Z
IRn

!�xi �(u
�)dx:
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The boundary terms vanish by hypothesis. Since we chose  to be symmetric by hypothesis

(2.10) II =
nX
i=1

Z
IRn

!�xiu
�dx:

Hence

I + II �
nX
i=1

Z
IRn

j!�xi jj �(u�)� u�jdx

� 1

2

Z
IRn

jr!�j2dx + 1

2

Z
IRn

j �(u�)� u�j2dxds

� 1

2

Z t

0

Z
IRn

jr!�j2dxds + �(�)t

where k �(u�)�u�k22 � �(�) ! 0 as � ! 0: Hence (2.4) follows. Note that one can always

choose � so small that �(�)T < 1: In particular our �nal estimates will be independent of

�(�)T since as � ! 0 this term vanishes. �

Corollary 2.7

Let p � n
2
and (!0; u0) be as in Theorem 2.6. Then (!� � �!; u�) 2 H2p � L2 uniformly

in � and

i) ju�j1 + j!�j1 � C0;

ii)

Z
IRn

ju�j2dx +
X
j�j=p

Z
IRn

jD�u�j2dx � C0;

iii)

Z
IRn

ju�j2dx +
Z
IRn

j!� � �!j2dx < 1;

iv)
d

dt

�
ku�(t)k22 + kDpu�(t)k22 +

Z
IRn

�0(!
�; �!)(t)dx

�

� �kru�(t)k22 � krDpu�(t)k22 �
Z
IRn

�000 jr!�(t)j2dx+ �(�)t

where C0 is a constant independent of �:

Proof.

The Hp estimate for u follows from (2.4). Standard Sobolev estimatesyield

ju�j1 � CjDpu�jL2 � C0

where 2p > n
2 : Note also that jDu�j1 � C: This is obtained by multiplying the derivated

equation by Du� and integrating by parts. Hence it follows that

j �(u�)j1 � C0:
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Next, note that the �rst equation in (2.2) is a parabolic one with nice coe�cients bounded

in L1 independent of �: Standard arguments for parabolic equations (cf. Friedman [2])

shows that

j!�j1 � C0:

Hence it follows that ���� 1

!�(�; t)

���� � 1

C0
:

Recall that we have from Theorem 2.1 thatZ
�0(!

�; �!) � C0:

But,

�0(!
�; �!) = !�

�
ln!� � ln �!

�
+ �! � !:

Since �0(�!; �!) = 0 and �0!(�!; �!) = 0 we have

�0(!
�; �!) =

1

!?
j!� � �!j2:

Note that j!�j � C0 implies that 1
C0

� 1
j!�j

: In particular, 1
C0

� j 1
!?
j = 1

!?
: Hence it

follows that
1

C0

Z
j!� � �!j2dx �

Z
1

!?
j!� � �!j2dx =

Z
�(!� ; �!)dx:

Thus we have Z
IRn

j!� � �!j2dx � C0

Z
IRn

�0(!
�; �!)

and the bound (iii) follows. We note that the proof of (iv) follows from (ii) and (iii). Note

that (2.4) can be expressed as

d

dt

�
ku�(t)k22 + kDpu�(t)k22 + 2

Z
IRn

�0(!
�; �!)(t)dx

�

+ 2

Z
IRn

jru�j2dx+ 2

Z
IRn

jrDpu�j2dx+ 2

Z
IRn

�000 jr!�j2dx
� 0:

By (i) of Corollary 2.7 it follows that

1

!?
=

���� 1!?
���� � 1

C0
;

i.e !� admits a lower bound. We need to show that���� 1!?
���� � 1

K
:
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Note that �! < !? < !� implies that

j 1
!?
j � 1

�!

and we are done. If !� < !? < �!; there are two cases to consider. First, if �!
2
< !? < �!

then it follows that
1

!?
= j 1

!?
j < j 2

�!
j = 2

�!

and we are done. In the second case if !� < !? < �!
2 we have

�0(!
�; �!) = !�(ln!� � ln �!) + �! � !�

=
1

!?
(! � �!)2

Since �0 is a convex function with minimum at ! = �! and 0 � !� � k

�0 � max f�0(0; �!); �0(k; �!)g
� max f�!; k(ln k + ln �!) + �! + k)g
� K0:

Hence

j 1
!?
j(!� � �!)2 � K0:

Since !� < �!
2
we obtain (! � �!)2 � �

�!
2

�2
: Thus we can conclude that

1

!?
� 4K0

�!2

and hence,

j�0(!�; �!)j = j 1
!?
jj!� � �!j2 � 4K0

�!2
j!� � �!j2

and (iv) follows. �

Theorem 2.8.

