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1. Introduction and the results

Consider the Navier-Stokes equations in Rn, n � 2, which will be treated in this paper in
the form of the integral equation

(NS) u(t) = e�tAa�
Z t

0
r � e�(t�s)AP (u
 u)(s)ds;

for prescribed initial velocity a(x) = (a1(x); � � � ; an(x)), x = (x1; � � � ; xn) 2 Rn, and unknown
velocity u(x; t) = (u1(x; t); � � � ; un(x; t)). Here, A = �� is the Laplacian on Rn ; fe�tAgt�0 is
the heat semigroup ; P = (Pjk) is the bounded projection onto divergence-free vector �elds ;
u
 v is the matrix with entries (u
 v)jk = ujvk ; r = (@1; � � � ; @n) with @j = @=@xj ; and

(r � e�tAP (u
 u))j =
nX

k;`=1

@`e
�tAPjk(u`uk); j = 1; � � � ; n:

It is well known that for each a 2 L2 with r � a = 0, (NS) has a weak solution u de�ned for
all t � 0, satisfying the energy inequality

ku(t)k22 + 2
Z t

0
kruk22ds � kak22 for all t � 0:

Hereafter k � kr denotes the Lr-norm.
As shown in [10], there exists a weak solution u such that

(1:1) ku(t)k2 � C(1 + t)�
n+2

4 ;

whenever

(1:2) a 2 L2; r � a = 0 and
Z
(1 + jyj)ja(y)jdy <1:

Assumption (1.2) implies a 2 L1 ; so the divergence-free condition gives (see [4])

(1:3)
Z
a(y)dy = 0:
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Furthermore, it is shown in [2] that in this case the solution u satis�es

(1:4) lim
t!1

t
n+2

4





uj(t) + (@kEt)(�)
Z
ykaj(y)dy + F`;jk(�; t)

Z 1

0

Z
(u`uk)(y; s)dyds






2
= 0

for j = 1; � � � ; n, where

Et(x) = (4�t)�n=2e�jxj
2=4t; F`;jk(x; t) = @`Et(x)�jk +

Z 1

t
@`@j@kEs(x)ds:

(Hereafter, we use the summation convention.) Equation (NS) is then written in the form

uj(x; t) =
Z
Et(x� y)aj(y)dy �

Z t

0

Z
F`;jk(x� y; t� s)(u`uk)(y; s)dyds; j = 1; � � � ; n;

as proved in [2] ; and the integrals in (1.4) are �nite, due to (1.1) and (1.2). Assertion (1.4)
was �rst proved in [1] for smooth solutions when n = 3, and then extended in [2] to the case
of weak solutions in all space dimensions by applying the spectral method as given in [3,5].
The argument of [10] suggests that the decay property (1.1) will be optimal in general.

So we are interested in �nding a class of weak solutions u satisfying the reverse estimate

ku(t)k2 � Ct�
n+2

4 at least for large t.

In this paper we discuss this kind of lower bound problem.

Theorem A. Under the assumption (1:2), let

bk` =
Z
y`ak(y)dy; ck` =

Z 1

0

Z
(u`uk)(y; s)dyds:

(i) We have

(1:5) lim
t!1

t
n+2

4 ku(t)k2 = 0

if and only if (bk`) = 0 and (ck`) = (c�k`) for some constant c � 0.
(ii) There exists c0 > 0 such that

(1:6) ku(t)k2 � c0t�
n+2

4 for large t > 0;

if and only if (bk`) 6= 0 or (ck`) 6= (c�k`). In particular, u satis�es (1:6) whenever (bk`) 6= 0.

Remark. Theorem A (i) implies only that

(1:50) lim sup
t!1

t
n+2

4 ku(t)k2 > 0

if and only if (bk`) 6= 0 or (ck`) 6= (c�k`). Note, however, that our second assertion (1.6)
is more stringent than (1:50). Moreover, (1.6) holds for all large t > 0 and for all space
dimensions, although ku(t)k2 is only known to be lower semicontinuous when n � 5. We
know nothing about the characterization of solutions satisfying (ck`) = (c�k`).
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We next consider weak solutions u satisfying

(1:7) ku(t)k2 � C(1 + t)�
n

4 :

As shown in [3,6,10], such solutions exist for all a 2 L2 satisfying

(1:8) r � a = 0; ke�tAak2 � C(1 + t)�
n

4 :

Theorem B. Suppose a satis�es (1:8) and let u be a weak solution satisfying (1:7). Then

(1:9) ku(t)k2 � ct�
n

4 for large t > 0;

if and only if

(1:10) ke�tAak2 � ct�
n

4 for large t > 0:

The lemma below gives simple examples of a satisfying (1.10).

