
STRONG SOLUTIONS TO THE
INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS IN THE HALF-SPACE

Marco Cannone

U.F.R. Mathématiques,
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Abstract

We derive an exact formula for solutions to the Stokes equations in
the half-space with an external forcing term. This formula is used to
establish local and global existence and uniqueness in a suitable Besov
space for solutions to the Navier-Stokes equations. In particular, well-
posedness is proved for initial data in L3(R3

+).



Introduction and definitions

The Cauchy problem for the Navier-Stokes equations governing the time evolu-
tion of the velocity u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and the pressure p(x, t)
of an incompressible fluid filling all of R3

+ is described by the system




∂u

∂t
= ∆u−∇ · (u⊗ u) −∇p,

∇ · u = 0,
u(x, 0) = u0(x),

u(x′, 0, t) = 0, x = (x′, x3) ∈ R
3
+ , t ≥ 0,

(1)

where x′ = (x1, x2). Strong solutions of this system are traditionally studied
via semi-group techniques. Mild solutions, that is, strong solutions to the
integral equation derived from (1), which are continuous in time with value
in some Banach space, have been constructed in the half-space in [21], in
Lebesgue spaces. Ukai gave in [19] an exact formula for solutions to the Stokes
problem in the half-space, and remarked that this allows to construct solutions
to the Navier-Stokes equations in the same fashion as for [9] in the whole space.
Recently attention has been focused on the whole space problem, as a variety of
tools from harmonic analysis allowed several authors to gain valuable insight on
the system [11, 2, 4, 16, 6]. These results relied heavily on the use of the Fourier
transform, and on the systematic use of various scales of Besov spaces, which,
unlike Lebesgue ones, do not have local versions. Thus, a priori it is unclear
if such results can be easily extended over other domains, such as bounded or
exterior domains. However, the half-space turns out to be a particular case
of a domain, where, as originally remarked by Ukai, it is possible to obtain
an exact representation formula. In this case the corresponding Besov spaces
are well-defined, and related in an easy way to their whole space counterpart.
Therefore it is possible to extend the theory developed in [2, 16], and to obtain
various existence and uniqueness results, with very rough initial data. We
should note that in [8] a similar direct approach is used to obtain estimates for
the Stokes flow in Hardy spaces. Let us also remark here that Ukai’s formula
was also successfully used in some previous papers by H. Kozono [12, 13].

This paper is organized as follows : in the first section the definition of
Besov spaces is recalled, on both the whole space and the half-space, and the
few results that will be used later are summarized. In the second section,
following Ukai’s celebrated paper [19], an exact representation formula for the
Stokes system in the half-space with an external force is derived. This differs
from the semi-group approach as we don’t need to introduce the projection
operator on divergence-free vectors, and only use the heat kernel in the half-
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space. Our result differs from [19] since we have an external force, and thus we
have to adapt Ukai’s estimates to handle the new term. The third section is
devoted to the Navier-Stokes equations, where solutions are constructed with
initial data u0 ∈ L3(R3

+). More precisely we obtain global solutions for small
initial data in a Besov space, and local in time solutions for arbitrary large
data. Moreover, we have uniqueness of such solutions in C([0, T ), L3(R3

+)).

1 Besov spaces in R
3
+.

We recall the definition of Besov spaces in the whole space using the characteri-
zation with a continuous parameter instead of the more usual dyadic one. This
form of the characterization will be helpful in the following sections to relate
the special structure of the bilinear term in the Navier-Stokes equations, with
bounds in Besov spaces. For other definitions of Besov spaces see [15, 18, 1].

Definition 1
Let ψ(x) ∈ C∞ be such that

ψ̂(ξ) = |ξ|2e−|ξ|2.

Let p,q ∈ (1,+∞], s ∈ R, s < 1. Then, f ∈ Ḃs,q
p if and only if

(∫ ∞

0

‖t−sψt ∗ f‖q
Lp

dt

t

) 1
q

< +∞, (2)

where ψt is the rescaled function 1
t3
ψ( ·

t
), and this norm is equivalent to the

usual dyadic norm. If q = ∞, we replace the Lq norm by supt.

The reader familiar with both scales of spaces will note that we can replace
ψ̂(ξ) with any φ̂(ξ) in the Schwartz class, whose support in disjoint from 0.
The usual characterization involves such a function, with a compact support in
a ring. Following Triebel [18], we can define the Besov spaces on the half-space
as restrictions (in the distributional sense) of the Besov spaces in the whole
space.

