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Abstract. In this paper we study the space-time asymptotic behavior of the solutions, and their
derivatives, to the incompressible Navier–Stokes equations in dimension 2 ≤ n ≤ 5. Using moment
estimates we obtain that strong solutions to the Navier–Stokes equations which decay in L2 at the
rate of ‖u(t)‖2 ≤ C(t+ 1)−µ will have the following pointwise space-time decay, for 0 ≤ k ≤ n/2:

|Dαu(x, t)| ≤ Ck,m
1

(t+ 1)ρ0 (1 + |x|2)k/2 ,

where ρO = (1− 2k/n)(m/2 + µ+ n/4), |α| = m and µ > n
4
.
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1. Introduction. In this paper, we study the space-time decay of solutions to
the incompressible Navier–Stokes equations in Rn

ut + u · ∇u+∇p = �u ,

div u = 0 ,(1.1)

u(x, 0) = u0(x) ∈ X ,

and of their derivatives. We assume 2 ≤ n ≤ 5 and the space X will be specified
below. Using moment techniques, we show that strong solutions and their derivatives
of all orders decay pointwise at an algebraic rate as |x| → ∞ and t → ∞ .

Questions of decay of solutions to the Navier–Stokes equations in different norms
have been studied, among others, by Knightly [6], Kajikiya and Miyakawa [4], Kato
[5], Kozono [7], Kozono and Ogawa [8], Schonbek [13], [10], Wiegner [18], and Zhang
[20]. Of particular interest in the direction of the present paper are the results by S.
Takahashi [17]. In this reference, Takahashi studies the pointwise decay of solutions
with zero initial data to the Navier–Stokes equations with an external force, as well
as the decay of the first derivatives of these solutions. Using a weighted-equation
approach, he obtains pointwise decay rates both in time and space. The external force
is assumed to decay at an algebraic rate in both space and time and the solutions are
assumed bounded in some weighted Lq,s norms, with n/q+2/s = 1 and q, s ∈ [2,∞],
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‡Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris, France (girault@

emeu.ann.jussieu.fr).
§Department of Mathematics, University of California, Santa Cruz, CA 95064 (schonbek@

math.ucsc.edu). This author was partially supported as Guest Professor Sofia Kowaleskaya, Uni-
versity of Kaiserlautern.

¶Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431
(schonbek@acc.fau.edu).

740



POINTWISE DECAY OF SOLUTIONS 741

(the limiting Serrin class), where Lq,s denotes the space of all u : Rn × (0,∞) → Rn

such that {∫ ∞

0

(∫
Rn

|u(x, t)|qdx
)s/q

dt

}1/s

< ∞.

Our results complement and extend Takahashi’s results in the sense that in our case
we have nonzero initial data but zero external force. Moreover, we are able to establish
decay for derivatives of all orders. We note that since we are obtaining decay results
for derivatives, we will work directly with strong solutions. These results can be
derived for weak solutions provided we start at a sufficiently large time. Since in
this case we are already in the regime where the solutions are smooth, we prefer to
simplify notation and work directly with smooth solutions. The reader can also refer
to [17], which presents a very detailed outline of what other authors in the field have
done with related questions.

It is already clear at the level of the heat equation that there is a relation be-
tween the time decay and the space decay. This kind of balance will also be found
for solutions to the Navier–Stokes equations. In particular the balance relation we
obtain between the decay in space and in time coincides with the relation for the heat
equation when we consider the solutions themselves.

The plan of the paper is the following. We begin with a section of notation (section
2). In section 3, we construct a solution of the Navier–Stokes equations as the limit of
a sequence of solutions of a linearized approximation of the Navier–Stokes equations.
By standard uniqueness results, this solution coincides with the one constructed by
Kato in [5]. We recall some essential estimates on the moments of this sequence of
approximate solutions and of their derivatives and then we show that these bounds
are also valid for the limit solution and its derivatives. The first bounds we obtain are
not sufficient for yielding a uniform time decay; they are valid for all time but depend
on time. However, owing to the results of [11], we already have uniform bounds
for the moments, though not for the moments of the derivatives; for this reason we
dedicate section 4 to showing that these moments are also bounded independently
of time. The last section deals with the space-time pointwise decay of the solution,
which follows from the uniform bound of the moments and an appropriate form of
the Gagliardo–Nirenberg inequality.