Let (!0; u0) and (�!; �u) be as in Theorem 2.6. Then there exists a weak solution to (1.1)

with data (!0; u0) satisfying

(2.11)

d

dt

�Z
IRn

juj2dx+ 2

Z
IRn

�0(!; �!)dx +

Z
IRn

jDpuj2dx
�

+ 2

Z
IRn

jruj2dx+ 2

Z
IRn

j�000 jr!j2dx+ 2

Z
IRn

jrDpuj2dx
� 0:
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Here C0 and C depend on the norms of the data.

Proof.

The bounds of (2.4) together with Rellich's Lemma ensure that (!� � �!; u�) have a weak

limit. We consider the weak-formulation of the system (2.3) with � 2 C10 (IRn � (0; 1)):

This yields

(2.12)

8>>>>>>><
>>>>>>>:

h�; !�t i + h�;
nX
i=1

�
 �(~u)!

�
�
xi
i = h�; �!�i

h�; u�t i + h�;
nX
i=1

�
!�xi +  �(u)u

�
xi

�
= h�;

X
j�j=2p

D�u�t i

+ h�; �u�i + h�; �p+1u�i:
Note that by de�nition,

 �(~u) �! u as � ! 0;

 �(~!) �! ! as � ! 0:

We also have

k! � �!k2 = k �(! � �!)k2 and kuk2 = k �(u)k2:
and from (2.12) it follows that

(2.13)

8>>>>>>><
>>>>>>>:

h�t; !�i + h
nX
i=1

�xi ;  �(u)!
�i = �h��; !�i and

h�t; u�i �
nX
i=1

(!�xi +  �(u)u
�
xi
i = h

X
j�j=2p

D��t; u
�i

� h��; u�i + h�p+1�; u�i:
Note that as � ! 0 we have

!� ! ! weakly;(2.14)

u� ! u strongly and(2.15)

 �(u)! u strongly:(2.16)

Thus it is clear that the linear terms in (2.13) converge to the inner product of the appro-

priate derivative of � with the function u or ! as the case may be. That is,

(2.17)

h�t; !�i + h��; !�i �! h�t; !i + h��; !i and

h�t; u�i + h��; u�i � h
X
j�j=2p

D��t; u
�i + h�p+1�; u�i

�! h�t; ui + h��; ui � h
X
j�j=2p

D��t; ui+ h�p+1�; ui:

12



Thus we only need to show that the nonlinear terms converge to the correct terms. From

(2.14), (2.15) and (2.16) we note that

 �(u)!
� �! u!

weakly as � ! 0: Thus we get

(2.18) h
nX
i=1

�xi;  �(u)!
�i �! h

nX
i=1

�xi ; u!i;

and

(2.19) h�;
nX
i=1

!�xii = �h
nX
i=1

�xi ; !
�i �! �h

nX
i=1

�xi; !i:

Moreover, by (2.15) and (2.16)

(2.20) h�;
nX
i=1

 �(u)u
�
xi
i �! h�;

nX
i=1

uuxii:

Combining (2.12), (2.17), (2.18) and (2.19) shows that (u; !) the limit of (u�; !�) is a

weak solution to the Boussinesq system (2.1).

