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In this paper we study the long time behavior of the energy of solutions to the
Boussinesq, planetary geostrophic, and primitive equations. The equations are
considered in the whole space R3. The asymptotic behavior will depend on the type
of data and how many damping constants are nonzero in the equations. In several
cases we are able to establish an algebraic rate of decay of the same order as the
solutions of the underlying linear equations. In the case with less damping our
results establish that either the energy of the solutions decays with no rate to an
equilibrium or it will be oscillating. Q 1999 Academic Press
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1. INTRODUCTION

The Navier]Stokes equations are usually considered to be the basic
equations for modeling atmospheric and oceanic flow phenomena. How-
ever, in three dimensions the equations are very complex, possibly ill
behaved, and contain phenomena, such as sound waves, that are not
normally considered important in geophysical flows. For these reasons the
equations are normally simplified using rational physical approximation
and asymptotic methods before analytic or numerical solutions are sought.
Among the various simpler sets of equations are the Boussinesq equations,
the so-called primitive equations, and the planetary geostrophic equations.

457
0022-247Xr99 $30.00

Copyright Q 1999 by Academic Press
All rights of reproduction in any form reserved.



SCHONBECK AND VALLIS458

In this paper we study the energy decay properties of these sets of
equations.

Ž w x.In the Boussinesq equations e.g., Tritton 10 variations in density are
considered only when coupled to gravity; the mass conservation equation is
simple conservation of volume. These equations are commonly used for
modeling convection in liquids. The primitive equations additionally im-
pose hydrostatic balance in the vertical direction, and are commonly used

Žto model large-scale atmospheric and oceanic flow. In this paper we
consider the primitive equations as a simplification of the Boussinesq
equations, and not the slightly differing primitive equations appropriate for

.gases. The planetary geostrophic equations make an additional simplifica-
tion: the inertial terms are ignored in the horizontal momentum equation,
and geostrophic balance is assumed, possibly with a small frictional correc-
tion. These equations are useful as a model of very large scale flow in the

w xocean and atmosphere by Phillips in 4 .
The Boussinesq equations in a frame of reference rotating about the

vertical axis, and with no thermodynamic source term, may be written

DU
q f k = U s y=p q nDU y k gu 1.1Ž .

Dt

Du
s kDu 1.2Ž .

Dt

= ? U s 0. 1.3Ž .

In these equations, the mean density is taken as unity, g is a constant
Ž .henceforth also set to unity . U is the three dimensional velocity field, u is

Žproportional to temperature, and p is equivalent to the pressure. We use
Ž . Ž . .the notation U s u, ¨ , w and V s u, ¨ . f is the Coriolis parameter,

and n and k are constant coefficients of viscosity and diffusivity.
It is common when considering large-scale geophysical flows to suppose

that the vertical accelerations are small compared to gravitational or
buoyancy forces, and that ‘‘hydrostatic balance’’ holds. This leads to the

w x‘‘primitive equations’’ as described by Holton in 2 , commonly used for
weather forecasting and other large numerical simulations. To represent
this, the equations of motion are written

DV
q f k = U s y=p q nDV 1.4Ž .

Dt

Dw ­ p
a q gu s y q gnDw 1.5Ž .

Dt ­ z
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Du
s kDu 1.6Ž .

Dt

= ? U s 0 1.7Ž .

where a s 1 and g s 1 in the Boussinesq equations, and a s 0 and g s 0
for the primitive equations.

For large-scale flow further simplification is possible. Appropriate scal-
Ž .ing and asymptotic analysis leads to the ‘‘planetary geostrophic PG

equations,’’ namely,

­ p
yf̈ s y q nDu y e u 1.8Ž .

­ x

­ p
fu s y q nD¨ y e ¨ 1.9Ž .

­ y

­ p
gu s y y rw 1.10Ž .

­ z

Du
s kDu y ku 1.11Ž .

Dt

= ? U s 0 1.12Ž .

These equations are, respectively, approximations to the momentum equa-
tions in the x, y, and z directions, a thermodynamic equation and volume

Ž .conservation. Additional dissipative ‘‘Rayleigh damping’’ terms have been
added to the momentum equation and thermodynamic equations: In all
such large-scale equations for large-scale flow, the scales at which molecu-
lar dissipation is important are hopelessly unresolved, and rather ad hoc
frictional and diffusive terms are often added. The PG equations, or
variations around them, have been used extensively in theoretical and

Žanalytic studies of the large-scale ocean circulation e.g., Samelson and
w x.Vallis 5 .

Since a number of simplifications have plainly been made in deriving all
these equations, and the frictional terms are ad hoc, it is important to
understand their properties. One wishes to know whether the system one
is dealing with is well behaved, or has pathological characteristics which

Ž .might lead to singularities as, for example, in Burgers equation . It is for
this reason that we are interested in the general properties of solutions.

Interest will be focused on several cases. First is the case where the
diffusion of the temperature is reduced by setting k s 0 and we add
diffusion in the third variable of the velocity, i.e., in w. This case is
analyzed in order to explain the technique of Fourier splitting which will
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give decay of the energies. Second we suppose that there is no diffusion in
w, k ) 0 and the energy of w goes to a finite limit. The case where the
diffusion in w is zero but k ) 0 is also considered. We also study the case
where there is no diffusion in the third variable and k s 0 but here we
need additional hypotheses on the behavior of the energy of w. Finally we
consider the quasi-stationary case, where k s 0 and n s 0 and the depen-
dence on time of the velocity is through the temperature. It is interesting
to note that in most cases we get the same algebraic rate of decay,
indicating that the temperature is probably driving the energy of the
velocity to a zero equilibrium as time increases.