2. Notation and assumptions. Let α = (α1, . . . , αn) be a multi-index with
αi ≥ 0. We will use the notation

Dα =
∂|α|

∂xα1
1 · · · ∂xαn

n
,(2.1)

where

|α| = α1 + · · ·+ αn ,(2.2)

and

Di =
∂

∂xi
.(2.3)

For any integer m ≥ 0, we set

Dmf(x) =


 ∑

|α|=m
|Dαf(x)|2




1/2

,
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where x = (x1, . . . , xn). The L2 norm (or energy norm) will be denoted by

‖u‖ = ‖u(., t)‖2 =

[∫
Rn

|u(x, t)|2dx
]1/2

,(2.4)

where dx = dx1 · · · dxn. More generally we denote the Lp norm for 1 ≤ p < ∞ by

‖u(., t)‖p =

[∫
Rn

|u(x, t)|pdx
]1/p

(2.5)

and the L∞ norm by

‖u(., t)‖∞ = ess supx|u(x, t)|.(2.6)

The Hm norm is defined by

‖u(., t)‖Hm =


∫

Rn

∑
|α|≤m

|Dαu(x, t)|2dx



1/2

.(2.7)

In what follows, we assume that u = u(x, t) = (u1(x, t), . . . , un(x, t)) is a global
solution of the Navier–Stokes equations with the following decay: there exist constants
C, µ > n/4 such that

‖u(t)‖2 ≤ C(t+ 1)−µ for t ≥ 0 .(2.8)

Under these conditions, assuming as always 2 ≤ n ≤ 5, it is proved in [12] that the
decay given by (2.8) generalizes to

‖Dju(t)‖2 ≤ C(t+ 1)−µ−j/2 for t ≥ 0 , j = 0, 1, 2, . . . .(2.9)

We recall the Gagliardo–Nirenberg inequality; if f ∈ Hm, then

‖Djf‖∞ ≤ C‖f‖1−a
2 ‖Dmf‖a2 ,

with a = ajm =
j+n

2

m , as long as j + n
2 < m. Taking m large enough (assuming we

can do this) we get from (2.8) and (2.9)

‖Dju(t)‖∞ ≤ C(t+ 1)−µ−j/2−n/4 for j = 0, 1, . . . .(2.10)

Combining (2.9) and (2.10) we get as in [12]

‖Dju(t)‖p ≤ C(t+ 1)−µ−j/2−n/4(1−2/p) for j = 0, 1, . . .(2.11)

for p ∈ [2,∞], t > 0.
Since we are interested in decay of derivatives and hence in smooth solutions, we

are going to work with solutions that start with small data, or the results we establish
will only be valid for large t.

The main idea in order to obtain pointwise decay is to prove decay of the moments
and then combine this with an appropriate Gagliardo–Nirenberg inequality to yield
decay in L∞, whence the pointwise decay. With this in mind, we introduce the
following weighted spaces:

f ∈ Lr1ν iff

(∫
Rn

|x|νr1 |f |r1 dx
)1/r1

< ∞.(2.12)
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For s = 0, 1, 2, . . ., we define the (s, α) moments

Ms,α(t) =

∫
Rn

|x|s|Dαu(x, t)|2 dx,

and in particular for s ≥ 0, t ≥ 0, we define the moment of order s of u by

Ms((u)(t)) = Ms,0(t) =

∫
Rn

|x|s|u(x, t)|2 dx =
(
‖u(t)‖L2

s/2

)2

.

Finally, define for s,m = 0, 1, 2, . . .,

M̃s,m(t) =
∑

|α|=m
Ms,α(t) =

∫
Rn

|x|s|Dmu(x, t)|2 dx.