Since the bounds in (2.4) are independent of � for each T and � su�ciently small, the

weak limit (u; !) of the sequence (u�; !�) will satisfy the bounds

(2.21)

d

dt

�Z
IRn

juj2dx +
Z
IRn

j�0(!; �!)dx+
Z
IRn

jDpuj2dx
�
+

Z
IRn

jruj2dx

+

Z
IRn

�000 jr!j2dx +
Z
IRn

jrDpuj2dxdt � 0:

Note that to obtain (2.21) we have used the fact that C10 is dense in L2 and hence if

(!�; u�) converges weakly in the sense of distributions to (!; u) it also converges weakly

in L2 and the bound (2.21) follows by Fatou's Lemma. Moreover, by standard Sobolev

inequalities and (2.4) we also have

juj1 + j!j1 � C0:

�

13



3. Decay Results

In this section we establish the decay of the L2-norm of the solutions to the Boussinesq

system,

(3.1)

8>>>><
>>>>:
!t +

nX
i=1

(!u)xi = �!;

ut +
nX
i=1

(! +
u2

2
)xi =

X
j�j=2p

��ut +�u+�p+1u

The decay results are �rst obtained for the approximate solutions constructed in the pre-

vious section, and then passing to the limit. For this we will use the so called Fourier

splitting method [5], [6]. To implement this method an inequality which combines the

time-derivative of the L2-norm with the L2-norm of the gradient is necessary. Such an

inequality is given by (2.4). It is also necessary to have some knowledge of the Fourier

transform near the origin. We use the Fourier splitting method and formally apply it to

the approximating solutions and then pass to the limit.

We recall that for the Fourier splitting method the Fourier space is subdivided into

two time-dependent sets one of which is a ball of radius g(t): The starting point of the

Fourier splitting method is a di�erential inequality of the form

d

dt

Z
jU j2dx � �

Z
jrU j2dx:

>From here Plancherel's theorem yields

d

dt

Z
jÛ j2d� � �

Z
j�j2jÛ j2d�:

Using the Fourier splitting method we have

(3.2)
d

dt

Z
jÛ j2d� � �g2(t)

Z
IRn

jÛ j2d� + g2(t)

Z
S(t)

jÛ j2d�:

The following conditions are imposed on g to make the Fourier splitting technique work

1) g2 is an integrable function,

2) g(t) decreases monotonically to zero and

3) exp(
R t
0 g

2(s)ds) �! 1 as t �! 1:

In the next proposition we show that the above conditions 1, 2, 3 on g yield functions of

the type

g1(t) =

�
�

(t+ 1)

� 1
2

;

g2(t) =

�
1

ln (t+ e)(t+ e)

� 1
2

or

gn(t) =

�
1

ln ln � � � ln (t+ e)(t+ e)

� 1
2

:

14



Since we will work with u such that jÛ(�; t)j � C0 for � 2 S(t) from (3.2) we obtain a

di�erential inequality of the form

(3.3)
d

dt
[y(t)h(t)] � Cg

n
2+2h(t)

where h(t) = exp
�R t

0
g2(s)ds

�
and y(t) = jU(t)j22: The following auxiliary proposition

will give the range of g which will yield the best decay rate for y(t) the solution of (3.3).

Proposition 3.1

Let g(t) 2 L2(IRn) which satis�es

(3.4)

Z t

0

g2(s)ds ! 1 as t ! 1:

Then,

(i) For all � > 0 there exists a sequence ftng and a constant t (depending on �) such

that

g2(tn) � C

(1 + tn)1+�
:

(ii) If in addition to (3.4) g(t) decreases to zero as t ! 1; then for any y(t) which

satis�es (3.3) above we have

y(t) � C0max
�
h(t)�1; g

n
2
	
:

Proof. We prove the theorem by contradiction. Thus we suppose that the conclusion of

the theorem does not hold. Then there exists a t0 such that for all t � t0

g(t) � C

(1 + t)1+�
:

It then follows that

Z t

0

g2(s)ds �
Z t

0

C

(1 + s)1+�
ds = C � C

(1 + t)�
;

contradicting (3.4).

For the second part of the theorem we integrate the di�erential inequality (3.3) to get

y(t)h(t) � h(0)y(0) + C

Z t

0

g
n
2+2h(s)ds:

15



Note that h
0

(s) = h(s)g2(s): An integration by parts now yields

y(t)h(t) � h(0)y(0) + Ch(t)g
n
2 (t) � Ch(0)g

n
2 (0) � C

Z t

0

h(s)g
n
2�1g

0

(s)ds:

Since g
0

< 0 with g > 0 and h > 0 and increasing we have

y(t)h(t) � h(0)y(0) + Ch(t)g
n
2 (t) + C

Z t

0

h(s)g
n
2�1(�g0

(s))ds

� h(0)y(0) + Ch(t)g
n
2 (t) + Ch(t)

Z t

0

g
n
2�1(�g0

(s))ds

� h(0)y(0) + Ch(t)g
n
2 (t) + Ch(t)g

n
2 (t):

Hence,

y(t) =
h(0)y(0)

h(t)
+ Cg

n
2 (t)

which completes the proof of the proposition. �

Let

A = fg 2 L1 : g(0) = 1; g satisfying (i) and (ii) of Proposition 3:1 g :

Corollary 3.2.