Ideally, one would like to prove global regularity. Such a proof is beyond
the scope of this paper; here we restrict ourselves to proving energy decay
under various circumstances.

2. SPECIFIC EQUATIONS

We analyze the above equation sets in whole space. For specificity, we
first consider a single set of equations representing both the Boussinesq
and hydrostatic primitive equations, using parameters that are either zero
or unity to differentiate between them. We write the equations as

­Ua ˜q U ? =U q fAU s y=p y BU q u q nDU 2.1Ž .a­ t

­u
q U ? =u s k u q u q k u y ku 2.2Ž .h x x y y n z z­ t

= ? U s 0 2.3Ž .

tŽ . Ž .where U s u, ¨ , a w is the velocity vector, p is the pressure, u s 0, 0, u ,a

and f is the Coriolis parameter which may be a function of y. The
˜notation D is used to indicate that the Laplacian in the coordinate w is

multiplied by a constant g which in some cases will be zero. Specifically
˜ Ž .D s D, D, gD . The matrices A and B are given by

0 y1 0 e 0 0
A s B s 2.4Ž .1 0 0 0 e 0ž / ž /0 0 0 0 0 r

The constants e , r, k , k and k are frictional, damping, and diffusiveh n

coefficients of various types. These constants are greater or equal to zero.
In what follows we will always specify which of the constants are zero.
Making any of the constants zero is equivalent to removing some of the
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damping and hence the decay will be slower. The ‘‘ideal’’ equations have
all these parameters set to zero. However, this case is not the most
physically realistic, nor will the method in this paper carry over to this case
since there would not be enough diffusion to implement it.

In what follows we will use the notation

< <a s a , a , a , a s a q a q a , a G 0, 2.5Ž . Ž .1 2 3 1 2 3 i

and

­ < a <

aD s . 2.6Ž .a a a1 2 3­ x ­ x ­ x1 2 3

2 Ž .The L norm or energy norm will be denoted by

1r2
25 5 5 5 < <u s u ?, t s u X , t dX , 2.7Ž . Ž . Ž .2 H

3R

Ž . pwhere X s x, y, z , dX s dx dy dz. More generally we denote the L
norm for 1 F p - ` by

1rp
p5 5 < <u ?, t s u X , t dX , 2.8Ž . Ž . Ž .p H

3R

and L` by

5 5 < <u ? s ess sup u x . 2.9Ž . Ž . Ž .`

The H m norm is defined by

1r2
2a

m5 5 < <u ?, t s D u X , t dX , 2.10Ž . Ž . Ž .ÝH H
3R < <a Fm

a < < < <� 4AA s U: D U ª 0, a G 1 X ª ` 2.11Ž .a

The following notation will be used for the Fourier transform

u j s FFu j s u X eyi X?j dX 2.12Ž . Ž . Ž . Ž .ˆ H
3R

Ž .where j s j , j , j .1 2 3
Ž . Ž .We show that the solutions of 2.1 ] 2.3 decay, in the case where a and

g are nonzero, at the same rate as the solutions of the underlying heat
equation. This is the best decay we can expect since the temperature will
not decay faster than its linear counterpart. The decay rate of the velocity
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will be driven by the decay of the temperature; hence we do not expect
better decay for the velocity. If we start with data in a more restricted
space we can obtain better decay for the temperature and hence for the
velocity. One such space would be

D s V : where V x , 0 s V , and V x , t satisfies ­ Vr­ t s DV ,Ž . Ž .�a 0 0

ya
5 5and V t F C t q 1 . 2.13Ž . Ž . Ž .42

In particular we note that L1 l L2 ; D . In such situation our method3r4
Ž .y3r4 2will yield a decay of order t q 1 . We first show that both the L

norms of the temperature and velocity are bounded uniformly in time by
constant depending on norms of the data. These bounds are then used to
obtain the decay of the temperature, which is shown to decay at the same
rate as the solution to the underlying heat equation. We note that if we
would consider the equations in a bounded domain with zero boundary
condition, the problem is considerably simpler, since then exponential
decay would be an immediate consequence of Poincare’s inequality. In
the unbounded case we will use a technique used for solutions to the

Ž w x.Naver]Stokes equations Schonbek 7 and for parabolic conservations
Ž w x.laws Schonbek 8 . This technique is the Fourier splitting method. In

< <what follows we suppose that our solutions decay to zero as X ª `,
Ž .X s x, y, z . Such solutions can be constructed easily if the data satisfy

such a condition.

3. SOME REMARKS ON EXISTENCE

In this section we make a few general remarks on existence of solutions.
We expect that it is easy to establish existence of local in time solutions in
good spaces. In particular we will always suppose that our solutions and

< <derivative tend to zero as x tends to `. More precisely if a / 0 using
fixed point techniques it is easy to show

Ž . 1THEOREM 1. Let U , Q g H . Then there exist t depending only on0 0 0
1 Ž . Ž .the H norm of the data such that there exists a solution U, u to 2.1 with
Ž . mdata U , Q which belongs to H for all m G 0.0 0

As for Navier]Stokes the question of regularity reduces to show that the
solutions are in H 1. We remark that there are several proofs of regularity
for solutions to three-dimensional Navier]Stokes equations with small
data in H 1. We expect that these proofs with minor modifications will
yield regularity of the geostrophic equations. More precisely the following
should hold.
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Ž . 1 5 5 1 5 5 1THEOREM 2. Let U , u g H . Suppose that U q u F e withH H0 0 0 0
Ž .e as small as needed. Then 2.1 has a smooth global solution with data

Ž .U , u .0 0

If a s 0 and g s 0, then the term w is the only part of w that plays az
Ž .role in the equation. This term can be replaced by y u q ¨ and localx y

existence will again follow by fixed point techniques.
If the data are large as for Navier]Stokes we expect that weak solutions

can be constructed. To obtain decay the idea would be to use approximat-
ing solutions which are obtained via linearizations. The linearizations can

Žbe obtained with minor modifications of the ones constructed with minor
.modifications for solutions to the Navier]Stokes equations. These lin-

w xearizations we are referring to were constructed by Leray 3 , by a retarded
w xmollification such as the ones used by Caffarelli et al. 1 or by Sohr et al.

w x9 . The existence of weak solutions will follow passing to the limit.
ŽIn what follows it is supposed in addition to the hypotheses given in the

. 1theorems that the data are small in H and we will look at the proof as
being formal; that is, it can be applied to approximations. Then using
Fatou’s lemma one can pass to the limit and obtain the decay for the
limiting equations, i.e., the m-geostrophic equations.

