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Abstract. We show that there are no singular pseudo-self-similar solutions of the Navier-Stokes
system with finite energy.

1 Introduction

In his 1934 pioneering paper, Jean Leray [1] asked whether it is possible to
construct a self-similar solution to the Navier-Stokes system inR3

∂u
∂t

− �u + (u·∇)u + ∇p = 0, (1)

div u = 0 (2)

of the form

u(x, t) = 1√
T − t

U
(

x√
T − t

)
, (3)

p(x, t) = 1

T − t
P

(
x√

T − t

)
. (4)

The motivation for studying such of solutions is that they would possess a sin-
gularity whent = T ; indeed||∇u(·, t)||L2(R3) = 1√

T−t
||∇U||L2(R3). This ques-

tion was first answered in 1996 by Nečas, Růžička, andŠverák in the nega-
tive. Specifically, in [3], they showed that the only self-similar solution with
U ∈ L3(R3) ∩ W 1

2,loc(R
3) is the trivial solution. Later, M´alek, Něcas, Pokorn´y,

and Schonbek [2] showed that any self-similar solution withU ∈ W 1
2 (R

3) was
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trivial, and this was extended to solutions that merely have locally finite energy
by Tsai in [5,6].

In [2], Nečas posed an extension of the original problem of Leray, namely
could we construct pseudo-self-similar solutions of the Navier-Stokes system of
the form

u(x, t) = µ(t)U(λ(t)x), (5)

p(x, t) = µ2(t)P (λ(t)x), (6)

for all t < T and someT > 0 whereλ,µ ∈ C1[0, T ). Like the self-similar
solutions, it was hoped that pseudo-self-similar solutions would provide an ex-
ample of a singular solution to theNavier-Stokes system. In that paper [2]M´alek,
Nečas, Pokorn´y, and Schonbek were only able to give a partial answer to this
problem. They showed that if there was a constantc so thatλ = cµ, then the
problem could be reduced to the self-similar case, and henceu = 0. Further,
possibly singular solutions for which

λ(t) = (T − t)−γ1 µ(t) = (T − t)−γ2 (7)

were also shown to be of the Leray type, so thatγ1 = γ2 = 1/2, and hence were
trivial. On the other hand, for generalλ andµ it was only shown that if such
solutions were to exist, then they had a very specific form in frequency space,
namely that

Û(ξ) = |ξ |− β
c2 e− |ξ |2

2c2 S
(

ξ

|ξ |
)

(8)

for some functionSand some constantsβ andc2.
In this paper we close the question by showing that there are no singular

pseudo-self-similar solutions of the Navier-Stokes system with finite energy. In
particular, we shall prove the following.

Theorem 1There are no pseudo-self-similar solutions of the Navier-Stokes sys-
tem that satisfy

ess sup
0<t<T

||u(·, t)||L2(R3) < ∞, (9)

||∇u||L2(R3×(0,T )) < ∞, (10)

lim
t↑T ||∇u(·, t)||L2(R3) = ∞ (11)

for anyT .
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2 Proof

Following [2], we can substitute (5) and (6) into (1) and (2) to obtain

µ′

µ2λ
U + λ′

µλ2
(y ·∇)U − λ

µ
�U + (U·∇)U + ∇P = 0, (12)

divU = 0. (13)

The conditions (9)–(10) then imply thatU ∈ W 1
2 (R

3). An ordinary differential
equation forλ andµ can be found by multiplying (12) byU and integrating to
obtain

µ′

µ2λ
− 3

2

λ′

µλ2
= − λ

µ
K3 (14)

whereK3 = ||∇U||22/||U||22 > 0. (The notation here and elsewhere is chosen to
be consistent with [2].)

Further it was shown in [2, Lemmas 2.1 & 2.2] thatU ∈ W 2
2 (R

3) ∩ L∞(R3)

andP ∈ W 2
2 (R

3) ∩ L∞(R3). It was also shown that the requirementλ �= cµ

implies that

λ

µ
+ λ′

µλ2

1

c2
= K2 (15)

for somec2 > 0 and someK2. It was already noted in [2] that ifK2 = 0 then
the solution is nonsingular, so we shall reserve our primary attention for the case
K2 �= 0.