Let yg be the solution of the equation (3.3). Then the g 2 A which makes kygk2 decay

the fastest satis�es

(3.5) if g
n
2 (t) � h(t)�1 then kyk2 �

�
C

1 + t

�n
2

and

(3.6) if g
n
2 (t) � h(t)�1 then kygk2 � 1

ln(t + e)
:

Proof.

Conditions (3.5) and (3.6) follow since

yg = y(t) � C0max
�
h(t)�1; g

n
2 (t)

	
:

Let

f(t) = exp

�Z t

0

g2
�
g
n
2 (t):
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Then

(3.7) f
0

(t) = g
n
2 g2exp

�Z t

0

g2
�
+ g

n
2�1g

0

exp

�Z t

0

g2
�
:

This implies that if f
0

(t) > 0 then f(t) > f(0) which is equivalent to the statement that

g
n
2 > h(t)�1: Hence we see that if f

0

> 0 then �g0

< g3 and (3.7) yields

g(t) � C?

(1 + t)
1
2

:

Hence the largest value of g2 is C
(1+t)

and (3.5) follows from Proposition 3.1.

On the other hand if f
0

< 0 then f(t) < f(0) which implies that h�1(t) > g
n
2 : In

this case an analysis as above yields

g2(t) � C

(e + t)
� C

(e + t) ln(e+ t)
� � � � :

etc. In particular if g2 = C
(e+t)

or if g2(t) = C
(e+t) ln(e+t)

etc, then we haveZ
g2(s) = C ln(t+ e) or

Z
g2(s) = ln ln(t+ e)

etc, which yields

h�1(t) � 1

ln(t+ e)
or h�1(t) � 1

ln ln(t+ e)

etc. We remark here that if we choose g2(s) = C
(e+t)1+� , then

R
g2(s)ds = C

(e+t)�
: This

implies that in particular that h�1(t) ! 1 as t ! 1: Thus this form of g will not give

us any decay. This completes the proof of the corollary using Proposition (3.1). �

Corollary 3.3

From Corollary 3.2 it follows that the g that gives the best decay must have the form

g1(t) =

�
�

(t+ 1)

� 1
2

;

g2(t) =

�
1

ln (t+ e)(t+ e)

� 1
2

or

gn(t) =

�
1

ln ln � � � ln (t+ e)(t+ e)

� 1
2

:

�

Recall that

X� =
�
(u0; !0) : ju0(t)j2L2 � C(t+ 1)��; j!0(t) � �!j2L2 � C(t+ 1)��

	
:

We now establish the main theorem of the paper.
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Theorem 3.4.

Let (!0 � �!; u0) 2 �
C2
0 \H2p \ L1 \ X�0

� � �C2
0 \H2p \ L1 \ X�0

�
(IRn) with n � 2:

Assume that (!0(t); u0(t)) 2 X�0: Here 0 = limjxij!1 u0(x) and �! = limjxij!1 !0(x): If

n > 2; then the weak solution constructed in Section 2 satis�es

(3.8) ju(�; t)j22 + j!(�; t)� �!j + jDpu(�; t)j22 � C(t+ 1)�
n
2 :

If n = 2 the solution satis�es the estimate

(3.9) ju(�; t)j22 + j!(�; t)� �!j + jDpu(�; t)j22 � C[ln(t+ e)]m

for all m � 3: Here C dependsonly on the norms of the data.

Proof.