3. Preliminaries. To start our calculations we need to recall some weighted-
norms estimates satisfied by approximate solutions to the Navier–Stokes equations
[11]. These solutions satisfy a “linearized Navier–Stokes equation,” in which both the
convective and the pressure terms are linearized in “explicit form.” To this purpose,
the pressure is expressed as a product of Riesz transforms. Specifically, we construct
the sequence {u�} of approximate solutions as follows: v = u�+1 is the solution of

vt −∆v + u� · ∇v +∇P (u�, v) = 0,(3.1)

div v = 0,

v(0) = u0 ,

with initial approximation u0 = u0 and u0 in an appropriate space. The solution
v is constructed locally by a fixed-point argument and then is extended by a priori
estimates. It is unique by construction. The bilinear operator P is defined by

P (u, v) =
∑
j,k

RjRk(ujvk) ,

where u = (u1, . . . , un), v = (v1, . . . , vn) are functions from Rn to Rn, and Rj denotes
the Riesz transforms,

[̂Rjf ](ξ) = −i ξj|ξ| f̂(ξ) for 1 ≤ j ≤ n .

When u� = v we recover the Navier–Stokes equations, since the pressure p and the
velocity u of the Navier–Stokes equations are related by

∆p = −
∑
j,k

∂2

∂xj∂xk
(ujuk) ,

hence

p̂(ξ, t) = −
∑
j,k

ξjξk
|ξ|2 ûjuk(ξ, t),

and

p =
∑
j,k

RjRk(ujuk) = P (u, u).
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The linearization (3.1) is of the type used by Caffarelli, Kohn, and Nirenberg in
[1], by Kajikiya and Miyakawa in [4], by Leray in [9], and by Sohr, von Wahl, and
Wiegner in [14]. The advantage of making the linearization explicit is that we can
apply to the sequence {u�} well-known properties of the Riesz transforms, such as
their boundedness in Lp-spaces (see [15]) and in weighted Lp-spaces satisfying the
Muckenhoupt condition (see [3], [16]), in order to obtain bounds for the solutions of
the Navier–Stokes equations and of their moments. We expect that our proofs for
establishing bounds in weighted Lp-spaces, with some modifications, could be used
for the approximating solutions constructed by Caffarelli, Kohn, and Nirenberg [1],
by Kajikiya and Miyakawa [4], and by Sohr, von Wahl, and Wiegner [14].

In [11] we constructed the solution to (3.1) via a fixed-point method. We recall
briefly the construction, referring to [11] for details. Let

F (x, t) = F (t)(x) = (4πt)−n/2e−|x|2/4t

be the fundamental solution of the heat equation in n space variables and set

H(u, v) = u · ∇v +∇P (u, v) .

If v solves (3.1), then v has the expression

v(t) = F (t) ∗ u0 −
∫ t

0

F (t− s) ∗H(u�, v)(s) ds.(3.2)

For u, ϕ ∈ L2([0, T ], H1(Rn)n), we define

Muϕ(t) =

∫ t

0

F (t− s) ∗ [u · ∇ϕ(s) +∇P (u, ϕ)(s)] ds

(3.3)

=

∫ t

0

F (t− s) ∗H(u, ϕ)(s) ds

and

Luϕ(t) = F (t) ∗ u0 −Muϕ(t).(3.4)

The integral version (3.2) of (3.1) linearized with respect to u� becomes

v = Lu�(v);

that is, the solution to the linearized Navier–Stokes equation (3.1) can be obtained
as a fixed point of the operator Lu� (see [11]). We prove in [11] that for some T > 0,
T = ∞ for small data, the sequence {u�} converges in C([0, T ], L2 ∩ Lr) to a weak
solution of the Navier–Stokes equations, provided the data is in L2 ∩ Lr and r > n.
If the data is also in H1 and is sufficiently small, the solution will be smooth. These
are the solutions we will be interested in. Although Kato [5] has obtained smooth
solutions with small data in L2 ∩ Ln, we do not use his construction because we
want to ensure that the solutions also lie in the appropriate weighted space whenever
the data belong to that space too. However, our solutions are clearly Hopf–Leray
solutions (see [11, Theorem 2.4]); furthermore, in the notation used by Fabes, Jones,
and Riviere in [2], they are in Lp,q̃(Rn× (0, T )) for every T > 0 for some r > n, q̃ > 2
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(see (3.6) below). By the uniqueness results of section V of [2] our solutions coincide
with the solutions of Kato.