3



Definition 2
Let p,q ∈ (1,+∞], s ∈ R. Then Ḃs,q

p (R3
+) is the collection of all restrictions of

elements of Ḃs,q
p (R3). If f is the restriction of g on R

3
+ , its norm is defined by

‖f‖Ḃs,q
p (R3

+) = inf ‖g‖Ḃs,q
p (R3) (3)

where the infimum is to be taken over all g whose restriction coincides with f .

This definition is not well-suited to any practical purpose. For positive
regularity indices, it turns out that direct definitions can be given, but no such
definitions exist for negative regularity indices. Since our main interest lies

in the Besov spaces Ḃ
−(1− 3

q
),∞

q (R3
+) with q > 3, this could present a serious

problem. However, for this range of indices, the usual extension operator e, i.e.
the extension by zero, is continuous from the Besov space on the half-space to
its counterpart on the whole space. Specifically, if f is a function defined on
R

3
+ , we set

e(f) =

{
f(x) for x3 ≥ 0

0 for x3 < 0.
(4)

Therefore,

‖ef‖
Ḃ

−(1−3/p),∞
p (R3)

≤ C‖f‖
Ḃ

−(1−3/p),∞
p (R3

+)
. (5)

This is a consequence of the characterization of Fourier multipliers on Besov
spaces, and we refer the reader to Triebel ([18] p 167,168) for a complete
explanation.

Let S(t) denote the heat semi-group in the whole space. We recall the
following equivalent characterization of Besov spaces with a negative regularity
index.

Proposition 1
Take α > 0, γ ≥ 1, f ∈ S ′(R3) a tempered distribution, then

‖f‖ = sup
t>0

t
α
2 ‖S(t)f‖Lγ (6)

is a norm in Ḃ−α,∞
γ (R3) equivalent to the usual dyadic one.
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We remark first that in the whole space it is very useful to use this definition
together with estimates of the heat kernel ([2, 16]). In what follows, we want
to adapt these estimates to the half-space. The following proposition will be
needed. Here E(t) denotes the heat operator in the half-space

Proposition 2
Take 0 < α < 1, γ ≥ 1, f ∈ S ′(R3

+), then

sup
t>0

t
α
2 ‖E(t)f‖Lγ(R3

+) ≤ C‖f‖Ḃ−α,∞
γ (R3

+). (7)

We recall that E(t) can be easily represented using S(t). Let f be defined on
the half-space, let ẽf be its extension to the whole space in the following sense:

ẽ(f) =

{
f(x) for x3 ≥ 0

−f(x′,−x3) for x3 < 0.
(8)

That is, ẽ completes f by the opposite of its mirror image with respect to the
hyperplan xn = 0. Then, it is well known that

E(t)f = rS(t)ẽf. (9)

Where r is the restriction from the whole space to the half-space.

rf = f|R3
+
. (10)

We may consider the case α = 1−3/p, γ = p since this is the one we will need.
Thus

sup
t
t−α/2‖E(t)f‖Lp(R3

+) = sup
t
t−α/2‖rS(t)ẽf‖Lp(R3

+)

≤ sup
t
t−α/2‖S(t)ẽf‖Lp(R3)

≤ 2 sup
t
t−α/2‖S(t)ef‖Lp(R3)

≤ C‖ef‖
Ḃ

−(1−3/p),∞
p (R3)

≤ C‖f‖
Ḃ

−(1−3/p),∞
p (R3

+)
.
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Thus, the initial data is in such a Besov space Ḃ−α,∞
γ (R3

+). Expressions of the
type (6) for the half-space will be bounded. To conclude the section we recall
some useful relations between Besov and Sobolev spaces. Let p ≤ q:

Ḃ
3
p
−1,∞

p (R3) ↪→ Ḃ
3
q
−1,∞

q (R3) ,

and, for p > 3

Ḣ1/2(R3) ↪→ L3(R3) ↪→ Ḃ
3
p
−1,∞

p (R3).

Here Ḣs(R3) denotes the usual homogeneous Sobolev space. These inclusions
are in turn true for all spaces over R3

+ . From now, we will drop the space
reference for spaces over R3 like Lp and write Lp

+ for spaces over R3
+ .