4. UNIFORM BOUNDS FOR THE TEMPERATURE
AND VELOCITY

In this section we obtain uniform bounds for the temperature and
velocity. These estimates will be the basis for the decay estimates which
will be obtained in Section 4.

Recall that in what follows our data are either supposed small in H 1 or
we are using a formal argument which can be applied to approximating

Ž .equations and we have to pass to the limit to obtain the decay for 2.1 . We
note that we suppose that we are working first with a solution for which
Ž . 2 Ž .U, u g L . This follows by easy energy estimates if g and a in 2.1 are
nonzero and the data are in L2. In the case these constants are zero we
will need additional hypothesis.

Ž Ž . . 2 1 Ž . 2THEOREM 3. Let U x, y, z , u g L l L l AA . Let U, u g L be a0 0 1
Ž . Ž .solution to GE with data U , u . We suppose k s 0 and the other0 0
Ž . Ž .constants in 2.1 are nonzero. Then the energy of the solutions to 2.1 will be

bounded uniformly in L2.
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Moreover we have

t2 25 5 < <u t q k =u dX F C , 4.1Ž . Ž .HH0 0
30 R

5 5U t F C 4.2Ž . Ž .1

< < 2 � 5 Ž .5 24 Ž .3where C s H u dX and C s max 2C rg , U 0 , d s min r, e and0 R 0 1 0
Ž .k s min k , k .0 h n

Proof.
Bounds for the L2 norm of the temperature: We suppose we are working

with smooth solutions. This solution exists for small enough data in
L1 l H 1. For a nonsmooth solution the process is to obtain the bounds for
approximations and then pass to the limit. Multiply the equation of the
temperature by u and integrate in space

d 2< <u dX s y uU ? =u dX q k uDu dX q k uu dX . 4.3Ž .H H H Hh ¨ z z
3 3 3 3dt R R R R

Ž .Let k s min k , k . Then after some integration by parts, since the0 h ¨
boundary terms vanish and the convective term integrates to zero, due to
the fact that = ? U s 0. Thus we have

1 d 2 2< < < <u dX F yk =u dX . 4.4Ž .H H0
3 32 dt R R

Hence integrating in time the last inequality yields

t2 2 2< < < < < <u dX q k =u dX F u dX s C . 4.5Ž .H HH H0 0 0
3 3 3R 0 R R

L2 bounds for the ¨elocity: Now multiply the velocity equations by U and
integrate in space to obtain

1 d 2 2 2 t< < < < < <u q ¨ q w dX dX q k fU AU dXH H0
3 32 dt R R

s U ? =U dX y U ? =p dX y U tBU dX q wu dXH H H H
3 3 3 3R R R R

4.6Ž .

< < 2 < < 2 < < 2y n =u q =¨ q g =w dxŽ .H
3R

where we integrated the integral with the Laplacian by parts and use that
the boundary terms are zero. By the definition of the matrix A it follows
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that the U 2AU s 0; hence the second integral on the left hand side
vanishes. Since = ? U s 0 the pressure integral and the convective term

Ž . Ž .also vanish. Let d s min e , r . Then 4.7 yields

1 d 2 2< < < <U dX F yd U dX q wu dX . 4.7Ž .H H H
3 3 32 dt R R R

< < 23Here the negative term ynH =U on the right hand side was dropped.R
Thus by Holder’s inequality and the last inequality we have¨

1 d 2 2 2< < < < < <u q ¨ q w dXH
32 dt R

1r2
2 2 2< < < < < <F yd U dX q w dX = u dX . 4.8Ž .H H Hž /3 3 3R R R

Therefore the L2 bound of the temperature yields

1r21 d 2 2 2< < < < < <U dX F yd U dX q C U dX . 4.9Ž .H H H0ž /3 3 32 dt R R R

The last equation will give

< < 231 drdt H U dXŽ . R 2 1r2< <F yd U dX q C . 4.10Ž .H 01r2 322 R< <3H U dXR

This can be rewritten as

1r2d 2 2 1r2< < < <U dX F yd U dX q C . 4.11Ž .H H 0
3 3dt R R

Thus

1r2d 2d t d t< <e U dX F C e . 4.12Ž .H 0
3dt R

w xNow integrating over 0, T yields

1r2 1r2
2 2d t d s< < < <e U dX F U dX q C e dsH H H0 0

3 3 3R R R

d t1r2 e y 12< <s U dx q C . 4.13Ž .H 0 0
3 gR
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Hence

1r2 1r2 C02 2yd t< < < <U dX F e U dX q . 4.14Ž .H H 0
3 3 dR R

The last inequality completes the proof of the Theorem 2.1.
In the case that r s 0 the proof shows that the L2 norm of temperature

is bounded and is still valid. To insure that the energy of the velocity is
bounded in the case r s 0 we will need more decay in the temperature.
Specifically

Ž Ž . . 2 1 Ž . 2THEOREM 4. Let U x, y, z , u g L l L l AA . Let U, u g L be a0 0 1
Ž . Ž .solution to GE with data U , u . We suppose r s 0, k / 0, and the other0 0
Ž . Ž .constants in 2.1 are nonzero. Then the energy of the solutions to 2.1 will be

bounded uniformly in L2.