Next we shall take advantage of the symmetry of the problem. Indeed, note
that ifU, P , λ andµ satisfy (12), (13), (14) and (15), then so does

µ̃ = −µ, K̃2 = −K2, Ũ = −U, P̃ = −P, (16)

λ̃ = λ, K̃3 = K3, c̃2 = c2. (17)

As a consequence, we can assume without loss of generality thatK2 > 0.
We can then substitute (14) into (12) to obtain

λ′

µλ2

[
(y ·∇)U + 3

2
U
]

− λ

µ
[�U + K3U] + (U·∇)U + ∇P = 0. (18)

Next, use (15) to substitute for theλ/µ factor to obtain

λ′

µλ2

[
(y ·∇)U + 3

2
U
]

−
(
K2 − 1

c2

λ′

µλ2

)
[�U + K3U]

+ (U·∇)U + ∇P = 0. (19)
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Combining like terms, we find that

− K2(�U + K3U) + (U·∇)U + ∇P

=
[
− 1

c2
(�U + K3U) − (y ·∇)U − 3

2
U
]

λ′

µλ2
(20)

Since the left side is independent oft , we know that the right sidemust be constant
in t ; thus either the first factor is zero orλ′/µλ2 is a constant in time. The latter
case is disallowed because (15) would imply thatλ/µ is constant. Since the first
factor is zero, the whole right side is zero and we have the equations

−K2(�U + K3U) + (U·∇)U + ∇P = 0 (21)

and

− 1

c2
(�U + K3U) − (y ·∇)U − 3

2
U = 0. (22)

We remark that if we make the substitutionK3 = −β + (3/2)c2 and then
take the Fourier transform of the second equation, we obtain

−|ξ |2Û + (3c2 − β)Û + c2

(
−|ξ | ∂

∂|ξ | Û − 3Û
)

= 0. (23)

If we solve the resulting ordinary differential equation for the radial part ofÛ,
we obtain (8).

Let a ∈ R be determined later and set

Ũ = U + ay, (24)

P̃ = P − 1
2a

2|y|2. (25)

Substitute this into (21) to obtain the equation

−K2�Ũ + (Ũ·∇)Ũ − a(y ·∇)U + ∇P̃ = K2K3U + aU. (26)

Then use (22) to substitute for(y ·∇)U, giving us

−
(
K2 − a

c2

)
�Ũ + (Ũ·∇)Ũ + ∇P̃ =

[
K2K3 − a

(
1

2
+ K3

c2

)]
U. (27)

Set

a = K2K3
1
2 + K3

c2

= K2c2
2K3

c2 + 2K3
(28)

and

ν = K2 − a

c2
= K2

(
1− 2K3

c2 + 2K3

)
= c2K2

2K3 + c2
. (29)
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Our restrictions onc2,K2, andK3 imply thatν > 0; hence

−ν�Ũ + (Ũ·∇)Ũ + ∇P̃ = 0, (30)

div Ũ = 3a. (31)

We can multiply (30) byŨ to obtain

−ν�(12|Ũ|2) + (Ũ·∇)(12|Ũ|2) + (Ũ·∇)P̃ + ν|∇Ũ|2 = 0. (32)

On the other hand, if we take the divergence of (30), we find

−ν�(div Ũ) + ∂Ũi

∂yj

∂Ũj

∂yi

+ Ũj

∂

∂yj
(div Ũ) + �P̃ = 0; (33)

then since diṽU = 3a is constant,

�P̃ = −∂Ũi

∂yj

∂Ũj

∂yi

. (34)

Substitute this into (32) to obtain

−ν�(12|Ũ|2 + P̃ ) + (Ũ·∇)(12|Ũ|2 + P̃ ) + ν

(
|∇Ũ|2 − ∂Ũi

∂yj

∂Ũj

∂yi

)
= 0. (35)

If we define

X = 1
2|Ũ|2 + P̃

= 1
2(U + ay)·(U + ay) + P − 1

2a
2|y|2

= 1
2|U|2 + P + a(U·y)

(36)

then we find

−ν�X + (Ũ·∇)X + ν

(
|∇Ũ|2 − ∂Ũi

∂yj

∂Ũj

∂yi

)
= 0. (37)

Next we would like to replacẽU byU. We note that

|∇Ũ|2 = |∇U|2 + 2a divU + a2δij δij = |∇U|2 + 3a2 (38)

while

∂Ũi

∂yj

∂Ũj

∂yi

= ∂Ui

∂yj

∂Uj

∂yi

+ 2a divU + 3a2 = ∂Ui

∂yj

∂Uj

∂yi

+ 3a2. (39)

Making the substitutions, we find that

−ν�X + (U·∇)X + a(y ·∇)X + ν

(
|∇U|2 − ∂Ui

∂yj

∂Uj

∂yi

)
= 0. (40)
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In [2, Lemma 3.2] the following was proven.