Lemma. Let a 2 L2, r � a = 0, and suppose that

(1:11)
Z
Sn�1

jba(r; !)j2d! 2 L1(R+); lim inf
r!0

Z
Sn�1

jba(r; !)j2d! > 0;

where the Fourier transform ba is de�ned by

ba(�) = Z
e�ix��a(x)dx; i =

p�1;

Sn�1 is the unit sphere of Rn, and � = (r; !) in polar coordinates. Then,

(1:12) ke�tAak2 � C(1 + t)�
n

4 for all t > 0 ; ke�tAak2 � c0t�
n

4 for large t > 0;

with constants C > 0 and c0 > 0 independent of t.

Proof. Parseval's relation gives

ke�tAak22 = (2�)�n
Z
e�2tj�j

2jba(�)j2d� = (8�2t)�
n

2

Z
e�j�j

2jba(�(2t)� 1

2 )j2d�

so that
(8�2t)

n

2 ke�tAak22 =
Z
e�j�j

2jba(�(2t)� 1

2 )j2d�:
The assumption and Fatou's lemma together imply

lim inf
t!1

(8�2t)
n

2 ke�tAak22 = lim inf
t!1

Z
e�j�j

2jba(�(2t)� 1

2 )j2d�

�
Z 1

0
e�r

2

�
lim inf
t!1

Z
Sn�1

jba(r(2t)� 1

2 ; !)j2d!
�
rn�1dr > 0:

This proves the second estimate of (1.12). The �rst estimate follows from ke�tAak2 � kak2
and

ke�tAak22 = (8�2t)�
n

2

Z
e�j�j

2jba(�(2t)� 1

2 )j2d� � Ct�
n

2





Z
Sn�1

jba(�; !)j2d!




1

Z 1

0
e�r

2

rn�1dr:
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The proof is complete.

Remarks. (i) Condition (1.11) implies that ba is discontinuous at � = 0. Indeed, since
r � a = 0, we have � � ba(�) = 0 ; so if ba is continuous at � = 0, we get ! � ba(0) = 0 for all unit
vectors !, and ba(0) = 0. (For this reason, a 2 L1 implies (1.3).)
(ii) The assumption of Lemma is not vacuous. Indeed, suppose ba is written in the form

ba(�) = f(j�j)g(�=j�j);

in terms of functions f and g such that

g 2 L2(Sn�1); g 6� 0; ! � g(!) � 0 (! 2 Sn�1)

and
f 2 BC([0;1));

Z 1

0
jf(r)j2rn�1dr <1; f(0) 6= 0:

Then, ba satis�es condition (1.11).
(iii) In this connection, we note that under condition (1.2) we have

(1:100) ke�tAak2 � ct�
n+2

4 for large t > 0

if and only if (bk`) 6= 0. Indeed, using (1.2) and (1.3), we have (see Section 4)

(1:40) lim
t!1

t
n+2

4 ke�tAak + @`Etbk`k2 = 0; k = 1; � � � ; n:

Suppose (bk`) 6= 0. Then (
P

k k@`Etbk`k22)1=2 = Ct�
n+2

4 with C > 0 ; so we get

ke�tAak2 � (
P

k k@`Etbk`k22)1=2 �
�P

k ke�tAak + @`Etbk`k22
�1=2 � ct�

n+2

4

for large t > 0. Conversely, if we assume (1:100), then by (1:40) we get

(
P

k k@`Etbk`k22)1=2 � ke�tAak2 �
�P

k ke�tAak + @`Etbk`k22
�1=2 � ct�

n+2

4

for large t > 0. Hence
P

k k@`Etbk`k22 > 0 for large t > 0, which implies (bk`) 6= 0.

The L2 decay problem for weak solutions of the Navier-Stokes equations was successfully
studied for the �rst time by [5] and the result was then systematically developed by [3,10].
Estimates (1.6) and (1.9) are studied in [6,7,8] in case n = 2; 3, and some su�cient conditions
are obtained. Our Theorems A and B provide necessary and su�cient conditions for those
estimates to hold. We further note that our lower bound estimates (1.6) and (1.9) hold
in all space dimensions n � 2, although the function ku(t)k2 is known only to be lower
semicontinuous when n � 3. As will be seen in the proof below, this is due to (1.4) and the

fact that the functions @`Et(x) and F`;jk(x; t) are written in the form t�
n+1

2 K(xt�
1

2 ) in terms
of some bounded, integrable and uniformly continuous functions K.
We �nally consider an example of two-dimensional 
ows u with (bk`) = 0, (ck`) = (c�k`),

which was �rst treated by [7].
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Theorem C. When n = 2, there is a smooth weak solution u such that (bk`) = 0,
(ck`) = (c�k`), and, with some constant 
 > 0,

(1:13) ku(t)kq � Cqe
�
t and ju(x; t)j � Cme

�
t(1 + jxj)�m

for all 1 � q �1 and all integers m � 0.