In [11] we needed to introduce numbers ν, q, r, r1 satisfying the relations

0 ≤ ν < n, 2 ≤ r1 ≤ r, 1 ≤ q ≤ ∞, r > n ,(3.5)

1

q
<

ν

2
− n

2r
+

1

2
,

1

r
≤ 1

r1
+

ν

n
< 1− 1

r
.(3.6)

We recall Lemma 2.2 of [11], which we state here for convenience:
Lemma 3.1. Assume the function u satisfies

u ∈ C([0, T ],Wm,r(Rn)n) ∩ Lq([0, T ], (Wm,r1(Rn)n).

There exists a constant K(T, u) of the form

K(T, u) = C(T )
(
‖u‖CT (Wm,r) + ‖u‖Lq

T
(Wm,r1 )

)
with C(T ) independent of u such that if Dαu0 ∈ Lr1ν ∩Lr(Rn)n for |α| ≤ m, then the
fixed point v of Lu satisfies Dαv ∈ C([0, T ], Lr1ν (Rn)) for |α| ≤ m and

‖Dαv(t)‖Lr1
ν

≤ C(T )

(
‖u0‖Wm,r1 +

∑
|β|≤m

‖Dβu0‖Lr1
ν

)

+K(T, u) (‖u0‖Wm,r + ‖u0‖Wm,r1 ) .

If u is a strong solution of the Navier–Stokes equations, then u is the fixed point
of Lu; moreover, r, r1 ≥ 2 so that K(T, u) is finite if 2 ≤ n ≤ 5 by (2.11) for every
T > 0. The following corollary is immediate.

Corollary 3.2. Assume 2 ≤ n ≤ 5, conditions (3.5), (3.6), and let u be a strong
solution of the Navier–Stokes equations with data u0 ∈ Wm,r ∩ Wm,r1 ∩ H1(Rn)n.
Then

‖Dαu(t)‖Lr1
ν

≤ C(T )C0,(3.7)

where C0 depends only on appropriate norms of the data.

4. Decay of moments of derivatives. In order to obtain the decay of moments
of derivatives, we will first need to establish uniform bounds. Once these are obtained,
the decay will follow by a Hölder inequality between the (m, s) moments and the L2

norm of the derivatives.
Theorem 4.1. Let u0 be as in Corollary 3.2. Let u be a strong solution of the

Navier–Stokes equations with data u0 satisfying

‖u(t)‖2 ≤ C(t+ 1)−µ, where µ >
n

4
− 1

2
.(4.1)

Then

M̃s,m(t) ≤ C(t+ 1)−(2µ+m)(1− s
n ) ,(4.2)

for m = 0, 1, 2, . . ., s = 0, 1, . . . , n.
Proof. As before we note that if the data is sufficiently small then this solution

u exists. In particular, if u ∈ H2 ∩L∞, then all the derivatives of higher order are in
L6 (see [12]). Moreover, inequalities (2.9), (2.10), and (2.11) will hold.
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For the proof, note that the case s = 0 is covered by (2.9). Assuming s > 0 from
now on, we proceed by induction on m. Each induction step is dealt with following
the approach of Theorem 4.1 of [11] (where the case m = 0 is proved). As in [11,
Theorem 4.1] the estimate for 0 < s < n will follow from the estimates for s = 0 and
s = n by Hölder interpolation. Indeed, let 1/p = (n− s)/n, 1/p′ = s/n, and |α| = m;
we have

Ms,α(t) =

∫
Rn

|x|s|Dαu|2 dx ≤
(∫

Rn

|Dαu|2 dx
)1/p(∫

Rn

|x|n|Dαu|2 dx
)1/p′

= M0,α(t)
1− s

nMn,α(u)(t)
s
n ≤ C(t+ 1)−(2µ+m)(1− s

n )Mn,α(u)(t)
s
n .

Thus, if Mn,α(u)(t) is uniformly bounded, we have

M̃s,m(t) ≤ C(t+ 1)−(2µ+m)(1− s
n ) .

