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Abstract. We show that there are no singular pseudo-self-similar solutions of the Navier-Stokes
system with finite energy.

1 Introduction

In his 1934 pioneering paper, Jean Leray [1] asked whether it is possible to
construct a self-similar solution to the Navier-Stokes systeR?in

88_‘;_Au+<u-V>u+Vp=0, (1)
divu=0 (2)
of the form
1 X
u(x’t):\/T—tU<\/T—t)’ (3
1 X
pon = o (=), @

The motivation for studying such of solutions is that they would possess a sin-
gularity whent = T; indeed|Vu(., t)|,r3) = \/%"VU”LZ(R%- This ques-

tion was first answered in 1996 by s, RiZitka, andSvegk in the nega-
tive. Specifically, in [3], they showed that the only self-similar solution with
U e L3(R® n W3, (R3) is the trivial solution. Later, Mlek, N&as, Pokom,

and Schonbek [2] showed that any self-similar solution witle W} (R3) was
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trivial, and this was extended to solutions that merely have locally finite energy
by Tsai in [5,6].

In [2], NeCas posed an extension of the original problem of Leray, namely
could we construct pseudo-self-similar solutions of the Navier-Stokes system of
the form

u(x, 1) = n()UA()x), (5)
p(x, 1) = (1) P(A(1)x), (6)

forallt < T and somel’ > 0 whereA, u € CYO, T). Like the self-similar
solutions, it was hoped that pseudo-self-similar solutions would provide an ex-
ample of a singular solution to the Navier-Stokes system. In that papeid2kv”
Necas, Pokom, and Schonbek were only able to give a partial answer to this
problem. They showed that if there was a constagb thath = cu, then the
problem could be reduced to the self-similar case, and henee0. Further,
possibly singular solutions for which

MO =T -0 u@)=T—-1)"" (7)

were also shown to be of the Leray type, so that v, = 1/2, and hence were
trivial. On the other hand, for generaland 1« it was only shown that if such
solutions were to exist, then they had a very specific form in frequency space,
namely that

n _b _ER_ (&
UE) =8| e 293(@) (8)

for some functiorS and some constangsandc;.

In this paper we close the question by showing that there are no singular
pseudo-self-similar solutions of the Navier-Stokes system with finite energy. In
particular, we shall prove the following.

Theorem 1There are no pseudo-self-similar solutions of the Navier-Stokes sys-
tem that satisfy

ess sufiu(-, 1) L,r3) < 00, 9)
O<t<T
IVUlL,Rr3x0,7)) < 00, (10)

foranyT.



Nonexistence of singular pseudo-self-similar solutions 811

2 Proof

Following [2], we can substitute (5) and (6) into (1) and (2) to obtain

!/ /

s
U -
t o

A
“2 (y-V)U—-ZAU+ (U-V)U+ VP =0, (12)
JLEA 124
divU = 0. (13)

The conditions (9)—(10) then imply thak € W2}(R3). An ordinary differential
equation forA andu can be found by multiplying (12) by and integrating to
obtain
uw 3\ A
- = =——K 14

whereKz = |VU|3/|U[3 > 0. (The notation here and elsewhere is chosen to
be consistent with [2].)

Further it was shown in [2, Lemmas 2.1 & 2.2] thate W2(R3) N Lo (R®)
andP € W2(R® N L (R®). It was also shown that the requirement4 cp
implies that

A Aol

— =K 15
,u+,u)»2€2 2 (15)

for somec, > 0 and someK,. It was already noted in [2] that K, = O then
the solution is nonsingular, so we shall reserve our primary attention for the case
K, # 0.

Next we shall take advantage of the symmetry of the problem. Indeed, note
that if U, P, A andpu satisfy (12), (13), (14) and (15), then so does

—n, Ko=—-K,, U=-U, P=-P, (16)
= )\., 123 = K3, 52 = C2. (17)

> ]
I

As a consequence, we can assume without loss of generalitithatO.
We can then substitute (14) into (12) to obtain

/

A
"

re [(y-V)U-l—gU] [AU+ KUl + (U-V)JU+ VP =0. (18)

Next, use (15) to substitute for the . factor to obtain

A 3 1 N
WVMU+-U|[—-(Ks—— AU+ K3U
e [(y U+ > ] ( 2 CzM)»2>[ + K3U]

+(U-V)U+VP=0. (19)
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Combining like terms, we find that

— K>(AU+ K3U) + (U-V)U+ VP
1 3 A
= [——(AU + K3U) — (y-V)U — —u} ~ (20)
() 2 u)uz

Since the left side isindependent pive know that the right side must be constant
in ¢; thus either the first factor is zero bt/ A? is a constant in time. The latter
case is disallowed because (15) would imply that is constant. Since the first
factor is zero, the whole right side is zero and we have the equations

—K>(AU+ K3U)+(U-V)U+VP =0 (22)

and
1 3
——(AU+K3U)—(y-V)U—§U =0. (22)
c2

We remark that if we make the substitutiahy = —8 + (3/2)c, and then
take the Fourier transform of the second equation, we obtain

. . d ~ o~
—[P0+ Bez = AU+ ¢» <—IEI@U—3U> =0. (23)

If we solve the resulting ordinary differential equation for the radial paﬁJ,of
we obtain (8).
Leta € R be determined later and set

U=U+ay, (24)
P =P -1a®y?2 (25)

Substitute this into (21) to obtain the equation
—K24U0 + (0-V)U — a(y-V)U + VP = K,K3U + aU. (26)

Then use (22) to substitute foy-V)U, giving us

B (KZ B ci) AD 4+ (0-9Y0 4 VF = [Kng—a (1 + ﬁ)] u. @)
2

Set

K>K3 % 2K;
= Co——m8M—

s+ 5 22 )+ 2Ky

c2

(28)

a =

and

a 2K3 c2K>
k- L k(1 - . 29
g 2T o 2( Cz+2K3) 2K3+ ¢ (29)
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Our restrictions om;, K, andKz imply thatv > 0;

hence

—vAU+ U-V)O+ VP =0,
divU = 3a.

