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Abstract

We �rst recall results on space-time decay of solutions to the
Navier-Stokes equation in the whole space IRn which were developed
in [9] and [1]. Next we give an example of a solution with radial vortic-
ity to the Navier-Stokes equations in 2D, where the space-time decay
rate can be computed explicitly.

1 Introduction

In this note we discuss the pointwise space time decay of solutions to the
Navier-Stokes equations in the whole space IRn, with 2 � n � 5. We present
some results that show the interplay between the space and time decay of
the solutions and give an example of an explicit solution were this relation
is clear. This kind of interplay is already present at the level of the solutions
to the Heat equation. In particular for the Heat kernel sharp rates can be
established.
The space time decay for solutions to the Navier-Stokes equations is alge-
braic and seems not to be as fast as for the heat kernel itself. This raises
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questions of what causes the loss of decay. The proofs developed in [1] and
[9]for solutions to the Navier-Stokes equations will naturally also work for
solutions to the Heat equation. The question stands if for solutions to the
Heat equations and solutions to the Navier-Stokes equations depending on
the data one could re�ne our results to obtain faster decay. The example we
give at the end seems to indicate that this rates could be optimal.
We present only the results. For details on the proofs we refer the reader to
our joint papers with T. P. Schonbek [9] and with Amrouche, Girault and
T.P. Schonbek[1]. Questions of time decay of solutions to the Navier-Stokes
equations in di�erent norms have been studied, among many others, by R.
Kajikiya and T. Miyakawa [2], T. Kato [3], H. Kozono [4], H. Kozono and
T. Ogawa [5], M.E. Schonbek [7], [8], M. Wiegner [13], and Zhang-Linghai
[14]. In the direction of space-time decay of particular interest in the are the
results by Takahashi [12]. In this reference, Takahashi studies the pointwise
decay in space and time of the solutions, and their �rst derivatives, to the
Navier-Stokes equations with zero initial data and an external force which
decays at an algebraic rate in both space and time. In our case the data
is nonzero and the external force vanishes. Our results follow by moment
estimates combined with a Gagliardo-Nirenberg estimate. Speci�cally in [1]
we show that strong solutions to the Navier-Stokes equations with data in
appropriate spaces for 0 � k � n=2:

jD�u(x; t)j � Ck;m
1

(t+ 1)�0(1 + jxj2)k=2

where �O = (1� 2k=n)(m=2 + �+ n=4), j�j = m, � > n
4
and where � is the

L2 time rate of decay of the solution. We recall that this decay depends only
on norms of the data [6],[7], [13].
In this paper we �rst recall the results obtained in the papers we mention
above, the we discuss questions of optimality related to the rates we obtained.
Finally we analyze an explicit example. This example is a solution to the
Navier-Stokes in 2 dimensions with radial vorticity, which turns out to be
simultaneously a solution to the Heat equation, [10] with very special data
which depends on the initial vorticity. Extensions of these types of solutions
can be constructed in all even space dimensions [10]

We use the notation
Let � = (�1; : : : ; �n) be a multi-index with �i � 0.

2



D� =
@j�j

@x�11 : : : @x�nn
;(1. 1)

where

j�j = �1 + : : :+ �n ;(1. 2)

and

Di =
@

@xi
:(1. 3)

For any integer m � 0, we set

Dmf(x) =

0
@ X
j�j=m

jD�f(x)j2

1
A
1=2

;

where x = (x1; : : : ; xn). The L
2 norm (or energy norm) will be denoted by

kuk = ku(:; t)k2 = [
Z
IRn
ju(x; t)j2dx]1=2;(1. 4)

where dx = dx1 : : : dxn. More generally we denote the Lp norm for 1 � p <1
by

ku(:; t)kp = [
Z
IRn
ju(x; t)jpdx]1=p;(1. 5)

and the L1 norm by

ku(:; t)k1 = ess supxju(x; t)j:(1. 6)

The Hm norm is de�ned by

ku(:; t)kHm = [
Z
IRn

X
j�j�m

jD�u(x; t)j2dx]1=2 :(1. 7)