Moreover we have

t2 25 5 < <u t q k =u dX F C , 4.15Ž . Ž .HH0 0
30 R

and

5 5 2 yk tu t F C exp , 4.16Ž . Ž .0

5 5U t F C , 4.17Ž . Ž .1

where the constants depend only on norms of the data.

Proof. By the same steps as last theorem we have

1 d 2 2< < < <u dX F yk u dX . 4.18Ž .H H
3 32 dt R R

Thus the exponential decay of the temperature follows. For the bounds of
the velocity we note that the energy methods of the proof of the last

Ž Ž ..theorem specifically see 4.8 combined with the exponential decay of the
temperature yield

1r2d 2 yk tr2< <U dX F qC e . 4.19Ž .H 0
3dt R

And thus the bound on the energy of the velocity follows after an
integration in time.
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5. L2 DECAY OF THE TEMPERATURE AND VELOCITY

In this section we first analyze the case where we have both a and g or
r nonzero. For simplicity we put these constants equal to one, keeping in
mind that if we leave the constants a and g , our estimates will depend on
these constants and will not be valid for a s 0 and g s 0. We present this

Žw x.case only to introduce the ideas of the Fourier splitting technique 7, 8
since the ideas are clearer in this context. The bounds of the theorems of
last section will now be used to establish the desired algebraic rates
of decay.

Ž . 2 1Ž 3. 2 1Ž 3.THEOREM 5. Let U x, y, z g L l L RR l AA , u g L l L RR0 1 0
Ž . Ž . Ž .l AA . Let U, u be a solution to 2.1 with data U , u . We suppose k s 01 0 0

Ž .and that all the other constants in 2.1 are nonzero. Then the energy of the
equations will decay at the following algebraic rate

y3r22 25 5 5 5U ?, t q u ?, t F C# t q 1 5.1Ž . Ž . Ž . Ž .. 2 2

where the constant C# depends on the L2 norms of the data.

Remark. This proof is valid also if n s 0.

Proof. The proof we give is formal. We recall again that a rigorous
proof would follow by the method presented here and applied to a
sequence of approximating solutions which are smooth and then pass to
the limit. Such an approximating sequence, as was mentioned above, can
be obtained in a similar fashion to the approximations to the Navier]Stokes

w xequations 1 . Once the theorem is established for approximations the
result for weak solutions will follow by Fatou’s lemma. Hence from now on
we work as if we have a smooth solution.

We next show that the temperature decays at the expected rate. For this
multiply the temperature equation by u and integrate in space. We obtain
as before,

1 d 2 2< < < <u dX F yk =u dX . 5.2Ž .H H0
3 32 dt R R

This energy inequality is the starting point of the Fourier splitting method.
The idea is to obtain an ordinary differential inequality for the energy
norm of the temperature. This is obtained by working in the Fourier
domain and splitting the space into two appropriately chosen time depen-
dent subspaces. In a bounded domain case we would use Poincare’s
inequality and exponential decay would follow immediately.
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Ž .By Plancherel’s theorem inequality 5.2 reads as follows in frequency
space

1 d 2 2 2ˆ ˆ< < < < < <u dj F yk j u dj , 5.3Ž .H H0
3 32 dt R R

Ž .where j s j , j , j . We subdivide the frequency space into two time1 2 3
Ž . cŽ . Ž .dependent subspaces: S t and its complement S t where S t is defined

by

1r23
< <S t s j : j F . 5.4Ž . Ž .½ 5ž /2k t q 1Ž .0

Ž . 3Note that as k ª 0 the volume of S t will tend to R , and so our0
estimates will not be valid if k s 0. That is, the decay is only obtained if0
there is diffusion present in all three coordinates of the temperature.

Ž .Hence from 5.3 it follows that

d 2 2 2 2˜ ˆ ˆ< < < < < < < < < <u dj F y2k j u dj y 2k j u dj . 5.5Ž .H H H0 0
3 cdt Ž . Ž .R S t S t

Ž .As t ª 0 the term coming from the integral over S t will tend to zero
Ž .since the volume of S t tends to 0. Hence this term will not be useful in

this proof, and thus will be dropped. The inequality still holds. Thus the
integral of the frequency squared over

c 3S t s R _ S tŽ . Ž .

can be bounded by the least value of the frequency in the exterior of the
Ž .ball S t . Thus

d 32 2ˆ ˆ< < < <u dj F y u dj . 5.6Ž .H H
3 cdt t q 1Ž . Ž .R S t

This last inequality can be rewritten as follows:

d 3 32 2 2ˆ ˆ ˆ< < < < < <u dj F y u dj q u dj . 5.7Ž .H H H
3 3dt t q 1 t q 1Ž . Ž . Ž .R R S t

Thus we have a linear ordinary differential inequality for the L2 norm of
the temperature. Recall that the L2 norm of the energy is equal to the L2

norm of the Fourier transform. To obtain the decay of the L2 norm of the
temperature we need an intermediate estimate for the Fourier transform

Ž .of the temperature for frequency values in S t . For this we note that the
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Fourier transform of the temperature satisfies the following differential
equation:

2 2 2< < < < < <FFu q k j q j q kn j FFu s yFF U ? =u . 5.8Ž . Ž . Ž .Ž .t n 1 1 3

< < w Ž < < 2 < < 2 . Ž < < 2 .xHence if we let b s k j q j q k j , thenn 1 1 n 3

