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Abstract. In the paper, we consider the large time behavior of solutions to the

convection-di�usion equation ut��u+r�f(u) = 0 in IRn� [0;1), where f(u) � uq

as u ! 0. Under the assumption that q � 1 + 1=(n + �) and the initial condition

u0 satis�es: u0 2 L1(IRn),
R
IRn u0(x) dx = 0, and ket�u0kL1(IRn) � Ct��=2 for �xed

� 2 (0; 1), all t > 0, and a constant C, we show that the solution has the same

decay in L1(IRn) as its linear counterpart. Moreover, we prove that, for small initial

conditions, the exponent q� = 1 + 1=(n + �) is critical in the following sense. For

q > q� the large time behavior of solutions is weakly nonlinear (i.e. given by solutions

to the linear heat equation) and for q = q� the behavior as t ! 1 of solutions is

described by a new class of self-similar solutions to a nonlinear convection-di�usion

equation.

1 Introduction

In this paper, we study the large time behavior of solutions u = u(x; t) (x 2
IRn; t > 0) to the Cauchy problem for the nonlinear convection-di�usion
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time behavior of solutions, self-similar solutions.
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equation

ut ��u+ a � r(ujujq�1) = 0;(1.1)

u(x; 0) = u0(x);(1.2)

where q > 1 and the vector a 2 IRn are �xed, under the assumption u0 2
L1(IRn) and

R
IRn u0(x) dx = 0.

The typical nonlinear term occurring in hydrodynamics in the one-dimension-

al case has the form uux = (u2=2)x (as in the case of the viscous Burgers

equation). The most obvious generalization of this nonlinearity consists in re-

placing the square by a power uq where q is a positive integer. Here, however,

we intend to observe a more subtle interaction of the nonlinearity with dis-

sipation, consequently, we need to consider a continuous range of parameters

q. The problem then appears with the de�nition of uq for negative u and for

non-integer q. In order to avoid this diÆculty, we chose the nonlinear term

of the from a � r(ujujq�1). This was done to shorten notation in this report,

only. Note that, in fact, the following property of the nonlinearity will only be

important throughout this work:

� the nonlinear term in (1:1) has the form r � f(u) where the C1-vector

function f satis�es jf(u)j � Cjujq; jf 0(u)j � Cjujq�1 for every u 2 IR,

q > 1, and a constant C. Moreover, if the balanced case is considered

(i.e. q = 1 + 1=(n+ �)), the limits

lim
u!0�

f(u)=jujq; and lim
u!0+

f(u)=jujq

should exist and the both should be di�erent from 0.

Recent publications developed versatile functional analytic tools to study the

long time behavior of solutions of this initial value problem.

Concerning the decay of solutions of (1.1)-(1.2) and, more generally, of scalar

parabolic conservation laws of the form ut��u+r� f(u) = 0 with integrable

initial conditions, Schonbek [25] was the �rst who proved that the L2-norm

tends to 0 as t ! 1 with the rate t�n=4. To deal with this problem, she

introduced the so-called Fourier splitting method. The results from [25] were

extended in the later work [26], where the decay of solutions in Lp(IRn), (1 �
p � 1) was obtained, again, by a method based on the Fourier splitting

technique. It was emphasized in [26] that the decay rates are the same as for

the underlying linear equations.

Next, Escobedo and Zuazua [12] proved decay estimates of the Lp-norms of so-

lutions by a di�erent method under more general assumptions on nonlinearity
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and under less restrictive assumptions on initial data. Finally, by the use of

the logarithmic Sobolev inequality, Carlen and Loss [7] showed that solutions

of viscous conservation laws satisfy

ku(�; t)kp � Ct�(n=2)(1=r�1=p)ku0kr
for each 1 � r � p � 1, all t > 0, and a numerical constant C > 0 depend-

ing on p and q, only. Here, we would also like to recall results on algebraic

decay rates of solution to systems of parabolic conservation laws, obtained by

Kawashima [21], Hopf and Zumbrun [15], Je�rey and Zhao [17], and Schonbek

and S�uli [28]. Smallness assumptions on initial conditions were often imposed

in those papers.