It suffices thus to prove the estimate for s = n, which merely says that M̃n,m(t) is
bounded uniformly with respect to t, for t > 0. In other words, it suffices to prove

sup
t>0

M̃n,m(t) < ∞(4.3)

for m = 0, 1, . . . .
Let α be a multi-index with |α| = m. For a function g and a multi-index β, we

set gβ = Dβg. By Leibniz’s product formula, differentiating (1), we obtain

uαt = ∆uα −
∑

β+γ=α

(
α
β

)
uβ · ∇uγ −∇pα;

dot multiplying by |x|suα and using that divu = 0 and divuα = 0, we get, after
some technical but straightforward manipulations,

|x|suαt · uα = −|x|s|∇uα|2 +
s

2
(s− 2 + n)|x|s−2|uα|2 +

s

2
|x|s−2(x · u)|uα|2

−|x|s
∑

β+γ=α,β �=0

(
α
β

)
(uβ · ∇uγ) · uα + s|x|s−2(x · uα)pα

+divEs,α ,

where

Es,α =
|x|s
2

∇(|uα|2)− s

2
|x|s−2|uα|2x− |x|s

2
|uα|2u− |x|suαpα.

One can prove now, as in Lemma 6.1, Appendix B of [11], that

lim inf
R→∞

∫
|x|=R

|Es,α| dS = 0.

More precisely, the proof is a repetition of the arguments in the above mentioned
lemma, where we replace u by uα and use the appropriate estimates for the derivatives
obtained in [12]. Thus ∫

Rn

divEs,α dx = 0 ,
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and we obtain

1

2

d

dt
Ms,α(t) = A(t) +B(t) + C(t) +D(t),(4.4)

where

A(t) = −
∫
Rn

|x|s|∇uα|2 dx+
s

2
(s− 2 + n)Ms−2,α(t)

s

2
(s− 2 + n)Ms−2,α(t),

B(t) =
s

2

∫
Rn

|x|s−2(x · u)|uα|2 dx,

C(t) = −
∑

β+γ=α,β �=0

(
α
β

)∫
Rn

|x|s(uβ · ∇uγ) · uα dx,

D(t) = s

∫
Rn

|x|s−2(x · uα)pα dx.

Assume m = 0. Recall that we write Ms for Ms,0. We prove by induction on s that
there exists C ≥ 0 such that Ms(u)(t) ≤ C for all t ≥ 0, s = 1, . . . , n. We begin
considering the case s = 2; the case s = 1 follows by interpolation between the cases
s = 0 and s = 2 and induction can then proceed in steps of 2; i.e., Mk bounded
implies Mk+2 bounded.

If A,B,C,D are as in (4.4) for |α| = m = 0, s = 2, we get A(t) ≤ nM0,0(u)(t) =
n‖u(t)‖2

2, C(t) = 0 and

B(t) ≤
∫
Rn

|x||u|3 dx ≤ M2(u)(t)
1/2‖u(t)‖2

4,

D(t) ≤ M2(u)(t)
1/2‖p(t)‖2

2 ≤ CM2(u)(t)
1/2‖u(t)‖2

4

so that by (4.4)

d

dt
M2(u)(t) ≤ CM2(u)(t)

1/2‖u(t)‖2
4 + n‖u(t)‖2

2.(4.5)

By (2.11) (with j = 0 and p = 4)

‖u(t)‖4 ≤ C(t+ 1)−µ−n/8;

it follows from this and (4.1)

d

dt
M2(u)(t) ≤ n(t+ 1)−2µ + CM2(u)(t)

1/2(t+ 1)−δ

with δ = 2µ+ n/4. A bit of elementary arithmetic yields

d

dt
M2(u)(t) ≤ n(t+ 1)−2µ + C(t+ 1)−δ + CM2(u)(t)(t+ 1)−δ.

Since the moments are bounded (time dependent) and since δ > 1 it follows by
Gronwall’s inequality that

M2(u)(t) ≤ Ce

∫∞
0

(t+1)−δdt ≤ const
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proving the case s = 2. Assume now s > 2. In this case

A(t) ≤ s

2
(s+ n− 2)Ms−2(u)(t),(4.6)

B(t) ≤
∫
Rn

|x|s−1|u|3 dx ≤ Ms(u)(t)
(s−1)/s‖u(t)‖(s+2)/s

s+2 ,(4.7)

D(t) ≤
∫
Rn

|x|s−1|u||p| dx ≤ CMs(u)(t)
(s−1)/s‖u(t)‖(s+2)/s

s+2 .(4.8)

Inequality (4.7) is an immediate consequence of Hölder’s inequality (with exponents
s/(s− 1) and s). For (4.8) notice first that, by Hölder’s inequality,