The above example was studied by [7,8], in which is given the exponential decay of ku(t)kq
for 2 � q � 1. Our estimates (1.13) include the case 1 � q < 2 as well as the decay
estimates in the spatial direction.
In what follows we prove Theorems A and B. A proof of Theorem C is given in [2] and so

omitted here. We conclude the paper with the proof of (1.4) which was given also in [2].

2. Proof of Theorem A

We begin with the following

Proposition 2.1. Let (bk`) and (ck`) be real n � n matrices and let (ck`) be symmetric.

Then

(2:1) bk`@`Et(x)�jk + ck`F`;jk(x; t) = 0; j = 1; � � � ; n;
for all x 2 Rn and for some t > 0, if and only if

(2:2) (bk`) = 0 and (ck`) = (c�k`) for some c 2 R:
Furthermore, (2:2) implies that (2:1) holds for all x and for all t > 0.

Proof. Assumption (2.1) implies

bk`�`e
�tj�j2�jk = �ck`�`

�
e�tj�j

2

�jk � �j�k

Z 1

t
e�sj�j

2

ds
�
= �(cj` � j�j�2ck`�j�k)�`e�tj�j2

for some t > 0, and we get j�j2(bj` + cj`)�` = �jck`�k�`. Taking �j = 0 for any �xed j,
�` = 1 for any �xed ` 6= j, and �k = 0 for all k such that k 6= j and k 6= `, we easily obtain
bj` + cj` = 0 whenever j 6= `, and so

j�j2(bjj + cjj)�j = �jck`�k�`; j = 1; � � � ; n:
We let �j = 1 and �k = 0 for k 6= j, to get bjj + cjj = cjj ; so bjj = 0. This implies

(2:3) j�j2cjj�j = �jck`�k�`; j = 1; � � � ; n:
Hence, c11 = � � � = cnn = ck`�k�`j�j�2. We then set j = 1, �1 = �2 = 1 and �k = 0 for k � 3 in
(2.3), to get 2c11 = c11+c22+c12+c21 = 2(c11+c12) since ck` = c`k by assumption. Therefore,
c12 = 0. We thus obtain cj` = 0 = �bj` whenever j 6= ` ; so (bk`) = 0 and (ck`) = (c�k`).
That (2.2) implies (2.1) for all t > 0 is easily seen from

Fk;jk = @jEt +
Z 1

t
@j�Esds = @jEt +

Z 1

t
@j@sEsds = @jEt � @jEt = 0;
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where @s = @=@s. The proof of Proposition 2.1 is complete.
To establish Theorem A, it su�ces in view of (1.4) to prove the following

Proposition 2.2. Let a satisfy (1:2) and de�ne

bk` =
Z
y`ak(y)dy; ck` =

Z 1

0

Z
(u`uk)(y; s)dyds:

Then we have

(2:4) either (bk`) 6= 0 or (ck`) 6= (c�k`);

if and only if a corresponding weak solution u satis�es

(2:5) ku(t)k2 � c0t�
n+2

4 for large t > 0

with a constant c0 > 0 indenpendent of t.

Proof. In what follows we write

b` = (b1`; � � � ; bn`); F `;k = (F`;1k; � � � ; F`;nk):

Assume �rst (2.4). By Proposition 2.1, we have k@`Etb` + F `;kck`k2 = Ct�
n+2

4 for all t > 0
with some C > 0, and so (1.4) implies

ku(t)k2 � k@`Etb` + F `;kck`k2 � ku(t) + @`Etb` + F `;kck`k2
= Ct�

n+2

4 � o(t�
n+2

4 ) � c0t�
n+2

4

for large t > 0. Assume next (2.5). By (1.4) we have

k@`Etb` + F `;kck`k2 � ku(t)k2 � ku(t) + @`Etb` + F `;kck`k2 � c0t�
n+2

4 � o(t�
n+2

4 );

and so
k@`Etb` + F `;kck`k2 > 0 for large t > 0:

We thus obtain (2.4) by Proposition 2.1. This proves Proposition 2.2.