The �rst term of the asymptotic expansion was studied as the next step in

analysis of the long time behavior of solutions to (1.1)-(1.2). Assuming that

u0 2 L1(IRn), roughly speaking, these results, cf. e.g. [8, 21, 12, 13, 14, 10, 11,

1, 2, 3, 19, 20], fall into three cases:

� Case I: q > 1 + 1=n, when the asymptotics is linear, i.e.

t(n=2)(1�1=p)ku(�; t)�MG(�; t)kp ! 0 as t!1;(1.3)

where M =
R
IRn u0(x) dx, G(x; t) = (4�t)�n=2 exp(�jxj2=(4t)) is the fun-

damental solution of the heat equation. Hence, this case can be classi�ed

as weakly nonlinear, since in this situation the linear di�usion prevails

and the nonlinearity is asymptotically negligible.

� Case II: q = 1 + 1=n, when

t(n=2)(1�1=p)ku(�; t)� UM(�; t)kp ! 0 as t!1;(1.4)

where UM (x; t) = t�n=2UM(xt�1=2; 1) is the self-similar solution of (1.1)

with u0(x) = MÆ0. Here, di�usion and the convection are balanced,

and the asymptotics is determined by a special solution of a nonlinear

equation.

� Case III: 1 < q < 1 + 1=n, when

t(n+1)(1�1=p)=(2q)ku(�; t)� UM (�; t)kp ! 0 as t!1;(1.5)

holds, where UM is a particular self-similar solution of the partly viscous

conservation law Ut ��yU + @
@xn

(U jU jq�1) = 0 such that u0(x) = MÆ0
in the sense of measures. Here x = (y; xn), y = (x1; : : : ; xn�1), and
�y =

Pn�1
j=1

@2

@x2j
. Hence, the asymptotics of solutions is determined by

solutions of an equation with strong convection and partial dissipation.
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Finally, we recall that, in the weakly nonlinear case, Zuazua [32] found, for

solutions to (1.1)-(1.2), the second order term in the asymptotic expansion as

t!1. He observed that asymptotic behavior of the solution di�ers depending

if q satis�es 1 + 1=n < q < 1 + 2=n, q = 1 + 2=n, or q > 1 + 2=n. Analogous

results for L�evy conservation laws were obtained in [1, 2] and for convection-

di�usion equations with dispersive e�ects { in [19, 20].

Note now that if we assume that M =
R
IRn u0(x) dx =

R
IRn u(x; t) dx = 0 the

corresponding self-similar intermediate asymptotics in (1.3)-(1.5) equal to 0

for every q > 1. Moreover, for p = 1 the asymptotic formulae in (1.3)-(1.5)

say nothing else but

ku(�; t)k1 ! 0 as t!1:

The goal of this paper is to �nd the �rst term of the asymptotic expansion in

Lp(IRn) of solutions to (1.1)-(1.2) with M = 0 imposing additional conditions

on initial data. We assume that u0 satis�es ket�u0k1 � Ct��=2 for some

� 2 (0; 1), all t > 0, and C independent of t. Such a decay estimate of solutions

to the linear heat equation is optimal for a large class of initial conditions (cf.

Propositions 2.1 and 2.2, below). Under these assumptions, we improve the

known algebraic decay rates of the solutions to (1.1)-(1.2) in the Lp-norms for

every 1 � p � 1. In addition, if the initial data are suÆciently small, we

discover the new critical exponent

q� = 1 +
1

n + �

such that

� for q > q� the asymptotics of solutions to (1.1)-(1.2) is linear and de-

scribed by self-similar solutions to the heat equation (cf. Corollaries 2.1

and 2.2, below);

� q = q� corresponds to the balanced case, and the asymptotics is described
by a new class of self-similar solutions to the nonlinear equation (1.1) (cf.

Theorem 2.3 and the remark following it.).

In the next section of this report, we present and discuss our results. The

proofs of all results corresponding to the weakly nonlinear case are contained

in Section 3. Theorems 2.2 and 2.3 are proved in Section 4.

Notation.

The notation to be used is mostly standard. For 1 � p � 1, the Lp-norm of a

Lebesgue measurable real-valued function de�ned on IRn is denoted by kvkp.
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We will always denote by k � kX the norm of any other Banach space X used

in this paper.

If k is a nonnegative integer, W k;p(IRn) will be the Sobolev space consisting of

functions in Lp(IRn) whose generalized derivatives up to order k belong also

to Lp(IRn).