2 The Stokes system with an external force

In this section we intend to obtain an exact formula for the solution of the
Stokes system in the half-space,




∂u

∂t
= ∆u+ f −∇p,

∇ · u = 0,
u(x, 0) = u0(x),

u(x′, 0, t) = 0,
f(x′, 0, t) = 0, x = (x′, x3) ∈ R

3
+ , t ≥ 0.

(11)

Existence of exact formulas, without the use of semi-group techniques, was
first obtained in [17]. In [19] Ukai gave a complete formulation of the problem
under different boundary conditions. For our purposes we need to obtain a
formula when an external force is present. We will assume that the boundary
value of this external force is zero. If not additional terms would appear.
To obtain the exact expression of the solution we proceed following the steps
in Ukai’s paper. For details we refer the reader to [19]. A careful use of a
combination of Ukai’s results would lead to the same formula but rederiving it
directly provides a better understanding of the underlying difficulties due to the
presence of the boundary. For convenience the notations are kept the same as
in Ukai’s paper. Therefore, denote by u = (u(1), u(2), u(3)), u′ = (u(1), u(2)), Rj
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the Riesz transforms defined by Rj = ∂j(−∆)−
1
2 and Sj the Riesz transforms

in R
2 , which can also be extended in a natural way to R3 . Define

V1u0 = −S · u′0 + u3
0

V2u0 = u′0 + Su3
0

Here V1 is acting on vectors to give scalars, and V2 is vectorial. Note that Sf
stands for (S1f, S2f). Let U be defined by

Uf = rR′ · S(R′ · S +R3)ef, (12)

where r and e are respectively the restriction and the extension to the half-
space defined earlier. We first establish the following formula,

Theorem 1
The solution to the Stokes system (11) is given by

u′ = E(t)V2u0 − SUE(t)V1u0 (13)

−
∫ t

0

E(t− s)SM̃fds− SU

∫ t

0

E(t− s)Ñfds,

and

u(3) = UE(t)V1u0 + U

∫ t

0

E(t− s)Ñfds. (14)

M̃ and Ñ are two pseudo-differential operators of order 0 defined below.

Proof: take the divergence of the first equation in (11), to get

∆p = ∇ · f (15)

p(x′, 0) = b(x′)

where b is the pressure on the boundary. Recall that ẽf is the extension of f
over the whole space with the opposite of its mirror image, thus the solution
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of (15) is

p(x) =
1

|x| ? ẽ(∇ · f) +Db, (16)

where D is the single layer potential solution of the Laplace equation when
there is no source:

Db =

∫
R2

∂3
C√|x′ − y′|2 + x2

3

b(y′)dy′. (17)

At this stage, it is useful to recall the following important lemma ([19]), which
results from simple manipulations on the symbols of the operators:

Lemma 1
• Both operators V1 and V2 commute with any partial derivatives in the

space variable.

• The operator U commutes with ∂1 and ∂2, as does E(t).

• For ∂3 we have

∂3U = (I − U)|∇′|. (18)

Note U∂3 = ∂3U in the very particular case where it is applied to a function
which has a null boundary value ([19]). Next apply the pseudo-differential
operator ∂3 + |∇′| to p, to get

(∂3 + |∇′|)p = (∂3 + |∇′|) 1

|x| ? ẽ(∇ · f) = Mẽ(∇ · f). (19)

Note that the second term disappeared, specifically the operator was applied
to annihilate such a term. This follows since

Fx′(Db)(ξ′) = e−|ξ′|x3Fx′(b)(ξ′). (20)

Hence we can apply our pseudo-differential operator to the kernel. Thus taking
the Fourier transform with respect to x′ yields

(∂3 + |ξ′|)(e−|ξ′|x3) = 0.
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Using the same pseudo-differential operator we define

z(x, t) = (∂3 + |∇′|)u(3)(x, t). (21)

Thus z is a solution of

∂tz − ∆z = (∂3 + |∇′|)f (3) − (∂3 + |∇′|)∂3p

= (∂3 + |∇′|)f (3) − ∂3Mẽ(∇ · f)

= Nf

z(x′, 0, t) = 0

z(x, 0) = |∇′|V1u0.