We can multiply (30) byJ to obtain

—vAGI0P) + OG0 + O-v)P +v|VUP =0

On the other hand, if we take the divergence of (30), we find

aU;

—vA(div0) + &— + U —(dIV U)+ AP =0;

ayj ay;
then since diWJ = 3q is constant,

- QU 3T,
AP =——"71
dy; dyi

Substitute this into (32) to obtain

—VAGIOR+ B) + O-V)GI0P2+ B) +v <|v0|2 -

If we define
X=130P+P
= %(U +ay)-(U+ay)+ P —
=2lUP+P+a(U-y)
then we find
a0,

—vAX +U-WX +v | |VO]? -
9y;

Next we would like to replacé) by U. We note that
VU2 = |VU2 + 2adivU + a?8;;8;; =
while
00,90 _ = AU | o divu + 30? =
dy; dy;  dy; 9y
Making the substitutions, we find that

—vAX + U-WVX +aly-V)X +v (lVU|2 —

1 2 2
alyl

aU; oU;

)

dy; dyi

v\
dYi B

|IVU|? + 3a?

aU; U

3y; i

oU; U

dy; dyi

):

2

(30)
(31)

(32)

(33)

(34)

—0. (35)

(36)

(37)

(38)

(39)

(40)

813
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In [2, Lemma 3.2] the following was proven.

Lemma 2Leta > 0, v > 0, and suppose that
—VvAX+U- V)X +a(y-V)X <O0. (41)
Then eitherX < O or X is a positive constant.

For the reader’s convenience, we shall sketch the proofgFer0, define
Xy = Xe D’ Then

9X
—VAXs + bj(y)wf’ +b()Xs <0 (42)
J

whereb, ) =U;(y) + (a — 4Bv)y; and
b(y) = 2B(aly* — 2Bv|y|* + U-y — 3v). (43)

We can find8, > 0 so thath(y) > 0if 0 < 8 < B, and|y| > R; choose such
a pair. LetM = max,—x X and let us first suppose that > 0. BecauseJ
and P are bounded, there exists solRg > R so thatXgz(y) < M/2 for all
ly| > Rg. Applying the maximum principle to (42) on annuli, we conclude that
Xp < Me PR if |y| > R. Letting 8 | O we see thak < M if |y| > R. Apply
the strong maximum principle for (41) a8, for p > R; since the maximum is
achieved inB, on|y| = R, we conclude thaX is constant inB, for all p > R.

Suppose that < 0. The boundedness tfand P imply that for alle > 0
there is someR. > R so thatXg(y) < € if |y| > R.. Applying the maximum
principle for (42) on annuli we conclude th&} < € if |y| > R and since: is
arbitrary, thatX < 0 if |y| > R. Apply the maximum principle once more on
B, for p > R to conclude thakX < 0. This proves the lemma.

We can strengthen Lemma 1 as follows. If we set

X*=X+c¢ (44)

for some constant, we see thak* also satisfies (41). Repeating the previous
argument foX* we find that eitheX +¢ < O for all constants, or X is constant;
we conclude thak is constant.

Because the last term in (40) is nonnegative we can apply this result to con-
clude thatX is constant. As a consequence, (40) reduces to the equation

aU; dU;
VU2 = —— L. (45)
dy; dyi
Integrate this oveR® to see that
a0 dU; a
|VU|2:—/ Ui——=—/ Ui—divU = 0; (46)
R3 R:  0y; 9y; R:  0Yi

thusU is a constant. Sindd € L»(R®), we conclude that) = 0.
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3 Nontrivial pseudo-self-similar solutions

The preceding argument did more than show that there are no singular pseudo-
self-similar solutions of the Navier-Stokes system. In fact, it shows that every
pseudo-self-similar solution with finite energy is trivial, at least in the case where
K, # 0. It was already shown in [2] that K, = O then the solution is nonsin-
gular; we shall now present some additional remarks about what occurs in this
case.

If K, = 0 we can solve (15) directly fot(z) to determine that

M) = 0 (47)

V14 2)\.5C2t
for some arbitrary constant,. We can then use (14) to see that
/"LO

3 K
(1+ 202cp1) 272

n(t) = (48)
wherep, is also arbitrary.

The guestion of whether or not there exist nontrivial pseudo-self-similar so-
lutions with finite energy in this form is still open. We remark thai(k, ) and
p(x, t) are pseudo-self-similar solutions in this form, then s¢¢is(kx, k%) and
k% p(kx, k?t) for any« andk. Using this scaling in the Navier-Stokes system
then implies thatt and p must satisfy

(U-Vyu+Vp =0, (49)
and
u, — Au=0. (50)

Note that these are equivalent to (21) and (22) respectivelyKth 0. Finally,
we remark that it is known that (49) and (50) have nontirival solutions in an even
number of spatial dimensions; see [4, Theorem 5.1].
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