The Fourier transform of v is de�ned as bv(�) � (2�)�n=2
R
IRn e�ix�v(x) dx.

Given a multi-index 
 = (
1; :::; 
n), we denote @
 = @j
j=@
1x1 :::@

n
xn . On the

other hand, for � > 0, the operator D� is de�ned via the Fourier transform asd(D�w)(�) = j�j�j bw(�).
The letter C will denote generic positive constants, which do not depend on t

but may vary from line to line during computations.

2 Results and comments

For every u0 2 L1(IRn), the Cauchy problem (1.1)-(1.2) has a unique solution

in C([0;1);L1(IRn)) satisfying

u 2 C((0;1);W 2;p(IRn)) \ C1((0;1); Lp(IRn))

for all p 2 (1;1). The proof is based on a standard iteration procedure

involving the integral representation of solutions of (1.1)-(1.2)

u(t) = et�u0 �
Z t

0
a � re(t��)�(ujujq�1)(�) d�(2.1)

(see, e.g. [12] for details). Here, et�u0 is the solution to the linear heat equation

given by the convolution of the initial datum u0 with the Gauss-Weierstrass

kernel G(x; t) = (4�t)�n=2 exp(�jxj2=(4t)). Formula (2.1) will be one of the

main tools used in the analysis of the long time behavior of solutions.

Let us also recall that suÆciently regular solutions of (1.1)-(1.2) satisfy the

estimate

ku(�; t)kp � C(p; r)t�(n=2)(1=r�1=p)ku0kr(2.2)

for all 1 � r � p � 1, all t > 0, and a constant C(p; r) depending on p and

r, only. Inequalities (2.2) are due to Carlen and Loss [7, Theorem 1]. We

also refer the reader to [1, 2] where counterparts of (2.2) were proved for more

general equations: so-called L�evy conservation laws.

We begin our consideration by the analysis of the large time asymptotics of

solutions to the linear heat equation. Easy calculations show that for every

u0 2 L1(IRn) such that
R
IRn u0(x) dx = 0 we have ket�u0k1 ! 0 as t ! 1.
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The following two propositions assert the existence of a large class of initial

conditions for which the large time behavior of et�u0 is self-similar. Here,

we need the notion of the Riesz potential I� and the fractional derivative D�

de�ned in the Fourier variables as

d(I�w)(�) = bw(�)
j�j� and d(D�w)(�) = j�j� bw(�):(2.3)

Proposition 2.1 Let � > 0 and 
 = (
1; ::::; 
n) be a multi-index with 
i � 0.

Assume that I�u0 2 L1(IRn). Denote

A = lim
j�j!0

bu0(�)
j�j� =

Z
IRn

(I�u0)(x) dx:(2.4)

Then

k@
et�u0k1 � Ct��=2�j
j=2kI�u0k1(2.5)

for all t > 0 and C = C(�; 
) independent of t and u0; moreover,

t�=2+j
j=2k@
et�u0(�)� A@
D�G(�; t)k1 ! 0(2.6)

as t!1.

Remark 2.1. The L1-decay of solutions to the linear heat equation formulated

in (2.5) was proved by Miyakawa [23] under the assumptions

u0 2 L1(IRn);
Z
IRn

u0(x) dx = 0;
Z
IRn
jxj�ju0(x)j dx <1:(2.7)

Our assumptions on initial conditions are weaker than those by Miyakawa in

view of the inequality

kI�u0k1 � C
Z
IRn
jxj�ju0(x)j dx(2.8)

valid for every u0 satisfying (2.7) with � 2 (0; 1). Let us sketch the proof

of (2.8), however, it does not play any role in our considerations, below. It

is well known that (I�u0)(x) = C(�; n)
R
IRn jx � yj��nu0(y) dy (in fact, this

representation holds true for every � 2 (0; n)). Hence, using the assumptionR
IRn u0(y) dy = 0 and changing the order of integration we obtain

kI�u0k1 � C(�; n)
Z
IRn

 Z
IRn

����� 1

jx� yjn�� �
1

jxjn��
����� dx

!
ju0(y)j dy:

Next, note that the integral with respect to x in the inequality above is �nite for

every y 2 IRn, because its integrand jjx� yj��n � jxj��nj is locally integrable
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and behaves like jxj��1�n as jxj ! 1 (here, the assumption � 2 (0; 1) is

crucial). Hence, by the change of variables, we obtain

Z
IRn

����� 1

jx� yjn�� �
1

jxjn��
����� dx = jyj�

Z
IRn

����� 1

j! � y=jyjjn�� �
1

j!jn��
����� d!:

Since supy2IRnnf0g
R
IRn jj! � y=jyjj��n � j!j��nj d! < 1 (we skip the proof of

this elementary fact), we obtain (2.8). 2

We can derive the self-similar asymptotics of et�u0 in Lp(IRn) with p 2 [2;1]

under weaker assumptions on u0.