Note that due to the boundary condition the projection onto the hyperplane
commutes with ∂2 and ∂3 for the second term. The divergence-free property
is used to commute the projection and the first term. The initial condition is
a consequence of the divergence free property of the velocity field. As before
let E(t) be the heat operator for the half-space, thus

z = |∇′|E(t)V1u0 +

∫ t

0

E(t− s)Nf(s)ds. (22)

The term u(3) can be recovered from (21), (as in [19])

u(3) =

∫ x3

0

∫
R2

1√|x′ − y′|2 + |x3 − y3|2
z(y′, y3)dy

′dy3, (23)

to yield

u(3) = UE(t)V1u0 + U
1

|∇′|
∫ t

0

E(t− s)Nf(s)ds. (24)

As in Ukai, define U from (23) and note that this definition of U coincides with
the previous one. In our case, unlike in [19], there is an additional term due to
the external force. Here the operator U

|∇′| cannot be seen as a composition of

U and |∇′|−1, since this last operator makes no a priori sense in R3 . Therefore
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it is necessary to rewrite the operator N in a more convenient way. For this
we rewrite the second term in N :

∂3M = ∂3
∂3 + |∇′|
|∇|2

= 1 + |∇′|∂3 − |∇′|
|∇|2

then, indeed

∂3Mẽ(∇ · f) =
∂2

3 + ∂3|∇′|
|∇|2 (∂1ẽf

(1) + ∂2ẽf
(2))

+
∂2

3 + ∂3|∇′|
|∇|2 ∂3(ẽ(f

(3)))

M̃f = Q(f (1), f (2)) + (1 +
|∇′|(∂3 − |∇′|)

|∇|2 ∂3ẽ(f
(3)).

This new expression “isolates” the normal coordinate, and allows us to express
N in a more suitable way (recall N is actually defined on the half-space, which
allows to cancel the ∂3f

(3) with ∂3ẽf
(3)):

Nf = (∂3 + |∇′|)f (3) − ∂3Mẽ(∇ · f)

= |∇′|f (3) − ∂2
3 + ∂3|∇′|
|∇|2 (∂1ẽf

(1) + ∂2ẽf
(2))

−|∇′|∂3 − |∇′|
|∇|2 ẽ(∂3f

(3)).

Given this last formula, commute E(t) and |∇′| to obtain

u3 = UE(t)V1u0 + U

∫ t

0

E(t− s)Ñf(s)ds, (25)

where Ñ is defined on vectors as

Ñf = −(R2
3 +R3

|∇′|
|∇| )(S1ẽ(f

(1))+S2ẽ(f
(2)))+ (1−R2

3 +R3
|∇′|
|∇| )ě(f

(3)), (26)
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where ě(f) is the antisymmetrical extension of f :

ě(f) =

{
f(x) for x3 ≥ 0

−f(x′,−x3) for x3 < 0.
(27)

Here we used the simple fact that ẽ∂3f = ∂3ěf , which allows to rewrite the
last term of (26) in a simple way.

The next step is to recover the rest of the velocity field, i.e. the non-
tangential part. For this, introduce w = V2u = u′ + Su(3), and solve another
heat equation (again with a null boundary condition)

∂tw − ∆w = −S(|∇′| + ∂3)p = −SM̃f. (28)

The solution can be expressed as

w = E(t)V2u0 +

∫ t

0

E(t− s)[−SM̃f ]ds,

which yields the following expression for u′

u′ = E(t)V2u0 − SUE(t)V1u0

−
∫ t

0

E(t− s)SM̃fds− SU

∫ t

0

E(t− s)Ñfds. (29)

Proceeding in the same fashion one can obtain an explicit formula for the pres-
sure. Such a formula will not be needed, and thus omitted. Let us summarize
what we have obtained so far: we now have a nice representation formula for
the solution to the Stokes system, in terms of the heat operator on the half-
space, and a few pseudo-differential operators A1, A2, B1, B2 of order zero, that
is, we have

u = A1E(t)A2u0 +

∫ t

0

B1E(t− s)B2fds. (30)
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3 Navier-Stokes equations in the half-space

We intend to transform the system (1) into an integral equation. We therefore
use (30), letting f = ∇ · (u⊗ u), to obtain

u(x, t) = A1E(t)A2u0 +

∫ t

0

B1E(t− s)B2∇ · (u⊗ u)(s)ds. (31)

This equation will be solved by a classical fixed point method, (see [2],[9],[10]).
Following [2], we note that the study of the bilinear term in the previous
equation can be reduced to the study of the corresponding simplified scalar
operator. More precisely, by lemma 1 it follows that, for i = 1, 2 and j, k ∈
1, 2, 3

B1E(t− s)B2∂i(ujuk) = B1∂iE(t− s)B2(ujuk). (32)

For the last partial derivation, ∂3, the situation is slightly more complicated
to write down, but not more difficult to handle. In fact, if f = 0 on x3 = 0,
then