∫
Rn

|x|s−1|u||p| dx ≤
(∫

Rn

|x|s|u|2 dx
)1/2(∫

Rn

|x|s−2|p|2 dx
)1/2

= Ms(u)(t)
1/2‖p‖L2

ν

with ν = s/2 − 1. Then n/(n − ν) < 2 (since s < n + 2) hence the Riesz transforms
are bounded in L2

ν (see [11, Lemma 5.1]); since p = −∑j,k RjRk(ujuk), we get

‖p‖L2
ν
≤ C‖ |u|2‖L2

ν

= C

(∫
Rn

|x|s−2|u|4 dx
)1/2

≤ Ms(u)(t)
(s−2)/2s‖u‖(s+2)/s

s+2 ,

where we factored |u|4 = |u|2−4/s|u|2+4/s and used Hölder’s inequality with exponents
s/(s − 2), s/2. Inequality (4.8) follows. To continue estimating, we get by Hölder’s
inequality, (4.1), and (2.10) (for j = 0)

‖u(t)‖s+2 ≤ ‖u(t)‖2/(s+2)
2 ‖u‖s/(s+2)

∞ ≤ C(t+ 1)−µ−(ns)/(4s+8) ;

by Hölder’s inequality and (4.1)

Ms−2(u)(t) ≤ Ms(u)(t)
(s−2)/s‖u(t)‖4/s

2 ≤ C(t+ 1)−4µ/sMs(u)(t)
(s−2)/s;

whence combining with (4.6), (4.7), (4.8), and (4.4),

d

dt
Ms(u)(t) ≤ C1(t+ 1)−4µ/sMs(u)(t)

(s−2)/s

+C2(t+ 1)−µ(s+2)/s−n/4Ms(u)(t)
(s−1)/s.

We estimate the two terms on the right-hand side (R.H.S.) using Mτ
s ≤ 1 + Ms for

τ = (s− 2)/s and τ = (s− 1)/s, respectively; we get

d

dt
Ms(u)(t) ≤ C1(t+ 1)−ρ + C2(t+ 1)−ρMs(u)(t),

where

ρ = min

{
4µ

s
,
s+ 2

s
µ+

n

4

}
> 1.

Integrating from 0 to t, considering that∫ t

0

(σ + 1)−ρ dσ ≤
∫ ∞

0

(σ + 1)−ρ dσ =
1

ρ− 1
< ∞,
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we get

Ms(u)(t) ≤ C (1 +Ms(u)(0)) + C

∫ t

0

(σ + 1)−ρMs(u)(σ) dσ.

By Gronwall’s lemma,

Ms(u)(t) ≤ C (1 +Ms(u)(0)) e

∫∞
0

(σ+1)−ρ dσ ≤ C0 < ∞
which completes the proof of the case m = 0.

Assume now m is a positive integer and that the estimates (4.2) have been proved
up to m − 1; s = 0, . . . , n. Let |α| = m. Time dependent bounds for Ms,α(u)(t) are
easily established by induction on s, 0 ≤ s ≤ n. In fact, the case s = 0 is (as already
mentioned) immediate and the induction proceeds by means of energy estimates which
are quite straightforward and as such will be omitted; the reader can refer to [11] for
details of a similar proof. With this established, to obtain the uniform bound we
proceed as follows. Let A(t), B(t), C(t), D(t) be as in (4.4) with s = n.

Bound for A(t).
Notice first that if n = 2 then

A(t) ≤ 2M0,α(t) ≤ C0(1 + t)−2µ−1 ,(4.9)

where 2µ > n/2 = 1. Suppose now that 3 ≤ n ≤ 5; by Hölder’s inequality and by
(2.9),

Mn−2,α(t) ≤ Mn,α(t)
(n−2)/n‖uα(t)‖4/n

2 ≤ C(1 + t)−ρMn,α(t)
(n−2)/n,

with ρ = (4/n)(µ+m/2) > 1. In general, from now on, ρ denotes a constant > 1, not
the same one in all inequalities. By the definition of A(t), using also

(1 + t)−ρMn,α(t)
(n−2)/n ≤ 2

n
(1 + t)−ρ +

n− 2

n
(1 + t)−ρMn,α(t),

we prove that

|A(t)| ≤ C(1 + t)−ρ
(
1 + M̃n,m(t)