3
ty< b < t y < b <Ž tys.FFu j s FF u e q j FF u u e ds. 5.9Ž . Ž . Ž .Ž .ÝH0 j j

0 js1

w Ž . Ž . xWe changed for convenience the notation U s u, ¨ , w s u , u , u .1 2 3
Hence

3
t2 2yk < j < t yk < j < Ž tys.0 0< < < < < <FF u j F FF u e q j FF u u e ds. 5.10Ž . Ž . Ž . Ž .Ž Ý H0 2

0js1

1 Ž . <Since the data were in L it follows that FF u F C#. And since by0
Theorem 3.1 the L2 norms of the temperature and velocity are bounded,
the last inequality yields

3
t 2yk < j < Ž tys.0< < < < <FF u j F C q j FF u u e ds. 5.11Ž . Ž .Ž Ž .Ý H0 j

0js1

Thus

3
t 2yk < j < Ž tys.0ˆ< < <FF u j F C q j u u e ds. 5.12Ž . Ž .Ž Ý H H0 j

30 Rjs1

Thus by the Holder inequality¨

3
t 21r2 1r yk < j < Ž tys.0< 5 5 5 5FF u j F C q j u u e ds. 5.13Ž . Ž .Ž Ý H H0 j

30 Rjs1

And finally the right hand side can be bounded by

t 2yk < j < Ž tys.0<FF u j F C q C C j e dsŽ .Ž H H0 0 1
30 R

C q C 120 1 tyk < j < Ž tys.0 <s e F C# 1 q . 5.14Ž .0< < < <k j k j0 0
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Ž .With this bound in hand we return to inequality 4.4 to obtain

d 3 32 2 2ˆ ˆ< < < <u dj F y u dj q 2C#H H H
3 3dt t q 1 t q 1Ž . Ž . Ž .R R S t

22
q C C dj . 5.15Ž .0 1< <k j0

Hence integrating the last integral on the right hand side yields

d 3 C 122 2ˆ ˆ< < < <u dj q u dj F 1 q djH H H 23 3dt t q 1 t q 1 < <Ž . Ž . Ž . jR R S t

C C3 4F q5r2 3r2t q 1 t q 1Ž . Ž .
C#

F 5.16Ž .3r2t q 1Ž .

Ž .3Using t q 1 as a multiplier the last inequality can be expressed as
follows

d C3 32ˆ< <t q 1 u dj F t q 1 5.17Ž . Ž . Ž .H 3r23dt R t q 1Ž .

Integrating in time yields

3 5r22 2ˆ ˆ< < < <t q 1 u dj F u dj q C t q 1 . 5.18Ž . Ž . Ž .H H 0
3 3R R

Thus

y3 y1r2 y1r22ˆ< <u dj F t q 1 C q c t q 1 F C t q 1 5.19Ž . Ž . Ž . Ž .H 0
3R

This last inequality establishes an intermediate rate of decay. For the
5 5temperature from where an intermediate decay for U . These two2

estimates are used to get a better bound for FFu . This bound will be used to
5 5yield the optimal decay for u and repeating the process yields the decay2

for the energy of the velocity. More precisely it is shown that the solutions
decay at the same rate as their underlying linear counterpart.

5 Ž .5Now we use the decay of u t to obtain an intermediate decay for the2

velocity. Here we first suppose a and r are nonzero.
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5.1. Auxiliary L2 Decay of the Velocity

The ideas here are the same as for the decay of the temperature. That
is, the main tool will be the Fourier splitting. Multiplying the velocity
equations by U, we obtain as before in the first part of Theorem 3

1r21 d 2 2 2 2< < < < < < < <U dX F yd U dX q U dX u dXH H H H
3 3 3 32 dt R R R R

< < 2y n =U dx. 5.20Ž .H
3R

By Schwartz’ inequality and dropping the last term on the right hand side
we obtain

d 12 2 2 2< < < < < < < <U dX F yd U dX q U dX q ? u dX . 5.21Ž .H H H H
3 3 3 32 2dR R R R

We note that the last term on the right hand side can be used to show that
the decay rate has perhaps a smaller constant, but it will not improve the
rate of decay and thus we omit it. Hence

1 d d 12 2 2< < < < < <U dX F y U dX q u dX . 5.22Ž .H H H
3 3 32 dt 2 2dR R R

The decay of the temperature now yields

d C y1r22 2< < < <U dX q d U dX F t q 1 . 5.23Ž . Ž .H H
3 3dt dR R

Ž .Now using exp d t as a multiplier, the last equation yields

d C y1r22< <exp d t U dX F exp d t t q 1 . 5.24Ž . Ž . Ž . Ž .H
3dt gR

w xIntegrating in time over 0, t it follows that

Ct y1r22 2< < < <exp d t U X , t dX F U dX q exp d s s q 1 dsŽ . Ž . Ž . Ž .H H H0
3 3 dR R 0

s I q I . 5.25Ž .1 2

We need to analyze integral I2

C Ctr2 ty1r2 y1r2I s exp d s t q 1 ds q exp d s t q 1 dsŽ . Ž . Ž . Ž .H H2 d d0 tr2

d y1r2F C exp t q C tr2 q 1 exp d t . 5.26Ž . Ž . Ž .ž /2
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Ž . Ž .Thus combining 4.40 and 4.41 it follows that

y1r22 2˜< < < <U X , t dX F exp yd t U dX q C t q 1 . 5.27Ž . Ž . Ž . Ž .H H 0
3 3R R

which gives an intermediate decay for the velocity.
The estimates above on the L2 norms of the temperature and velo-