E(t)∂3f = rS(t)ẽ∂3f = r∂3S(t)ěf, (33)

Thus even if E(t) and ∂3 do not commute, we have E(t)∂3 = ∂3Ě where Ě =
rS(t)ě. Any remaining Bi operators between E(t) and ∂3 can be handled by
lemma 1. Since B1 and B2 are bounded on all the spaces under consideration,
the second term in (31) can be expressed as

B(f, g) =

∫ t

0

G(t− s)(fg) ds, (34)

where G is a scalar version of the operator E(t−s)∇·. Extending to the whole
space via e, ẽ, ě, the last expression becomes simply a convolution operator by
a function 1

(t−s)2
G( x√

t−s
), where

|G(x)| ≤ C

1 + |x|4 (35)

|∇G(x)| ≤ C

1 + |x|4 . (36)
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This is an easy consequence of the structure of the derivative of the heat kernel
∇E(t − s). However, in order to solve (31) by iteration, it is necessary that
the bilinear term ∇· (u⊗u) has null boundary value. Writing this term in the
usual way, Σiu

(i)∂iu, it is clear that we only need to verify that ∇u is bounded
also on the boundary. As we intend to solve the equation by a fixed-point
method, we will have to ensure that this is the case on all iterates. In what
follows we will concentrate on the bilinear operator defined by (34). Now our
problem has been reduced to a generic setting, and thus everything will be
treated by keeping in mind the case of the whole space. Therefore in what
follows we will in general only sketch the proofs and refer the reader to [3, 6]
for details.

A well suited functional space to study (1) is L3
+ ([21, 9]), since ‖uλ‖L3

+
=

‖u‖L3
+
. Note that the dilation uλ(x, t) = λu(λx, λ2t) is well defined on the

half-space, for λ > 0. However, it has been shown in [2, 16] that a convenient
framework is provided by larger classes of functions, such as the homogeneous

Besov spaces Ḃ
−(1− 3

p
),∞

p,+ . We will see later how they arise.
The following theorem extends the results of [20], for Dirichlet boundary

conditions. We restrict the initial data to L3
+ for convenience, more details will

appear in [5].

Theorem 2
Let u0 ∈ L3

+, ∇ · u0 = 0, and suppose there exists q > 3 such that

‖u0‖
B

−(1− 3
q ),∞

q,+

< η(q) (37)

where η(q) is a constant only depending on q, then there exists a unique solution
of (1) such that

u ∈ L∞([0 + ∞), L3
+), (38)

and

t
1
2
− 3

2qu ∈ L∞([0 + ∞), Lq
+)). (39)

Theorem 2 will be a consequence of a fixed point argument via the following
abstract lemma (Picard’s theorem in a Banach space).
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Lemma 2
Let E be a Banach space, B a continuous bilinear application, x, y ∈ E

‖B(x, y)‖E ≤ γ‖x‖E‖y‖E . (40)

Then, if 4γ‖x0‖E < 1, the sequence defined by

xn+1 = x0 +B(xn, xn)

converges to x ∈ E and

x = x0 +B(x, x) , ‖x‖E < 2‖x0‖E . (41)

Define for q > 3 the space

Fq = {f(x, t) | sup
t>0

(t
1
2
− 3

2q ‖f(x, t)‖Lq
+
) < +∞}. (42)

Using the Sobolev inclusion,

L3
+ ↪→ Ḃ

3
q
−1,∞

q,+ ,

for 3 ≤ q, it follows that if u0 ∈ L3
+ then u0 ∈ Ḃ

3
q
−1,∞

q,+ , and thus by proposition
2

[E(t)u0](x) ∈ Fq,

for all q > 3. To apply lemma 2 to Fq, we are left to prove that B(·, ·) is
bicontinuous on Fq. Take f and g in Fq. Denote h = fg ∈ Fq/2 and recall that
the bilinear operator can be written as follows

B(f, g) =

∫ t

0

G(t− s)h(x, s)ds .
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Thus, Hölder and Young inequalities (remember that up to extensions and
restrictions, G is a convolution operator) will yield