The proof will �rst be given for the approximating sequences. Let (!; u) be the approximate

solution (the solution of (2.2).) Making the change of variables z = ! � �! and y = Dpu

we �nd that (z; u) satisfy the following system of equations

(3.9)

zt +
X

( �(u)z)xi +
nX
i=1

�!uxi = �z

ut +
nX
i=1

(z +
1

2
 �(u)u)xi = (�1)p+1

X
j�j=2p

D�ut +�u+�p+1u

We wish to obtain the decay rate of the solution. We note that by Theorem 2.6 we have

the inequality,

(3.10)
d

dt

�
ku(t)k22 + ky(t)k22 +

Z
IRn

�0(!; �!)dx

�
� �kru(t)k22 � kry(t)k22 �

Z
IRn

�000 jr!j2dx:

We wish to use the Fourier splitting method. For this, we need the integrand on the

right-hand side of (3.10) to be the gradient of the terms on the left-hand side. Thus in

particular we need to obtain a bound of the type

(3.11) �
Z
IRn

�000 jr!j2dx � �C
Z
IRn

jr�
1
2
0 j2dx

where C is a �xed constant independent of ! and u: Rearranging terms this is equivalent

to showing that

4�000�0 � C�00
2
:
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Explicitly writing out the expression for �0; �00 and �000 this implies that we must show

that

(3.12)
!(ln! � ln �!) + �! � !

!j ln! � ln �!j2 � C

for all !: For this, we calculate the minimum value of the expression on the left-hand side

of (3.12). A straightforward calculation then shows that this condition is always satis�ed

for a suitable constant C: Hence (3.11) always holds and (3.10) then implies that

(3.13)
d

dt

�
ku(t)k22 + ky(t)k22 +

Z
IRn

�0(!; �!)dx

�
� �kru(t)k22 � kry(t)k22 �

Z
IRn

jr�00
1
2 j2dx:

We can now apply the Fourier splitting method to (3.13) to obtain the decay rate for the

solution. Rewriting (3.13) using Plancherel's theorem, we obtain

(3.14)

d

dt

�Z
IRn

jFu(t)j2d� +
Z
IRn

jFy(t)j2d� +
Z
IRn

jF�
1
2
0 (!; �!)j2dx

�

� �
Z
IRn

j�j2jFuj2d� �
Z
IRn

j�j2jFy(t)j2d� �
Z
IRn

j�j2jF�
1
2
0 j2d�

If n > 2; we de�ne the set S(t) by

S(t) =

(
� : j�j �

�
4n

(t+ 1)

�1
2

)
:

Writing the integrals over space on the right-hand side of (3.14) as the sum of integrals

over the set S(t) and it compliment S(t)c; we get

(3.15)

d

dt

�Z
IRn

jFu(t)j2d� +
Z
IRn

jFy(t)j2d� +
Z
IRn

jF�
1
2
0 (!; �!)j2dx

�

� �
Z
S(t)

j�j2jFu(t)j2d� �
Z
S(t)

j�j2jFy(t)j2d� �
Z
S(t)

j�j2jF�
1
2
0 (t)j2d�

�
Z
S(t)c

j�j2jFu(t)j2d� �
Z
S(t)c

j�j2jFy(t)j2d� �
Z
S(t)c

j�j2jF�
1
2
0 (t)j2d�

Using the de�nition of the set S(t) we get

d

dt

�Z
IRn

jFu(t)j2d� +
Z
IRn

jFy(t)j2d� +
Z
IRn

jF�
1
2
0 (!; �!)(t)j2dx

�

� � 4n

(t + 1)

Z
S(t)c

jFuj2d� � 4n

(t+ 1)

Z
S(t)c

jFy(t)j2d� � 4n

(t+ 1)

Z
S(t)c

jF�
1
2
0 (t)j2d�:
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Hence we can write the inequality as follows

(3.16)

d

dt

�
(t + 1)4n

Z
IRn

�
jFu(t)j2 + jFy(t)j2 + jF�

1
2
0 (t)j2

�
d�

�

� 4n(t+ 1)4n�1
Z
S(t)

jFu(t)j2d� + 4n(t+ 1)4n�1
Z
S(t)

jFy(t)j2d�

+ n(t + 1)4n�1
Z
S(t)

jF�
1
2
0 (t)j2d�:

Thus it remains to estimate the integrals on the right-hand side of (3.16). In what follows

we consider (3.9) as a system of equations rather than treating each equation separately.