Lemma 2Leta > 0, ν > 0, and suppose that

−ν�X + (U·∇)X + a(y ·∇)X ≤ 0. (41)

Then eitherX ≤ 0 or X is a positive constant.

For the reader’s convenience, we shall sketch the proof. Forβ > 0, define
Xβ = Xe−β|y|2. Then

−ν�Xβ + bj (y)
∂Xβ

∂yj
+ b(y)Xβ ≤ 0 (42)

wherebj (y) = Uj(y) + (a − 4βν)yj and

b(y) = 2β(a|y|2 − 2βν|y|2 + U·y − 3ν). (43)

We can findβo > 0 so thatb(y) > 0 if 0 < β < βo and|y| ≥ R; choose such
a pair. LetM = max|y|=R X and let us first suppose thatM > 0. BecauseU
andP are bounded, there exists someRβ > R so thatXβ(y) < M/2 for all
|y| > Rβ . Applying the maximum principle to (42) on annuli, we conclude that
Xβ ≤ Me−βR2

if |y| ≥ R. Lettingβ ↓ 0 we see thatX ≤ M if |y| ≥ R. Apply
the strong maximum principle for (41) onBρ for ρ > R; since the maximum is
achieved inBρ on |y| = R, we conclude thatX is constant inBρ for all ρ > R.

Suppose thatM ≤ 0. The boundedness ofU andP imply that for allε > 0
there is someRε > R so thatXβ(y) < ε if |y| > Rε . Applying the maximum
principle for (42) on annuli we conclude thatXβ ≤ ε if |y| > R and sinceε is
arbitrary, thatX ≤ 0 if |y| > R. Apply the maximum principle once more on
Bρ for ρ > R to conclude thatX ≤ 0. This proves the lemma.

We can strengthen Lemma 1 as follows. If we set

X∗ = X + c (44)

for some constantc, we see thatX∗ also satisfies (41). Repeating the previous
argument forX∗ we find that eitherX+c ≤ 0 for all constantsc, orX is constant;
we conclude thatX is constant.

Because the last term in (40) is nonnegative we can apply this result to con-
clude thatX is constant. As a consequence, (40) reduces to the equation

|∇U|2 = ∂Ui

∂yj

∂Uj

∂yi

. (45)

Integrate this overR3 to see that∫
R3

|∇U|2 = −
∫
R3

Ui

∂

∂yj

∂Ui

∂yj
= −

∫
R3

Ui

∂

∂yi

divU = 0; (46)

thusU is a constant. SinceU ∈ L2(R3), we conclude thatU = 0.
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3 Nontrivial pseudo-self-similar solutions

The preceding argument did more than show that there are no singular pseudo-
self-similar solutions of the Navier-Stokes system. In fact, it shows that every
pseudo-self-similar solution with finite energy is trivial, at least in the casewhere
K2 �= 0. It was already shown in [2] that ifK2 = 0 then the solution is nonsin-
gular; we shall now present some additional remarks about what occurs in this
case.

If K2 = 0 we can solve (15) directly forλ(t) to determine that

λ(t) = λo√
1+ 2λ2oc2t

(47)

for some arbitrary constantλo. We can then use (14) to see that

µ(t) = µo

(1+ 2λ2oc2t)
3
2+K3

c2

(48)

whereµo is also arbitrary.
The question of whether or not there exist nontrivial pseudo-self-similar so-

lutions with finite energy in this form is still open. We remark that ifu(x, t) and
p(x, t) are pseudo-self-similar solutions in this form, then so iskαu(kx, k2t) and
k2αp(kx, k2t) for anyα andk. Using this scaling in the Navier-Stokes system
then implies thatu andp must satisfy

(u·∇)u + ∇p = 0, (49)

and

ut − �u = 0. (50)

Note that these are equivalent to (21) and (22) respectively withK2 = 0. Finally,
we remark that it is known that (49) and (50) have nontirival solutions in an even
number of spatial dimensions; see [4, Theorem 5.1].
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