‖B(f, g)‖Fq ≤
∫ 1

0

Cdλ

(1 − λ)
1
2
+ 3

2qλ1− 3
q

‖f‖Fq‖g‖Fq (43)

which gives us the existence of η(q). Proceeding the same way we find

‖B(f, g)‖F3 ≤
∫ 1

0

Cdλ

(1 − λ)
3
pλ1− 3

p

‖f‖Fp‖g‖Fp , (44)

provided p < 6 which establishes (38).
Hence our solution belongs to Fq. We note that such a solution u actually

satisfies

u(x, t) ∈ Fp, for all p ≥ 3 , (45)

(45) is of course true for the linear part and the following estimates gives the
rest of the needed estimate:

‖B(f, g)‖Fp ≤
∫ 1

0

Cdλ

(1 − λ)
1
2
+ 3

2qλ1− 3
2q

− 3
2p

‖f‖Fp‖g‖Fq . (46)

Thus if p < q it follows that our solution is in Fp. Otherwise, the procedure is
done in several steps to reach a value q′ > q, by a bootstrap argument. The
great amount of flexibility provided by inequalities of type (43), (46) allows
us to obtain the result in many different ways. Using (44) it follows that the
bilinear term is bounded in L3

+.
We now address the question of whether or not the representation formula

(31) can be used as a substitute for our initial problem. We note that it suffices
to obtain an L3 bound of the gradient of each iterate in order to insure that
the “external force” vanishes on the boundary. This is an easy consequence of
formula (31). We illustrate this with the first two iterates (the general case is
exactly the same). The first iterate u(1) is the solution to the heat equation in
the half-space, and thus verifies the estimate

‖∇u(1)‖L3 ≤ C√
t
.
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Therefore, ∂i(uj)uk has null trace on the boundary, since it is a product of a
function which is bounded and one which has a null trace. The next iterate
u(2) will be the sum of u(1) and of B(u(1), u(1)), for which we easily control the
gradient:

‖∇B(f, g)‖F3 ≤
∫ 1

0

Cdλ

(1 − λ)
1
2
+ 3

2qλ
1
2
− 3

2p

(‖∇f‖F3‖g‖Fq

+‖∇g‖F3‖f‖Fq).

Note that our functional setting, if not for the restriction u0 ∈ L3
+, would

allow initial data which are homogeneous of degree −1, thus providing self-
similar solutions. Details will appear in [5]. The case u0 ∈ L3

+ is of special
interest for several reasons. Besides being the most studied case, it provides a
good example of what we can do if we restrict u0 in some nice subclass of the
Besov spaces used in the previous section. Since the Schwartz class is dense in
L3, we are able to obtain strong continuity at zero as well as local existence.
Specifically,

Theorem 3
If u0 ∈ L3

+ is a divergence free vector field, then there exists a unique local in
time solution to equation (31), such that

u ∈ C([0, T ), L3
+), (47)

where T depends on the initial data.

Note that uniqueness is obtained for solutions of the integral equation (31)
where the bilinear term is replaced by a sum of terms of the form (34). This
derivation can be done only if it is known a priori that the non-linear term
has null boundary value. This isn’t actually a real concern, since we can avoid
the commutation between E(t) and ∂3 in all our computation. More precisely
we go back to (31) and forget about the Bi which are irrelevant since they
are bounded operators. We have to estimate the operator E(t)∂i on Lp

+. As
noticed in [7], the adjoint is ∂iE(t), for which the usual Lq′ − Lp′ estimate
holds, for all 1 < p′ < q′ <∞. Taking the adjoint estimate gives us the needed
Lp − Lq estimate. This is the main fact used. That the operator under the
integral might be a convolution of some sort is not essential here.

As in the whole space [3], the following result can be obtained
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Theorem 4
Let u(x, t) be a solution of (31) in C([0, T ), L3

+), with initial data u0 ∈ L3
+ and

denote by w the function w = u− S(t)u0, then

∇w ∈ C([0, T ), L
3/2
+ ). (48)

We begin with the proof of theorem 3. We apply theorem 2, with a slight
modification: define the space Fp for 0 < t < T . Thus, we have to verify first
that such a finite T exists for any u0 in L3, and the smallness assumption is
satisfied in the modified Fp. This is, in turn, a consequence of the density
of smooth functions in L3

+: one can find a sequence fn ∈ C∞
0 converging to

f ∈ L3, and

lim
T→0

sup
[0,T ]

t
1
2
− 3

2p‖E(t)f(x)‖Lp
+

= lim
T→0

sup
[0,T ]

t
1
2
− 3

2p‖E(t)(f − fn)‖Lp
+

+ lim
T→0

sup
[0,T ]

t
1
2
− 3

2p ‖E(t)fn‖Lp
+

≤ C‖fn − f‖L3
+

+ lim
T→0

sup
[0,T ]

t
1
2
− 3

2p‖E(t)fn‖Lp
+
,

and both terms tend to zero with T . Thus by the fixed point lemma it follows
that t1/2−3/2pu ∈ C((0, T ), Lp