Proposition 2.2 Let ` = `(�) denote a function homogeneous of degree � > 0.

Assume that u0 satis�es

sup
�2IRnnf0g

bu0(�)
`(�)

<1 and lim
j�j!0

bu0(�)
`(�)

= A(2.9)

for some A 2 IR. Denote by L the Fourier multiplier operator de�ned via the

formula cLv(�) = `(�)bv(�): Under these assumptions, for every p 2 [2;1] and

for every multi-index 


tn(1�1=p)=2+�=2+j
j=2k@
et�u0 � A@
LG(t)kp ! 0

as t!1.

Propositions 2.1 and 2.2 are proved in the beginning of Section 3.

In our �rst theorem on the large time behavior of solutions to the nonlinear

problem (1.1)-(1.2), we assume the decay of ket�u0k1 with a given rate and we

prove that the same decay estimate holds true for solutions to (1.1)-(1.2).

Theorem 2.1 Fix 0 < � < 1. Assume that u0 2 L1(IRn) \ Lq(IRn) satis�es

the inequality

ket�u0k1 � Ct��=2(2.10)

for all t > 0 and a constant C independent of t. Let u be the solution to (1.1)-

(1.2) with u0 as the initial datum. If q > 1 + 1=n, then there exists a constant

C such that

ku(�; t)k1 � C(1 + t)��=2(2.11)

for all t > 0. The same conclusion holds true for 1+ 1=(n+ �) � q � 1 + 1=n

provided u0 2 L1(IRn) \ L1(IRn) and supt>0 t
�=2ket�u0k1 is suÆciently small.
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Remark 2.2. The assumption (2.10) means that u0 belongs to the homogeneous

Besov space B��;11 (cf. (2.17), below) which will play an important role in the

analysis of the balanced case q = 1 + 1=(n+ �). 2

The approach formulated in Theorem 2.1, saying that the decay estimates

imposed on the heat semigroup lead to the analogous estimates of solutions to

a nonlinear problem, appears in several recent papers. Here, we would like only

to recall (the list is by no mean exhaustive) the works on the Navier-Stokes

system by Schonbek [27] and Wiegner [31] where the L2-decay of solutions

was studied as well as by Miyakawa [22] where decay of the L1-norm and Hp-

norms (the Hardy spaces) of weak solutions was shown. Moreover, our results

extend essentially the recent paper by Schonbek and S�uli [28] where general

conservation laws were considered.

The decay of the L1-norm in (2.11) is crucial in the proof of the following

stronger result.

Corollary 2.1 Under the assumptions of Theorem 2.1, for every p 2 [1;1]

there exists C = C(u0; p) independent of t such that

ku(�; t)kp � C(1 + t)�(n=2)(1�1=p)��=2(2.12)

for all t > 0, and

ku(�; t)� et�u0(�)kp
(2.13)

� C

8>><>>:
t�(n=2)(q�1=p)�(�q�1)=2 for q 2

�
1 + 1

n+�
; n+2
n+�

�
;

t�(n=2)(1�1=p)�1=2 log(e+ t) for q = n+2
n+�

;

t�(n=2)(1�1=p)�1=2 for q > n+2
n+�

for all t � 1.