Ž . Ž .city yield a new estimate for FF u . More precisely, if j g S t then j F
Ž .y1r21 q t . Thus

t 2yk < j < Ž tys.0< < 5 5 5 5FF u j F C q C C j u U e dsŽ .Ž . H H 2 20 0 1
30 R

ty1r2 y1r2F C q 1 q t 1 q s F C#. 5.28Ž . Ž . Ž .H0
0

5 5Now repeating the argument which gave the intermediate decay of u ,2
Ž .but replacing the bound of FF u by the one we just obtained will yield the

expected decay of the temperature. More precisely, it gives

y3r225 5u t F C 1 q t .Ž . Ž .2 0

To obtain the right rate of decay for the velocity, proceed as follows.
Ž . Ž .Repeat the argument described by inequalities 4.35 ] 4.42 , replacing in

Ž . 5 5 5 5 2inequality 4.38 the old bound on u by the new bound if u . This2 2

yields the new and optimal rate of

y3r225 5U t F C t q 1 .Ž . Ž .2 0

We note that we did not make use of the term with the parameter n . Thus
the result includes the case n s 0. The last inequality completes the proof
of Theorem 3.1.

Next we analyze the case where r s 0 and g / 0.

Ž . 2 1Ž 3. 2 1Ž 2 .THEOREM 6. Let U x, y, z g L l L RR l AA, u g L l L RR l0 0
Ž . Ž . Ž .AA. Let U, u be a solution to 2.1 with data U , u . We suppose r s 0 and0 0

Ž .that all the other constants in 2.1 are nonzero. Then the energy of the
equations will decay at the following algebraic rate

y3r22 25 5 5 5U ?, t q u ?, t F C# t q 1 5.29Ž . Ž . Ž . Ž .2 2

where the constant C# depends on the L2 norms of the data.
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Proof. Since k / 0 it follows that the temperature decays exponen-
tially. Thus

1r21 d 2 2 2 2< < < < < < < <U dX F yd U dX q U dX u dXH H H H
3 3 2 22 dt R R R R

< < 2y n =U dx 5.30Ž .H
3R

yields

1 d 2 2 2yŽ1r2.k t< < < < < <U dX F yd U dX q C exp y n =U dx.H H H0
3 3 22 dt R R R

5.31Ž .

Now applying the Fourier splitting method will again yield the algebraic
rate for the L2 norm of the velocity. Since this proof is very similar to the
steps used in the first case to obtain algebraic rate of decay for the
temperature, it is omitted. For details on how to handle this case we refer

Ž w x.the reader to Fourier splitting method M. E. Schonbek 7, 8 .

6. THE PRIMITIVE EQUATIONS AND EXTENSIONS

In this section we are going to study the equations when there is no
diffusion in the variable w, and no vertical acceleration. In fact it is the
lack of diffusion that causes most difficulty in obtaining an estimate,
omitting vertical acceleration while keeping vertical diffusion is easier.

Ž . Ž .Thus, we set g s 0 in the 2.1 ] 2.3 . The first problem we find here is that
it is not obvious at all if there are solutions for which the L2 norm is
bounded independently of time. That a time dependent bound exists is
clear by the former section. We note that in the case that the constant k is
not zero, then as shown before there is such a bound and the Fourier
splitting method can be used to obtain decay for the energy of the first two
variables. This is an easy consequence of the last section.

Attention will be focused now on the case where g s 0 and k s 0.
There are two possibilities for solutions for which the L2 norm remains
finite. Either there are oscillations where the L2 norm of u, ¨ increases
while the L2 norm of w decreases and then the process is reversed, i.e.,
the L2 norm of u, ¨ decreases and the l 2 norm of w increases and so on
or the L2 norm of w tends to a finite limit L, in which case one can show
that the L2 norms of u and ¨ tend to zero. In what follows we suppose the
existence of good solutions.



SCHONBECK AND VALLIS474

Ž .THEOREM 7. Let U, u be a solution of the primitï e equations. Suppose
that the L2 norm of w is bounded, then either we ha¨e oscillations as described
abo¨e or there exists L such that

5 5w t ª LŽ .
and

5 5 5 5u q ¨ ª 0.

Proof. Since we are supposing that the L2 norm is bounded, there has
to be a limit or the norm has to oscillate. Hence we suppose that such a

Ž .limit L exists. Multiplying the first two equations by V s u, ¨ , the last
equation by w, and summing yields

1 d 1 d2 2 2 2 2< < < < < < < < < <u q ¨ q w dx F yn =u q =¨ dx y u w dx.H H H2 dt 2 dt
6.1Ž .

Ž . 5 Ž .5 2 5 Ž .5 2 Ž .Let G s s V s q w s and V s u, ¨ . Then the last equation
yields

t t2< <G t y G s F y¨ =V dx ds y u w dx ds.Ž . Ž . HH HH
s s

By the boundedness of w in L2 and the decay of the temperature obtained
in previous section we have

1t t2< <G t y G s F y¨ =V dx ds q C .Ž . Ž . HH H0 1r4
s s s q 1Ž .