)
.(4.10)

Bound for B(t).

|B(t)| =
∣∣∣∣n2
∫
Rn

|x|n−2(x · u)|uα|2 dx
∣∣∣∣ ≤ n

2

∫
Rn

|x|n−1|u||uα|2 dx

≤ n

2
‖uα‖2/n

2 ‖u‖∞
(
M̃n,m(t)

)(n−1)/n

,

so that by (2.9) and (2.10),

|B(t)| ≤ C(1 + t)−ρ
(
M̃n,m(t)

)(n−1)/n

≤ C(1 + t)−ρ
(
1 + M̃n,m(t)

)
,

where this time ρ = (2/n)(µ+m/2) + µ+ n/4 > 1.



750 C. AMROUCHE, V. GIRAULT, M. SCHONBEK, AND T. SCHONBEK

Bound for C(t).
Note that C(t) is a sum in terms of α and β, where |β| + |γ| = |α| and β �= 0.

The general term in C(t) can be estimated by∫
Rn

|x|n |(uβ · ∇uγ) · uα| dx ≤ ‖Dju‖∞M̃n,�(t)
1/2M̃n,m(t)1/2,

where j = min(|β|, |γ|+1), 3 = max(|β|, |γ|+1), so that 0 ≤ j ≤ [m/2], [(m+1)/2] ≤
3 ≤ m, and j + 3 = m+ 1. When 3 = m, and so j = 1, (2.10) implies a bound of the
form

C(1 + t)−(µ+n/4+1)M̃n,m(t).

The terms with 3 < m are bounded, using the induction hypothesis and (2.10), by

C(1 + t)−(µ+n/4+j/2)M̃n,m(t)1/2,

and we obtain again an estimate of the form

|C(t)| ≤ C(1 + t)−ρ
(
1 + M̃n,m(t)

)
,(4.11)

where ρ > 1.
Bound for D(t).
Since the Riesz transforms are bounded in L2

ν with ν = (n − 2)/2, and Dα

commutes with the Riesz transforms, we can write

pα = Dαp =
∑
j,k

RjRk[D
α(ujuk)] =

∑
k,j,β+γ=α

(
α
β

)
RjRk(uβ,juγ,k),

and we have

|D(t)| =
∣∣∣∣n
∫
Rn

|x|n−2(x · uα)pα dx
∣∣∣∣

≤ C

∫
Rn

|x|n−1|uα||pα| dx ≤ CM̃n,m(t)1/2‖pα‖L2
ν

≤ CM̃n,m(t)1/2
∑

β+γ=α

‖|uβ ||uγ |‖L2
ν
.

Then Hölder’s inequality gives

‖|uβ ||uγ |‖L2
ν
=

(∫
Rn

|x|n−2|Dβu|2|Dγu|2 dx
)1/2

≤ C‖Dju‖∞‖D�u‖1/n
2 M̃n,�(t)

(n−2)/2n,

with j = min(β, γ), 3 = max(β, γ) (so 0 ≤ j ≤ m/2). Once more we apply (2.9), (2.10)

to get ‖Dju‖∞‖D�u‖1/n
2 ≤ C(1+t)−ρ with ρ = (1/n)(µ+3/2)+µ+n/4+j/2 > 1. By

the induction hypothesis M̃n,�(t) is bounded uniformly in t if 3 < m, so all terms with
3 < m in the last estimate for D can be bounded by C(1 + t)−ρ and the remaining
term is bounded by

C(1 + t)−ρM̃n,m(t)(n−2)/2n ≤ C(1 + t)−ρ
(
1 + M̃n,m(t)

)
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so that D(t) has a bound of the same type as A(t), B(t), C(t). Combining all the
above estimates, we derive

d

dt
M̃n,m(t) ≤ C(1 + t)−ρ + C(1 + t)−ρM̃n,m(t) ,

where ρ > 1. Hence, integrating in this inequality, we find

M̃n,m(t) ≤
(
M̃n,m(0) +

C

ρ− 1

)
+ C

∫ t

0

(s+ 1)−ρM̃n,m(s) ds.