As the immediate consequence of (2.13), we obtain that, under the assumptions

of Theorem 2.1,

t(n=2)(1�1=p)+�=2ku(�; t)� et�u0(�)kp ! 0 as t!1(2.14)

for q > 1 + 1=(n + �) and every p 2 [1;1]. Moreover, the results from (2.14)

combined with Propositions 2.1 and 2.2 may be summarized by saying that

the large time behavior of solutions to (1.1)-(1.2) with q > 1 + 1=n (or, if the

data are suÆciently small, for q > 1 + 1=(n+ �)) is weakly nonlinear. This is

worth stating more precisely.
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Corollary 2.2 Under the assumptions of Theorem 2.1 and either Proposition

2.1 or Proposition 2.2 with `(�) = j�j�, the solution to (1.1)-(1.2) with q >

1 + 1=(n+ �) satis�es

t(n=2)(1�1=p)+�=2ku(�; t)� AD�G(�; t)kp ! 0 as t!1:

Remark 2.3. If the nonlinear term in (1.1) has the formr�f(u) and the function
f is suÆciently regular at zero, it is possible to improve the conclusion of the

last corollary to

t(n=2)(1�1=p)+(�+j
j)=2k@
u(�; t)� A@
D�G(�; t)kp ! 0 as t!1

for the multi-index 
 depending on the regularity of f . 2

Remark 2.4. Let us look at Corollary 2.2 in the context of the viscous Burgers

equation

ut � uxx + (u2=2)x = 0:

It is well known (cf. e.g. [16, 8, 12, 3, 10, 11]) that the large time behavior of

solutions to this equation supplemented with the integrable initial condition is

described by so-called nonlinear di�usion waves. If, however, we assume that

u0 satis�es (2.10) with some � > 0, the asymptotics for large t of solutions to

the Burgers equation are weakly nonlinear. 2

Remark 2.5. The conditions formulated in (2.9) appear in a natural way if

the Hardy spaces are considered. Let us recall that a tempered distribution

v belongs to the Hardy space Hp on IRn for some 0 < p < 1 whenever

v+ = supt>0 j(�t � v)j 2 Lp(IRn); where �t(x) = t�n�(x=t) with � 2 S(IRn)

such that
R
IRn �(x) dx = 1. We refer the reader to [30] where several properties

of the Hardy spaces are derived. We recall that H1 is a Banach space strictly

contained in L1(IRn) and that Lp(IRn) = Hp for p > 1 with the equivalent

norms. Suppose now, that p � 1 and u0 2 Hp. It is known (cf. [30, Chapter

III, x5.4]) that the Fourier transform bu0 is continuous on IRn and jbu0(�)j �
Cj�jn(1=p�1)ku0kHp for all � 2 IRn. Moreover, near the origin, this can be

re�ned to lim�!0 bu0(�)j�j�n(1=p�1) = 0: Hence, assumptions (2.9) are satis�ed

with `(�) = j�j�, � 2 (0; 1), and A = 0, if e.g. u0 2 Hn=(n+�). 2

Remark 2.6. In this paper, we limit ourselves to the case � 2 (0; 1) for the

following reason. Suppose that

u0 2 L1(IRn; (1 + jxj) dx) and
Z
IRn

u0(x) dx = 0:(2.15)
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It is proved in [9] that ket�u0k1 � Ct�1=2ku0kL1(IRn;jxj dx) for all t > 0 and a

constant C; moreover,

t1=2




et�u0 � Z

IRn
xu0(x) dx � rG(x; t)






1
! 0 as t!1:

Now, using the second order asymptotic expansion by Zuazua [32] (cf. also

[2] for analogous results with more general di�usion operators and less regular

initial conditions) of solutions to (1.1)-(1.2) with q > 1 + 2=n, we obtain that

the quantity

t1=2




u(�; t)� �Z

IRn
xu0(x) dx� a

Z 1

0

Z
IRn

(ujujq�1)(x; �) dxd�
�
� rG(x; t)






1

tends to 0 as t ! 1. This asymptotic result shows that the large time

behavior of solutions with the initial data satisfying (2.15) cannot be classi�ed

as weakly nonlinear for every q > 1 + 2=n, because the constant in front of

rG depends on the nonlinearity in an essential way. Hence, assuming that

ket�u0k1 � Ct��=2 for some � � 1 one should expect asymptotic expansions

of solutions completely di�erent from that in Corollary 2.2. 2

Our next results correspond to the balanced case

q = 1 +
1

n+ �

for some �xed 0 < � < 1, where following the ideas form [4, 5, 6, 18] we

construct self-similar solutions to (1.1). Elementary calculations show that,

for this exponent, if u(x; t) is a solution to (1.1) then so is �n+�u(�x; �2t)

for every � > 0. Self-similar solutions should satisfy the equality u(x; t) =

�n+�u(�x; �2t), hence choosing � = �(t) = 1=
p
t we obtain its self-similar

form

u(x; t) = t�
n+�
2 U

 
xp
t

!
(2.16)

where U(x) = u(x; 1), x 2 IRn and t > 0. These solutions will be proved to be

asymptotically stable in the sense that they describe the asymptotic behavior,

as t!1, of a large class of solutions to (1.1)-(1.2).