For s = 0; 1; 2; : : :, we de�ne the (s; �) moments

Ms;�(t) =
Z
IRn
jxjsjD�u(x; t)j2 dx;

and in particular for s � 0, t � 0, we de�ne the moment of order s of u by

Ms((u)(t)) = Ms;0(t) =
Z
IRn
jxjsju(x; t)j2 dx =

�
ku(t)kL2

s=2

�2
:
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2 Pointwise Decay

The main diÆculty in establishing spatial-time decay is to obtain a time in-
dependent estimate for the moments of the solution and their derivatives. In
the presence of such a bound the time decay of the moments is straight-
forward. Once the estimates on the moments are established we use a
Gagliardo-Nirenberg's estimate to obtain an L1 algebraic time decay for
v(x; t) = (1+ jxj2)k=2D�u(x; t). From where the space time decay will follow.
Speci�cally we use Gagliardo-Nirenberg inequality to show

j(1 + jxj2)k=2D�u(x; t)j � kv(�; t)k1 � kv(�; t)k1�a2 kDsv(�; t)ka2 :(2. 8)

We note that the L2 norms on the right are nothing else than energy norms
of the moments of the solution and the moments of their derivatives. Thus
the decay is a consequence of the following theorem. For its statement, we
need to introduce the real numbers �; q; r and r1 which satisfy the relations

0 � s < n; 2 � r1 � r; 1 � q � 1; r > n ;(2. 9)

Theorem 2.1 Let u0 2 Wm;r \Wm;r1 \H1(IRn)n with r; s; r1 as above. Let
u be a strong solution of the Navier-Stokes equations with data u0, satisfying

ku(t)k2 � C(t+ 1)�� where � > n=4 :(2. 10)

Then

~Ms;m(t) � C(t+ 1)�(2�+m)(1� s
n
) ;

for m = 0; 1; 2; : : :, s = 0; 1; : : : ; n.

Proof: For a proof we refer the reader to [1]. As remarked above that the
main step in this proof is a uniform bound on the moments of the solution
and derivatives. The decay will follow by an appropriately chosen H�older
inequality.
This theorem combined with ( 2. 8) yields

Theorem 2.2 Let 2 � n � 5. We retain the assumptions of the last theorem
and we consider a strong solution u of the Navier-Stokes equations with data
u0. Let k � n=2. Then
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jD�u(x; t)j � Ck;m
1

(t + 1)�0(1 + jxj2)k=2
;(2. 11)

where �0 = (�+m=2 + n=4)(1� 2k=n) and j�j = m.

Proof: See [1] and [9]. The restriction to dimensions n = 2; 3; 4; 5 is due to
the fact that we are using decay results for the derivatives of the solutions
to Navier-Stokes which were established under those conditions, [11].

3 Questions on optimality of the decay

In order to understand the interplay between the time and space decay of
our solutions we compare the situation with solutions to the Heat equation.
In particular we �rst recall the behavior of the Heat Kernel. It is easy to
show that the fundamental solution of the Heat equation,

E(x; t) = (4�t)�n=2e�jxj
2=4t

has the following asymptotic behavior:

jD�E(x; t)j � c0jxj
�at�b;

where a + 2b = n +m, with m = j�j. The proof of the last fact follows by
a simple induction argument on the order of derivation. On the other hand
depending on the data, solutions to the Heat equation will decay at di�erent
algebraic order. If the data is compact it is easy to show that the solution
decays at the same rates as the Heat Kernel. On the other extreme if the
data is constant there is no decay. A simpli�ed version of the proofs used for
solutions to the Navier-Stokes equations can also be used for solutions to the
Heat equation. The question that remains is if given appropriate data this
decay rate for the solutions to the Navier-Stokes equations can be improved.
Even if the data is compact our method will only show the decay obtained
in theorem ( 2.2).
For solutions to the Navier-Stokes equations, the interplay between the time
and space decay can be described as follows. Let � = n=4 + 
 be such that

ku(t)kL2 � C(t + 1)�:
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Note that such type of decay in the L2 norm can be obtained easily when
the appropriate data is given. See [6],[7], [13].
The relation that holds between the space and time decay which follows by
theorem ( 2.2) is

2�0 + 2k = m+ n + 2
 �
2km

n
�

4
m

n
:(3. 12)

For k = 0, we recover the same decay of the Heat equation, but this only gives
decay in time, [11]. Ifm = 0 we have the relation 2�0+2k = n+2�(1�2k=n),
For m � 0 the decay improves since k � n=2. To have the same interplay
between the space and time decay as for the Heat Kernel,

2�0 + k = m+ n

we would need 
 = k=2(n+2m
n�2k

) and this would imply that 
 !1 as k ! n=2.
Since 
 determines the order of the time decay of the L2 norm of the solution,
this would be equivalent to require that there is exponential L2 time decay
for the solutions . The above comments leave open the question of optimality
of the decay rates.