Note that we only were able to use the auxiliary decay of temperature
which is not optimal. We will now apply an extension to the Fourier

w x Ž . � < < w Ž . x1r24splitting method due to Wiegner 11 . Let S t s j : j F g t r2 ;
g will be specified below. Combined with the last equation, the Fourier
splitting method yields

t 2 25 5G t y G s q g r V r drŽ . Ž . Ž . Ž .H
s

1t t2 2ˆ< <F g r u j , r dj dr q C drŽ . Ž .H H H0 1r4Ž .s S t s r q 1Ž .
t 2 3r2 3r4F C g r g r q t q 1 q g r drŽ . Ž . Ž . Ž .H

s

1r41t
q C dr 6.2Ž .H0 r q 1s
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w Ž . x1r2Note that here we are integrating on a sphere of radius g t r2 and
that the Fourier transform of V can be easily bounded by

t t2 22 y < j < Ž tys. y < j < Ž tys.ˆ< < 5 5 5 5 5 5V j , t F C q C j C V e ds q u w e dsŽ . H H0
0 0

1r4C 1t0F C q q dr .H5 <j r q 1s

w xNow following Wiegner 11 define

t 2e t s exp g r dr .Ž . Ž .H
0

Hence

t 2e t y e t y h s e t y h g r dr q he h 6.3Ž . Ž . Ž . Ž . Ž . Ž .H
tyh

Ž .where e h ª 0 as h ª 0. Now write

e t G t y L y e t y h G t y h y LŽ . Ž . Ž . Ž .Ž . Ž .
s e t y e t y h G t y LŽ . Ž . Ž .Ž . Ž .

q e t y h G t y L y G t y h y LŽ . Ž . Ž .Ž . Ž .Ž .

Ž .so that by 6.3

e t G t y L y e t y h G t y h y LŽ . Ž . Ž . Ž .Ž . Ž .
t 2s e t y h g r dr G t y LŽ . Ž . Ž .Ž .H

tyh

q e t y h G t y G t y h q he h G t y LŽ . Ž . Ž . Ž . Ž .Ž . Ž .
t 2s e t y h g r G t y G r dr q G t y G t y hŽ . Ž . Ž . Ž . Ž . Ž .H

tyh

t 2q g r G r y L dr q he h G t y L .Ž . Ž . Ž . Ž .Ž . Ž .H
tyh



SCHONBECK AND VALLIS476

Ž . 5 Ž .5 2Recalling that G r y L s U r y L, we get2

e t G t y L y e t y h G t y h y LŽ . Ž . Ž . Ž .Ž . Ž .
t 2s e t y h g r G t y G r dr q G t y G t y hŽ . Ž . Ž . Ž . Ž . Ž .H

tyh

t 2 25 5q g r ¨ r drŽ . Ž .H 2
tyh

t 2 25 5q e t y h g r w r y L dr q he h G t y L .Ž . Ž . Ž . Ž . Ž .Ž .Ž .H 2
tyh

6.4Ž .

Ž .2 Ž .y1Let g t s a t q 1 , with a sufficiently large. Then

t aaH drrŽ rq1.0e t s e s t q 1 .Ž . Ž .

< 5 Ž .5 2 < Ž .Let T be such that for t G T we have w t y L - e . Using 6.4 it20 0
follows that, for t G T ,0

e t G t y L y e t y h G t y h y LŽ . Ž . Ž . Ž .
t t2 y3r2F e t y h g r G t y G r dr q C e r r q 1 drŽ . Ž . Ž . Ž . Ž . Ž .H H

tyh tyh

t 2q e e t y h g r dr q he h G t y LŽ . Ž . Ž . Ž .Ž .H
tyh

1r41t 2q C e r g r dr , 6.5Ž . Ž . Ž .H r q 1tyh

1r41t t2 y5r4C e r g r dr s C e r r q 1 dr .Ž . Ž . Ž . Ž .H Hr q 1tyh tyh

Hence the last integral bounds the second integral on the right.
Ž . < <It follows easily after integrating 6.1 in time that if t y r - h

t t2< <G t y G r F y =V dx ds q u w dx dsŽ . Ž . HH HH
r r

Ž .where we used 6.2 .
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From this

r t y1r4 3r4< <G t y G r F u w dx ds F C r q 1 dr s O h .Ž . Ž . Ž . Ž .H H H0
t r

Ž .Hence summing 6.5 over intervals of length h it follows that for t G T

e t G t y L y e T G T y LŽ . Ž . Ž . Ž .
t t2 y5r43r4F O h e r g r dr q e r r q 1 drŽ . Ž . Ž . Ž . Ž .H H

T T

t 2q e g r e r dr q e h G 0 y L .Ž . Ž . Ž . Ž .H
T

Let h ª 0; then

ay1r4e t G t y L F e T G T y L q C t q 1 q e C e t .Ž . Ž . Ž . Ž . Ž . Ž .0

6.6Ž .

Here we used that

t t a2 ay1g r e r dr s C r q 1 dr F C t q 1 .Ž . Ž . Ž . Ž .H H0
T T

Ž .Dividing by e t yields

e TŽ .2 2< < < <u t dx q w t dx y L F G 0 q LŽ . Ž . Ž .Ž .H H e tŽ .
y1r4q C t q 1 q e C .Ž . 0

Since e tends to zero the proof is now complete.

7. QUASI-STATIONARY CASE: PLANETARY
GEOSTROPHIC EQUATIONS

Ž .Let n s 0 in 2.1 and we suppose that U depends on time only through
the temperature. We suppose that we have solutions in L2. Hence we have
equations of the form

fAU s y=p y BU q u 7.1Ž .
­u

q U ? =u s k u q u q k u 7.2Ž .h x x y y n z z­ t

= ? U s 0 7.3Ž .
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where the constants e , r, k , k are strictly positive and m G 0. We willh n

need to impose some conditions on the size of e and r for existence in this
case. We note that local existence of solutions to the quasistationary
equations will follow by a fixed point argument. For this first linearize the
equations

y1f s P B yfAU y mV ? =U q u 7.4Ž . Ž .n n n n

t˜ ˜yA t yAŽ tys.c s e u y e V ? =u ds. 7.5Ž . Ž . Ž .Hn 0 n
0

For local existence we note that one can apply a fixed point argument to
the temperature variable and use the first equation to describe the velocity
in function of temperature. Since we are interested in decay we are going
to suppose that such solutions in L2 exist provided that the data are small.