We will work in the Besov space B��;11 de�ned by

B��;11 = fv 2 S 0(IRn) : kvkB��;1
1

<1g;
where S 0(IRn) is the space of tempered distributions and the norm is de�ned

by

kvkB��;1
1

� sup
s>0

s�=2kes�vk1:(2.17)
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The standard way of de�ning norms in Besov spaces is based on the Paley-

Littlewood dyadic decomposition. Here, the choice of the equivalent norm

(2.17) allows us to simplify several calculations. Lemmata 4.1 and 4.2, and

their elementary proofs show the usefulness of this de�nition.

The �rst theorem below constructs global-in-time solutions to (1.1)-(1.2) for

suitably small initial data in the space B��;11 . The next one studies asymptotic

stability of solutions.

Theorem 2.2 Fix � 2 (0; 1) and put q = 1 + 1=(n+ �). There is " > 0 such

that for each u0 2 B��;11 satisfying ku0kB��;1
1

< " there exists a solution of

(1.1)-(1.2) for all t � 0 in the space

X � C([0;1) : B��;11 )

\ fu : (0;1)! Lq(IRn) : sup
t>0

t(n=2)(1�1=q)+�=2ku(t)kq <1g:

This is the unique solution satisfying the condition

sup
t>0

t(n=2)(1�1=q)+�=2ku(t)kq � 2":

Remark 2.7. Proposition 2.1 describes a large subset in B��;11 of initial condi-

tions u0. Moreover, let us remark that D�Æ0 2 B��;11 (the fractional derivative

of order � of the Dirac delta Æ0). This is an easy consequence of the de�-

nitions of et� and Æ0, since et�D�Æ0 = D�G(�; t). Hence (3.1) below yields

ket�D�Æ0k1 = t��=2kD�G(�; 1)k1: Note that the tempered distribution D�Æ0 is

homogeneous of degree �n � �. Using this important property and applying

the standard reasoning (cf. e.g. [5, Section 3]) based on the uniqueness result

from Theorem 2.2, one can easily deduce that the solution U(x; t) correspond-

ing to D�Æ0 as the initial datum is self-similar, hence of the form (2.16).

2

Theorem 2.3 Let the assumptions from Theorem 2.2 hold true. Assume that

u and v are two solutions of (1.1)-(1.2) constructed in Theorem 2.2 corre-

sponding to the initial data u0; v0 2 B��;11 , respectively. Suppose that

lim
t!1 t�=2ket�(u0 � v0)k1 = 0:(2.18)

Choosing " > 0 in Theorem 2.2 suÆciently small, we have

lim
t!1 t(n=2)(1�1=p)+�=2ku(�; t)� v(�; t)kp = 0(2.19)

for every p 2 [1;1].
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Remark 2.8. Let UA(x; t) be the self-similar solution corresponding to the

initial datum u0 = AD�Æ0 for some A 2 IR (cf. Remark 2.7). Combining

Proposition 2.1 with Theorem 2.3, we obtain a large class of initial data such

that the asymptotic behavior in Lp(IRn) of corresponding solutions to (1.1)-

(1.2) is described by UA(x; t). 2

3 Weakly nonlinear asymptotics

Proof of Proposition 2.1. Let us note that the limit in (2.4) exists, becausebu0(�)=j�j� is continuous as the Fourier transform of an integrable function.

First, we prove that @
D�G(�; 1) 2 L1(IRn). Obviously, @
D�G(�; 1) is bounded
and continuous because its Fourier transform (i�)
j�j�e�j�j2 is integrable. More-

over, it follows from [29, Ch. 5, Lemma 2] that for every � > 0 there exists a

�nite measure �� on IRn such that

b��(�) = j�j�
(1 + j�j2)�=2 :

Hence, @
D�G(�; 1) = �� � K�;
 where the function K�;
 is de�ned via the

Fourier transform as cK�;
(�) = (i�)
(1 + j�j2)�=2e�j�j2. It is easy to prove that

K�;
 2 S(IRn) (the Schwartz class of rapidly decreasing smooth function), and

this implies the integrabilty of @
D�G(�; 1) for every multi-index 
.