+) for all p > 3 and u satisfies also

lim
T→0

sup
[0,T ]

t
1
2
− 3

2p ‖u(x, t)‖Lp
+

= 0. (49)

The last equality ensures the continuity at zero. It’s worth noting that as t
goes to infinity, the L3

+ norm of u also tends to zero, as this is true for the
linear part, and thus true for all the iterates of the fixed point scheme, and
therefore true for the limit. As in the whole space, the proof of the above
theorems will follow by a serie of lemmata ([14] or [3] for a proof similar to the
following)

Lemma 3
Let 3/2 < q < 3. The bilinear operatorB(f, g) is bicontinuous from L∞

t (L3,∞
+,x )×

L∞
t (L3,∞

+,x ) into L∞
t (Ḃ

3
q
−1,∞

q,+ ).

We will prove the estimate by duality, and fix q = 2, which gives 1
2

as the regu-
larity index, merely as a convenience. For an arbitrary test function ϕ(x) ∈ C∞

0

17



consider the functional

It = 〈B(f, g), ϕ〉. (50)

That is

It =

∫ t

0

〈
G(t− s)(fg), ϕ

〉
ds (51)

= 2

∫ √
t

0

〈
G̃ηfg(t− η2), Hηϕ

〉
dη

where, using G(α) = E(α/2)E(α/2)∇·, we define G̃η as ηE((η2)/2)∇· after a
change of variables η2 = t− s, and similarly for H (which is therefore nothing
else than the heat kernel up to rescaling). Then,

|It| ≤
∫ √

t

0

‖G̃ηfg(t− η2)‖L2
+
‖Hηϕ‖L2

+
dη. (52)

Using the decay properties of G̃ (which is nothing but G rescaled)

‖G̃ηfg(t− η2)‖L2
+
≤ Cη−

1
2‖fg‖

L
3
2
+

, (53)

we find

|It| ≤ C sup
t

(‖g‖L3,∞
+

‖f‖L3,∞
+

)

∫ ∞

0

√
η‖Hηϕ‖L2

+

dη

η
. (54)

The last integral is then less than ‖ϕ‖
Ḃ

− 1
2 ,1

2,+

, which, by duality, yields the proof.

In fact from

|〈B(f, g), ϕ〉| ≤ C‖ϕ‖
Ḃ

− 1
2 ,1

2,+

we have that B(f, g) belongs (uniformly in time) to the dual of Ḃ
− 1

2
,1

2,+ , which

is Ḃ
1
2
,∞

2,+ . This only gives the uniqueness of strong solutions in Ct(L
3
+) for small

initial data. To prove time-local uniqueness for arbitrary initial data a third
lemma is necessary
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Lemma 4
Let f(x, t) ∈ L∞

t (L3,∞
+ ) and g(x, t) = E(t)G, where G ∈ L3

+. Then the bilinear

operator B(f, g) belongs to L∞
t (Ḣ

1
2
+).

For uniqueness, we don’t actually need Ḣ
1
2
+ (which is included in Ḃ

1
2
,∞

2,+ ), but
this result shows how an exact knowledge of the time dependence of g can be
exploited.
Proof of the lemma: as G ∈ L3

+, g verifies all the usual estimates for a solution
to the heat equation. For example, if we denote

‖g|4,T = sup
t<T

t
1
8‖g(x, t)‖L4

+
,

then by Young inequality

sup
t<T

t
1
8‖g(x, t)‖L4

+
≤ C‖G‖L3

+

and the left hand side goes to zero as T goes to zero (remember that supt =
supt∈[0,T ] where T is to be chosen). Thus

‖g(x, t− s2)‖L4
+
≤ ‖g|4,T

(t− s2)
1
8

.