This enables us to simplify the ensuing calculations. Taking the Fourier transform of (3.9)

and using matrix notation we obtain,

d

dt

�F(z(t))
F(u(t))

�
+

�� j�j2 0

0 j�j2+j�j2(p+1)

1+j�j2p

�
+ i

�
0 �!

Pn
1 �jPn

1 �j
1+j�j2p 0

��
�
�F(!(t))
F(u(t))

�

+ i

� Pn

1 �jF( �(u)!)
1
2

Pn
1 �j

1+j�j2p
F( �(u)u)

�
:

Solving this matrix equation we get,

(3.17)�F(z(t))
F(u(t))

�
=

� F(z0)
F(u0)

�
exp(�At) +

Z t

0

exp(�A(t � s))

� Pn

1 �jF( �(u)z)
1
2

Pn

1
�j

1+j�j2pF( �(u)u)
�
ds:

Here z0 and u0 denote the initial data for z(t) and u(t) respectively and the matrix A is

given by

A =

� j�j2 �!
Pn

1 �jPn

1
�j

1+j�j2p
j�j2+j�j2(p+1)

1+j�j2p

�
:

A simple but tedious calculation (and as such will be omitted) shows that for j�j su�ciently

small

1. The eigenvalues �1; �2 have positive real part and nonzero imaginary part.

2. We write exp(�At) = Pexp(��t)P�1 where � is the diagonal matrix with entries

�1 and �2: and P is the eigenvector matrix. Hence using the Hahn-Banach Theorem there

exists � such that for q � 1

kexp(�At)k = kexp(�At)�kLq = kPexp(��t)P�1�kLq

>From the explicit calculations of �; P and P�1 it follows that

kexp(�At)k � M0
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is �nite and hence we have

kexp(�At)Hk � M0kHkLq

for q = 2; 1: Here we use

jFDpuj2 = j�j2jF(y)j2 � jF(y)j2

if j�j � 1: Now let


0(t) = kexp(�At)
� F(z0)
F(u0)

�
k22

That is, 
0(t) is the L2 norm of the underlying linear equation.

>From (3.17) it then follows that

(3.18)

����
�F(z(t))
F(u(t))

�����
1

� C +Ct
1
2

It remains to estimate jF�
1
2
0 j over the set S(t): By de�nition, we can write

�0(!; �!) =
1

�!
(! � �!)2 +

1

�!
(! � �!)3 +

1

!?
(! � �!)4:

Hence it follows that

�
1
2
0 (!; �!) �

r
1

�!
j! � �!j+

r
1

�!
j! � �!j 32 +

r
1

!?
j! � �!j2

which implies that

F(�
1
2
0 ) �

r
1

�!
F(j! � �!j) + 1

!?
F(j! � �!j 32 ) + F( 1p

!?
j! � �!j2)

>From (3.18) it follows that

(3.19)

r
1

�!
jF(! � �!)j1 � Ct

1
2

and that

(3.20)

jF( 1p
!?
j! � �!j2)j1 =

����
Z 1

�1

1p
!?
j! � �!j2eix�d�

����
� Cj! � �!j22
� C
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Hence it remains to estimate the L1-norm of the term 1
!?
F(j! � �!j 32 ): Since

jF(j! � �!j 32 )j1 �
Z
IRn

j! � �!j 32 dx

and �Z
IRn

j! � �!j 32 dx
� 2

3

�
�Z

IRn

jF(! � �!)j3dx
� 1

3

we have

jF(j! � �!j 32 )j1 �
�Z

IRn

jF(! � �!)j3
�1

2

� CjF(! � �!)j
�Z

IRn

jF(! � �!)jdx
� 1

2

Moreover, we have

jF(! � �!)j = F(!0)exp(�At) +
Z t

0

exp(�A(t � s))F((!u)x):

Hence,

(3.21)Z
IRn

jF(! � �!)jdx �
Z
IRn

jF(!0)jdx +
Z t

0

Z
IRn

exp(�A(t � s))
(1 + j�j2p)
(1 + j�j2p)F((!u)x)d�d�

�
Z
IRn

jF(!0)jdx

+

Z t

0

�Z
IRn

exp(�2A(t � s))