4 A Special Example

We will �rst give an example in two spatial dimensions and then mention
how to extend it to all even spatial dimensions. The main purpose of this
2D example is to show explicitly the interplay between the time and space
decay. In this case we compute directly the space-time decay of the solution
and show that it agrees with the one obtained in the general theorem. We
are going to require less conditions on the data and thus our resulting decay
will only be for the solution and not for the derivatives.

Let u(x,t) be a solution to the 2-D Navier-Stokes equation with radial vor-
ticity. Suppose that u(x; 0) = uo 2 L2 \ L1 and ruo 2 L2. Let !o = curluo
and !o 2 L1 . It is well known that a solution can be expressed as

u(x; t) = 1=r2
Z r

o
s!(s)dsAx;

where x = (x1; x2) ; r = x1
2 + x2

2, ! is the vorticity and
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A =

 
0 �1
1 0

!
:

One can show that in this case the nonlinear term of the solution uru is
a gradient of some function p. (See [10]). Thus u is a solution to both the
Navier-Stokes equation and the Heat equation with data

u(x; 0) = 1=r2
Z r

o
s!o(s)dsAx;

We can bound the solution pointwise in the following manner.
Let u = (u1; u2), then

ju1(x; t)j
2 + ju2(x; t)j

2 �
1

r2

�Z r

o
s!(s)ds

�2
= G(r)(4. 13)

Now let � + � = 2, then the right hand side of equation ( 4. 13) can be
bounded as follows

G(r) �(4. 14)

1

r2

"
1

2�

�Z 2�

o

Z r

o
sj!(s)jds

�� �Z 2�

o

Z r

o
sj!(s)jds

��#
�

1

r2
1

2�

�Z
IR2

jwjdxdy
�� �Z 2�

o

Z r

o
sds

�(�)=2 �Z 2�

o

Z r

o
sj!(s)j2ds

�(�)=2

Combining equations ( 4. 13) and ( 4. 14) yields

ju1(x; t)j
2 + ju2(x; t)j

2 �

1

r2
1

2�

�Z
IR2

jwjdxdy
��

r�
�Z

IR2

jwj2dxdy
�(�)=2

(4. 15)

Since ! is the radial vorticity of a solution to the 2D Navier-Stokes equation
it satis�es the Heat equation, which in our case has data in L1. Thus we
know that the vorticity is bounded in L1, since ruo 2 L1. Moreover since
the data uo 2 L2 \ L1 and ruo 2 L2 it follows that ! decays in L2 at a rate
of (1 + t)�n=4�1=2, with n = 2, [11]. Thus estimate ( 4. 15) yields
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ju(x; t)j �
�
ju1(x; t)j

2 + ju2(x; t)j
2
�1=2

�

Cr��=2(1 + t)��=2(n=4+1=2)

From the last equation we have a clear interplay be-teen the time and space
decay. Moreover we can check the relation we had obtained in ( 3. 12). In
our case we have m = 0; 
 = 0; � = n=4 and ( 3. 12) thus reduces to

2�0 + 2k = n

This relation holds in our example, since we have �0 = �=2(n=4 + 1=2) and
k = �=2 thus the last relation translates for n = 2 into

� + � = 2

which follows by the de�nition of � and �.

To extend this example to all even dimensions we use the solution constructed
in [10]. We quote the theorem that gives the extension.

Theorem 4.1 Suppose n is even and let 1. ! : [0;1)�IR! IR be such that
the function v(x; t) = !(jxj; t) is a solution of the Heat equation vt = 4v ;
so

!t = !rr +
n� 1

r
!r;

2:g(r; t) = r�n
Z r

o
sn�1w(s; t)ds;

3:A = (aij) is an n� n matrix with real entries such that

A2 = �I for some � 2 IR; xtAx = O for all x 2 IRn

Then the function u(x; t) = g(jxj; t)Ax satis�es
a) ut = 4u.
b) There exists a function p such that (u,p) is a solution to the incompressible
Navier-Stokes equations.
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Proof : See [10].
We note that the matrix A will be an n�n and will have block in the diagonal
of order 2 � 2 which will coincide with the block for the 2D case. The rest
of the matrix will have zeroes.

Since the solutions constructed in Theorem ( 4.1) is of similar structure as
the 2D solutions with radial vorticity one can compute the space-time decay
as in the example above.
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