Ž . Ž . 2Ž 3. Ž .THEOREM 8. Let u x, 0 and U x lie in L RR . Let U, u be a0
Ž . Ž . Ž . Ž . < <solution of 2.1 ] 2.3 with data U , u such that U , u ª 0 as x ª `.0 0 0

Then

t2 2< < < <i u dx q k# =u dx ds F C 7.6Ž . Ž .H HH 0
3 3R 0 R

Ž .where k# s min k , k andh n

r 12 2 2 2< < < < < < < <ii e u dx q e ¨ dx q w dx F u dx 7.7Ž . Ž .H H H H H 0
3 3 3 32 2 rR R R R

Ž . < < 23where r ) 0 . Here, C s H u dx.0 R 0

Proof. The proof is formal. To make it rigorous as before it is necessary
to apply the proof to approximating solutions and then pass to the limit,
using Fatou’s lemma.

Ž .Part i: Follows the same way as Theorem 4, that is, multiply Eq. 2.2 by
u and integrate in space and time. Notice that the convective term
vanishes since the velocity is divergence free and there are no boundary

< <terms since the solution tends to zero as x ª `. Notice also that the
diffusive term is integrated by parts to yield the gradient square. And again
there are no boundary terms for the same reason as before.

Part ii: We suppose that the data are small and hence we have a smooth
solution or otherwise we work with approximations and pass to the limit.
Thus our computations will be formal. Multiply the velocity equation by U



ENERGY DECAY OF SOLUTIONS 479

and integrate in space to obtain

< < 2 < < 2 < < 2ye u dx q e ¨ dx q r w dx q =p ? u dx s wu dx.H H H H H
3 3 3 3 3R R R R R

7.8Ž .

Ž .Since the pressure term vanishes by incompressibility the last equation
yields

< < 2 < < 2 < < 2e u dx q e ¨ dx q r w dxH H H
3 3 3R R R

1r2 1r2
2< <F wu dx = u dx . 7.9Ž .H Hž / ž /3 3R R

Ž . 2Since by part i of this theorem we have u g L ; it follows that

r 12 2 2 2 2< < < < < < < < < <e u dx q e ¨ dx q r w dx F w dx q u dx.H H H H H
3 3 3 3 32 2 rR R R R R

7.10Ž .

Thus,

r 12 2 2 2< < < < < < < <e u dx q e ¨ dx q w dx F u dx. 7.11Ž .H H H H
3 3 32 2 rR R R

This completes the proof.
The next theorem addresses the decay of the energy of the solutions to

the quasistationary equations. The decay of the L2 norm of the tempera-
ture will follow as in Theorem 4, that is, by the Fourier splitting method as

Žw x.described in Schonbek 7, 8 . The energy decay of the velocity is a
consequence of the decay of temperature.

Ž Ž . Ž .. Ž 2Ž 3..2 Ž .THEOREM 9. Let U x , u x g L RR . Let U, u be as in Theo-0 0
Ž .rem 4.1 , and then

y3r22< <i u dx F C t q 1 7.12Ž . Ž . Ž .H 0
3R

y3r22< <ii U dx F C t q 1 7.13Ž . Ž . Ž .H 1
3R

where C depends on e , r, and norms of the data. Moreo¨er, C ª ` if e or1 1
r ª 0. C depends on norms of the data.0
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Proof. To obtain the decay described above one has to first obtain an
Ž .y1r2 2auxiliary decay of t q 1 for the L norm of the temperature. This

Ž .follows from the bounds obtained in Theorem 5.1 and then proceeds
Ž .exactly as Theorem 3.1 . This decay of the energy of the temperature

Ž . Ž .y1r2yields easily using 5.49 a decay of t q 1 for the energy of the
Ž .velocity. More precisely by this theorem and 5.49 we have

r2 2 2< < < < < <e u dx q e ¨ dx q w dxH H H
3 3 2R R

1 C0 y1r22< <F u dx F t q 1 . 7.14Ž . Ž .H
32 r 2 rR

Now with this decay in hand we proceed to use a bootstrap argument to
refine the decay order of the temperature. That is, we note that now we
have as in Theorem 4

y1r2
`5 5 5 5 5 5FF u u F u t U t F C 1 q t .Ž . Ž . Ž .Ž . L 2 2j 0

Hence we repeat the estimate which yields the decay of the L2 norm of
the temperature using this new estimate of the Fourier transform of the
product of the temperature and velocity. This time just as in Theorem 4 we

Ž .y3r2 2obtain the optimal rate of t q 1 for the square of the L norm of the
temperature. Finally to obtain the decay of the L2 norm of the velocity we
repeat the former argument but replace the old decay of the temperature
with the new one. That is,

r2 2 2< < < < < <e u dx q e ¨ dx q w dxH H H
3 3 2R R

1 C0 y3r22< <F u dx F t q 1 . 7.15Ž . Ž .H
32 r 2 rR

This completes the proof of the theorem.

8. SUMMARY COMMENTS

We have extended and applied the Fourier splitting method, formerly
used for the incompressible Navier]Stokes equations, to a slightly com-

Ž .pressible Boussinesq fluid in which the expansion of a fluid by a change
in temperature feeds into the momentum equation via the buoyancy term.
Similar methods were also applied to various simplifications of these
equations that are commonly used in geophysical settings. We have shown
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that in several cases the solutions decay algebraically, at a rate of the same
order as solutions of the underlying equations. It is important that energy
decay can be proved these cases, since without such reassuring mathemati-
cal properties one should be hesitant about applying the equations}which
are really just models}to study real phenomena. Finally, we note that

w xSamelson et al. 6 have recently obtained some existence results for the
planetary geostrophic equations with certain types of dissipative terms.
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