Then Gronwall’s lemma implies

M̃n,m(t) ≤
(
M̃n,m(0) +

C

ρ− 1

)
ec/(ρ−1) ,

thus proving that M̃n,m(t) is bounded uniformly with respect to t for t > 0.
Note. We took some pains to avoid having to bound ‖Dju‖∞ for j > [(m+1)/2].

In this way, bounds on the L2-norm of derivatives of order m will give (sometimes)
all the needed L∞ bounds on the Dju’s.

The next theorem establishes the spatial and time decay of strong solutions to
equations for which the moments decay.

Theorem 4.2. Let 2 ≤ n ≤ 5. With the assumptions of Theorem 4.1, let u be a
strong solution u of the Navier–Stokes equations with data u0. Let k ≤ n/2. Then

|Dαu(x, t)| ≤ Ck,m
1

(t+ 1)ρ0(1 + |x|2)k/2 ,(4.12)

where ρ0 = (µ+m/2 + n/4)(1− 2k/n) and |α| = m.
Proof. Note that n is restricted to the values 2 ≤ n ≤ 5 for which we have

estimates for the moments. The main tools for the proof are Theorem 4.1 and the
Gagliardo–Nirenberg inequality. Let

v(x, t) = (1 + |x|2)k/2Dαu(x, t) .

By Leibniz’s formula, we have

Dsv =

s∑
j=0

csj(1 + |x|2) k−j
2 Ds−juα .(4.13)

Together with the decay of the moments of derivatives given by Theorem 4.1, this
formula implies that

‖Dsv‖2 ≤ C0

s∑
j=0

(1 + t)−(µ+m/2+(s−j)/2)(1−2(k−j)/n) .(4.14)

Since the function f(j) = (µ+m/2 + (s− j)/2)(1 − 2(k − j)/n) is increasing, it has
a minimum at j = 0. Thus we have

‖Dsv‖2 ≤ C0(1 + t)−(µ+m/2+s/2)(1−2k/n) .(4.15)

In particular when s = 0,

‖v‖2 ≤ C0(1 + t)−(µ+m/2)(1−2k/n) .(4.16)
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Let us apply the Gagliardo–Nirenberg inequality with a = n/(2s) < 1, provided
n/2 < s, i.e., s > [n/2], to get

‖v(·, t)‖∞ ≤ ‖v(·, t)‖1−a
2 ‖Dsv(·, t)‖a2 .(4.17)

Combining with (4.16) and (4.15) yields

|(1 + |x|2)k/2Dαu(x, t)| ≤ ||v(t)||∞ ≤ C0(1 + t)−ρ0 ,

where

ρ0 = (1− 2k/n) ((µ+m/2 + s/2)n/(2s) + (1− n/(2s))(µ+m/2))

= (1− 2k/n)(µ+m/2 + n/4) .

We note that the above value of ρ0 is independent of s. Thus we could have ob-
tained it using only the s derivative with s > [n/2]. In particular note that when
n = 3, it suffices to use s = 2 and ρ0 = (µ + m/2 + 3/4)(1 − 2k/3). The proof is
complete.

4.1. Comparison with the heat equation. It is easy to show that the fun-
damental solution of the heat equation,

E(x, t) = (4πt)−n/2e−|x|2/4t ,

which is the linear part of the Navier–Stokes equations, has the following asymptotic
behavior:

|DαE(x, t)| ≤ c0|x|−at−b,

where a+2b = n+m, with m = |α|. It is also easy to show that there is a large class
of solutions to the heat equation which will have the same type of decay. For instance
solutions such that the data satisfies u0 ∈ K where

K = {u0 : u0(y) ≥ e−y
2/4t0}

will have the above type of decay, provided we are considering t ≥ t0 + ε. In the
case of solutions to the Navier–Stokes equations, if we take µ = n/4, the relation that
holds between the decay in space and in time is

2ρ0 + 2k = m+ n− 2km

n
.

For k = 0, we recover the decay of the heat equation, but this only gives decay in
time. If m = 0 we recover the relation 2ρ0 + 2k = n; i.e., we have the same decay
relation in space and in time as for solutions to the heat equation.

Final remarks. We expect that our results can be extended easily to dimensions
6 and 7 using the L2 decay results, for derivatives of higher order, recently obtained
by Wiegner [19].

Acknowledgment. The authors wish to thank the referee for many helpful sug-
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