(1 + j�j2p)2 d�

�1
2
�Z

IRn

(1 + j�j2p)2jF((!u)x)j2d�
� 1

2

d�

The last integral on the right-hand side of (3.18) can be can be bounded by a constant,

since the term �Z
IRn

(1 + j�j2p)2jF((!u)x)j2d�
�

is bounded if the derivatives of ! and u are bounded. This is true provided that the initial

data is su�ciently smooth. The term

Z
IRn

exp(�2A(t � s))

(1 + j�j2p)2 d�

is bounded since 2p > n:

Hence we �nd that

(3.22) jF(j! � �!j 32 )j � C:
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Using the estimates obtained in (3.17) and (3.18) in (3.15) we obtain

d

dt

�
(t + 1)4n

Z
IRn

�
jFu(t)j2 + jFy(t)j2 + jF� 1

2
0 (t)j2

�
d�

�
� 4n(t+ 1)4n�1(t + 1)(t+ 1)�

n
2 + 4n(t+ 1)4n�1(t + 1)(t + 1)�

n
2

+ C4n(t+ 1)4n�1(t + 1)�
n
2

Thus integrating this last inequality with respect to time, and simplifying the result, we

obtain

ku(t)k22 + ky(t)k22 +
Z
IRn

�0dx � C(t+ 1)�(
n
2�1)

In particular this implies that

Z
IRn

�0dx � C(t+ 1)�(
n
2�1)

By Corollary 2.7 we know that there is a constant C0 such that

(3.23) k!(t)k22 � C0

Z
IRn

�0dx;

which implies that

(3.20) ku(t)k22 + ky(t)k22 + k!(t)k22 � C(t+ 1)�(
n
2�1):

Using this estimate in (3.17) we get

(3.25)

����
�F(z(t))
F(u(t))

�����
1

= C

Using (3.25) in (3.16) and simplifying the result we obtain on integration the estimate

ku(t)k22 + ky(t)k22 +
Z
IRn

�0dx � C(t+ 1)�
n
2 :

Moreover, from (3.23) it then follows that

ku(t)k22 + ky(t)k22 + k!(t)k22 � C(t+ 1)�
n
2 :

Thus this proves the theorem in the case when n > 2: We treat the case n = 2 separately.

In this case we choose

(3.26) S(t) = f� : j�j � g(t)g
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where g(t) =
�

3
(t+e) ln(t+e)

� 1
2

: Using the de�nition of the set S(t) as given in (3.26) in

(3.15) and simplifying the resulting inequality we get (after some manipulations),

(3.27)
d

dt

�
[ln(t+ e)]3

Z
IRn

�ju(t)j2 + jy(t)j2 + �0(!; �!)9t)
�
dx

�
� C

1

ln(t + e)(t + e)
[ln(t + e)]3Z

S(t)

�
jF(u(t))j2 + jF(y(t))j2 + jF(� 1

2
0 )(t)j2

�
d�

We thus need to estimate F(u) and F(� 1
2
0 ) on the set S(t): Note that the term F(u) is

evaluated as follows����
�F(!)
F(u)

����� � e�At
����
�F(!0)
F(u0)

�����+
Z t

0

j�j
����
�F(!u)
F(u2)

����� e�A(t�s)ds:
Hence it follows that

(3.28)

����
�F(!)
F(u)

�����
1

� C + Cjg(t)jt

� C

�
(t+ e)

ln(t+ e)

�1
2

:

Using (3.28) in (3.27) we obtain,

d

dt

�
[ln(t+ e)]3

Z
IRn

�ju(t)j2 + jy(t)j2 + �0(!; �!)(t)
�
dx

�
� C

1

ln(t+ e)(t + e)
[ln(t+ e)]3

� 1

ln(t + e)(t + e)

=
C

(t + e)

Integrating this inequality in time yieldsZ
IRn

�ju(t)j2 + jy(t)j2 + �0(!; �!)(t)
�
dx � 1

[ln(t+ e)]3

Z
IRn

�ju0j2 + jDpu0j2 + �0(!0; �!)
�
dx

+
C

[ln(t + e)]2

We now use induction to show that ifZ
IRn

�juj2 + jDpuj2 + �0(!; �!)
�
dx � [ln(t+ e)]�k

for k < m; then the decay can be improved to k = m: The method is standard and

analogous to that given in [6] and is thus omitted. This completes the proof of the theorem.
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