Returning to the estimates of the previous lemma, we obtain, starting from
(52)

|It| ≤
∫ √

t

0

‖G̃ηfg(t− η2)‖L2
+
‖Hηϕ‖L2

+
dη

Now we chose different exponents, to get

‖G̃ηfg(t− η2)‖L2
+
≤ Cη−

1
4‖fg‖

L
12
7

+

, (55)

to obtain,

|It| ≤ C sup
t

(‖g|4,T‖f‖L3,∞
+

)

∫ √
t

0

‖Hηϕ‖L2
+

(t− η2)
1
8η

1
4

dη. (56)
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Applying Cauchy-Schwarz to this last integral, we bound it from above by

(∫ 1

0

dθ

(1 − θ2)1/4θ1/2

) 1
2

(∫ √
t

0

‖Hηϕ‖2
L2

+
dη

)1
2

≤ C‖ϕ‖
Ḣ

−1
2

+

which concludes the proof of Lemma 4.
From these three lemmata, we can deduce the uniqueness result, in the

same way as this was done in the whole space [3]. Consider two solutions
u(x, t) and v(x, t) with the same initial data u0 and for which u is actually the
solution constructed via the fixed point method. We denote w = u − E(t)u0

and w̃ = v−E(t)u0. Then, if we temporarily forget that the bilinear operator
appearing in (1) is vectorial and non-commutative, we may abuse the notation
and write (as in the scalar case)

w − w̃ = 2B(E(t)u0, w − w̃) +B(w + w̃, w − w̃).

We know from Lemma 3 that both w and w̃ belong to L3,∞
+ . By applying

Lemma 4 to the first term, and Lemma 3 to the second, we obtain

sup
t

‖w − w̃‖L3,∞
+

≤ C(‖E(t)u0|4,T + sup
t

‖w + w̃‖L3
+
) sup

t
‖w − w̃‖L3,∞

+

so that w = w̃ at least on a small interval in time, since both quantities
‖E(t)u0|4,T and supt ‖w + w̃‖L3

+
tend to zero as T tends to zero (the first by

density of smooth functions and the second by the strong continuity in L3
+

of the solutions). We conclude by a standard continuation argument, which
guarantees that both solutions are the same on the interval where they are
defined. This ends the proof of Theorem 3.

We now proceed with the proof of Theorem 4. This would be essentially
a rewriting of the same theorem for the whole space. Therefore we just state
the lemma and refer the reader to [3] for details of the proof. By a change of
variables, we have that

B(f, g) = 2

∫ √
t

0

Gsfg(x, t− s2)ds (57)

where, as usual, Gs is like a convolution by Gs(x) = 1
s3G(x

s
). In addition, it is

useful to work with the following operator, A(f, g) = ΛB(f, g), where Λ is the
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Calderón operator, with symbol |ξ|. Then

A(f, g) = 2

∫ √
t

0

G̃sfg(x, t− s2)
ds

s
, (58)

and G̃ = ∇E(1)∇·, which is in our case, like a convolution by F(G̃)(ξ) =
|ξ|2e−|ξ|2. We will proceed in two steps. First, we will deal with the bilinear
operator applied to the linear part. Afterwards we will estimate the remaining
part using a result similar to Lemma 3.

Lemma 5
Let F and G be in L3

+. If f(x, t) = E(t)F (x) and g(x, t) = E(t)G(x), then

A(f, g) ∈ Ct(L
3
2
+).

We simply remark that if we were to replace the dependence in s of f and
g in the definition of B, by a dependence on t, then we could integrate with
respect to s, to obtain the operator I−E(t). The actual proof uses this idea by
carefully splitting the operator in several terms we can control using different
properties.

We now state another lemma, which will allow us to conclude the proof.

Lemma 6
Let p > 3. If f(x, t) ∈ Ct(Ḟ

1,2
3
2
,+

) and g(x, t) satisfies the estimate,

|g‖p = sup
t

(t
1
2
− 3

2p ‖g(x, t)‖Lp
+
) <∞ (59)

then

A(f, g) ∈ Ct(L
3
2
+).

In order to give an idea of the proof, let’s write, with G∗ = ΛE(1) (and
replacing the ∇· by ∂i, for any i = 1, 2, 3)

A(f, g) = 2

∫ √
t

0

G∗
s∂i(fg)(x, t− s2)ds
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As we control ∂i(fg) via ∂i(f)g+ f∂i(g), we have to study B(∂i(f), g). This is
done essentially in the same way we carried the study of B. Then we are done
with the lemma, and also with the theorem as the previous estimates allow
us to preserve the property verified by B(E(t)u0, E(t)u0) on all iterates of the
fixed point scheme used to solve (31). Note that this fixed point scheme needs
to be applied to the difference w = u − E(t)u0, for the linear part doesn’t in
general verify the estimates.
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