3. Proof of Theorem B

Suppose that n � 3. We have

ck` =
Z 1

0

Z
(u`uk)(y; s)dyds <1 ;

so the argument given in [2,Sect. 5] applies to our present situation, implying

(3:1) lim
t!1

t
n+2

4




u(t)� e�tAa+ F `;kck`




2
= 0:
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Suppose (1.9) holds. Since kF `;kck`k2 = Ct�
n+2

4 , it follows from (3.1) that

ke�tAak2 � ku(t)k2� k � u(t) + e�tAa� F `;kck` + F `;kck`k2
� ku(t)k2� ku(t)� e�tAa+ F `;kck`k2 � kF `;kck`k2

� ct�
n

4 � Ct�
n+2

4 � c0t�
n

4

for large t > 0. This proves (1.10). Conversely, if (1.10) holds, then (3.1) implies

ku(t)k2 � ke�tAak2 � kF `;kck`k2 � ku(t)� e�tAa+ F `;kck`k2
� ct�

n

4 � Ct�
n+2

4 � c0t�
n

4

for large t > 0. This proves (1.9) in case n � 3.
When n = 2, we introduce

ck`(t) =
Z t=2

0

Z
(u`uk)(y; s)dyds

instead of ck`. The argument of [2,Sect. 5] is then modi�ed to yield

(3:10) ku(t)� e�tAa+ F `;kck`(t)k2 � Ct�1 log(1 + t):

Since

kF `;kck`(t)k2 � Ct�1
Z t=2

0
ku(s)k22ds � Ct�1 log(1 + t);

this implies ku(t)� e�tAak2 � Ct�1 log(1+ t). Now we can prove the result in the same way
as in the case n � 3. Indeed, (1.10) implies

ku(t)k2 � ke�tAak2 � ku(t)� e�tAak2 � ct�
1

2 �Ct�1 log(1 + t) � c0t�
1

2

for large t > 0, while (1.9) yields

ke�tAak2 � ku(t)k2 � ku(t)� e�tAk2 � ct�
1

2 � Ct�1 log(1 + t) � c0t�
1

2

for large t > 0. The proof of Theorem B is complete.

4. Proof of (1.4)

Here we present the proof of (1.4) given in [2]. The same method can be applied to the proof
of (3.1) and (3:10). Let a satisfy (1.2) and so (1.3). We �rst prove

(4:1) lim
t!1

t
n+2

4





e�tAa+ (@kEt)(�)
Z
yka(y)dy






2
= 0:

Direct calculation gives

e�tAa =
Z
[Et(x� y)� Et(x)]a(y)dy = �

Z Z 1

0
(@kEt)(x� y�)yka(y)d�dy

= � (@kEt)(x)
Z
yka(y)dy �

Z Z 1

0
[(@kEt)(x� y�)� (@kEt)(x)]yka(y)d�dy;
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so

e�tAa+ (@kEt)(x)
Z
yka(y)dy = �

Z Z 1

0
[(@kEt)(x� y�)� (@kEt)(x)]yka(y)d�dy:

We can write (@kEt)(x) = t�
n+1

2 (@kE1)(xt
� 1

2 ), to obtain



e�tAa+ (@kEt)(�)
Z
yka(y)dy






2
� Ct�

n+2

4

Z Z 1

0
't(y; �)jyjja(y)jd�dy:

Here 't(y; �) = k(rE1)(� � y�t�
1

2 ) � (rE1)(�)k2 is bounded and lim
t!1

't(y; �) = 0 for any

�xed (y; �). Since jyjja(y)j is integrable by (1.2), the dominated convergence theorem yields

lim
t!1

Z Z 1

0
't(y; �)jyjja(y)jd�dy = 0:

This proves (4.1). Now let u satisfy (1.1). We next show that the function

w(t) = u(t)� e�tAa = �
Z t

0

Z
F `;k(x� y; t� s)(u`uk)(y; s)dyds

satis�es

(4:2) lim
t!1

t
n+2

4





w(t) + F `;k(�; t)
Z 1

0

Z
(u`uk)(y; s)dyds






2
= 0:

Indeed, we have

w(t) + F `;k(x; t)
Z 1

0

Z
(u`uk)(y; s)dyds

= F `;k(x; t)
Z 1

t=2

Z
(u`uk)(y; s)dyds

�
Z t=2

0

Z
[F `;k(x� y; t� s)� F `;k(x; t� s)](u`uk)(y; s)dyds

�
Z t=2

0

Z
[F `;k(x; t� s)�F `;k(x; t)](u`uk)(y; s)dyds

�
Z t

t=2

Z
F `;k(x� y; t� s)(u`uk)(y; s)dyds

� I1 + I2 + I3 + I4:

It is easy to see that

(4:3) t
n+2

4 kI1k2 � C
Z 1

t=2
(1 + s)�1�

n

2 ds! 0 as t!1:

We write I3 in the form

I3 =
Z t=2

0

Z Z 1

0
s(@tF `;k)(x; t� s�)(u`uk)(y; s)d�dyds

to get

kI3k2 � C
Z t=2

0

Z Z 1

0
s(t� s�)�1�

n+2

4 ju(y; s)j2d�dyds � Ct�1�
n+2

4

Z t=2

0
sku(s)k22ds
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and so

(4:4) t
n+2

4 kI3k2 � Ct�1
Z t

0
(1 + s)�

n

2 ds! 0 as t!1:

To estimate I2, note that we can write F `;k(x; t) = t�
n+1

2 K(xt�
1

2 ), to get

kI2k2 � Ct�
n+2

4

Z t=2

0

Z
kK(� � y(t� s)�

1

2 )�K(�)k2ju(y; s)j2dyds

� Ct�
n+2

4

Z t=2

0

Z
't(y; s)ju(y; s)j2dyds � Ct�

n+2

4

Z t=2

0
 t(s)ds:

Since  t(s) � Cku(s)k22, the dominated convergence theorem implies

lim
t!1

Z M

0
 t(s)ds = 0 for any �xed M > 0:

Given " > 0, choose M > 0 so that
R1
M ku(s)k22ds < ". Then for t > 2M ,

Z t=2

0
 t(s)ds �

Z M

0
 t(s)ds + C

Z 1

M
ku(s)k22ds �

Z M

0
 t(s)ds + C":

This implies that

(4:5) lim
t!1

t
n+2

4 kI2k2 = 0:

It remains to prove

(4:6) lim
t!1

t
n+2

4 kI4k2 = 0:

To do so, we follow the arguments of [3,5]. The function

v(t) = �
Z t

�

Z
F `;k(x� y; t� s)(u`uk)(y; s)dyds = u(t)� e�(t��)Au(� )

de�ned for t � � > 0 satis�es

@tv +Av = �P (u � ru) (t > � ); v(� ) = 0:

(We may assume v is smooth, replacing u by the approximate solutions uN given in [3].)
Since (P (u � rv); v) = (u � rv; v) = 0, the standard energy integral method gives

@tkvk22 + 2kA1=2vk22 = �2(u � ru; v) = 2(u � rv; u) = 2(u � rv; u0)

and

2j(u � rv; u0)j � 2kuk2kA1=2vk2ku0k1 � Ckuk2kA1=2vk2(t� � )�
n

4 ��
n+2

4

� CkA1=2vk2(t� � )�
n+1

2 ��
n+2

4 � kA1=2vk22 + C(t� � )�n�1��1�
n

2 ;
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where u0(t) = e�(t��)Au(� ). We thus obtain

@tkvk22 + kA1=2vk22 � C(t� � )�n�1��1�
n

2 :

Let fE�g��0 be the spectral measure associated to A. Since kA1=2vk22 � %(kvk22 � kE%vk22)
for any % > 0, the above estimate yields

@tkvk22 + %kvk22 � %kE%vk22 + C(t� � )�n�1��1�
n

2 :

But, kE%vk22 � C%
n+2

2

�Z t

�
kuk22ds

�2
as shown in [3,5] ; so

@tkvk22 + %kvk22 � %
n+4

2

�Z t

�
kuk22ds

�2
+ C(t� � )�n�1��1�

n

2 :

Here we set % = m=(t� � ), m > 0, and multiply both sides by (t� � )m, to obtain

@t((t� � )mkvk22) � Cm(t� � )m�
n

2
�2
�Z t

�
kuk22ds

�2
+ C(t� � )m�n�1��1�

n

2 :

Now �x m so that m > n=2 + 2 and m > n+ 1, and integrate the above inequality, to get

kv(t)k22 � C(t� � )�2�
n

2

Z t

�

�Z s

�
kuk22d�

�2
ds + C(t� � )�n��1�

n

2 :

Inserting � = t=2 yields v(t) = I4, so

tn+
n

2 kI4k22 � Ctn�1
 Z 1

t=2
kuk22ds

!2

+ Ct�1 � Ct�1 ! 0

as t!1. This proves (4.6).
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