Now, by the change of variables, we obtain that @
D�G(x; t) has the self-similar

form:

@
D�G(x; t) = t�n=2��=2�j
j=2(@
D�G)(x=
p
t; 1)(3.1)

for all x 2 IRn and t > 0.

We are ready to prove (2.5). By the Young inequality for the convolution and

by (3.1), we have

k@
et�u0k1 = k@
D�G(t) � I�u0k1
� k@
D�G(�; t)k1kI�u0k1
� t��=2�j
j=2k@
D�G(�; 1)k1kI�u0k1

for all t > 0.

For the proof of (2.6), we �rst observe that the change of variables z = x=
p
t

combined with (3.1) lead to the following expression

t�=2+j
j=2k@
et�u0(�)� A@
D�G(�; t)k1
= t�=2+j
j=2

Z
IRn

����Z
IRn

h
@
D�G(x� y; t)� @
D�G(x; t)

i
I�u0(y) dy

����dx(3.2)

�
Z Z

IRn�IRn
jI�u0(y)j

���(@
D�G)(z � y=
p
t; 1)� (@
D�G)(z; 1)

��� dydz
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We already know from the �rst part of this proof that the function @
D�G(z; 1)

is continuous, hence the integrand on the right hand side of (3.2) tends to 0

as t!1 for all y; z 2 IRn. Denote

A(z; y; t) � (@
D�G)(z � y=
p
t; 1)� (@
D�G)(z; 1):

Now, to apply the Lebesgue Dominated Convergence Theorem to the inte-

gral on the right hand side of (3.2), we show that there exists F 2 L1(IRn)

independent of y 2 IRn and t � 1, such that

jA(z; y; t)j � F (z)(3.3)

for all z; y 2 IRn and t � 1. For this reason, note �rst that

A(z; y; ; t) =
Z
Rn
j�j�(i�)


h
e�iy=

p
t � 1

i
e�j�j

2

eiz�d�:

Moreover, the symbol b(�; y; t) � (1 + j�j2)�=2(i�)

h
e�iy=

p
t � 1

i
e�j�j

2

is a C1

function of (�; y) 2 IRn � IRn, and satis�es the di�erential inequalities

j@�� @
y b(�; y; t)j � C(�; 
;N)(1 + j�j)�N��

for all multi-indices � and 
, all N 2 IN , and C(�; 
;N) independent of

�; y 2 IRn and t � 1. By [30, Ch. VI, Sec. 4, Prop. 1], the (inverse) Fourier

transform with respect to � of b(�; y; t) satis�es the estimate

jF�1
� b(�; y; t)(z)j � C(1 + jzj)�N

for all N 2 IN , and a constant C = C(N) independent of z; y 2 IRn and t � 1.

Finally, the use of the measure �� from the �rst part of this proof combined

with standard properties of the Fourier transform and the convolution lead to

the representation A(�; y; t) = �� �F�1
� b(�; y; t): Hence, (3.3) holds true for the

function F (z) = C[�� � (1 + j � j�N)](z) with any N > n.

This completes the proof of Proposition 2.1. 2

Proof of Proposition 2.2. The tool here is the Hausdor�{Young inequality

kbvkp � Ckvkq;(3.4)

valid for every 1 � q � 2 � p � 1 such that 1=p+ 1=q = 1. Hence, by (3.4),

the change of variables �t1=2 = !, and the homogeneity of `, we obtain

k@
et�u0 � A@
LG(t)kqp
� C

Z
IRn

�����(i�)
e�tj�j2`(�)
 bu0(�)� A`(�)

`(�)

!�����
q

d�

= Ct�n=2�(�=2+j
j=2)q
Z
IRn

�����(i!)
e�j!j2`(!)
 bu0(!=t1=2)
`(!=t1=2)

� A

!�����
q

d�:
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Now, the assumptions on u0 in (2.9) allow us to apply the Lebesgue Dominated

Convergence Theorem in order to prove that the integral on the right hand

side tends to 0 as t!1. 2

Proof of Theorem 2.1. We use systematically the integral equation (2.1) com-

bined with inequality (2.2). First, note that since u0 2 L1(IRn) \ Lq(IRn), by

(2.2), we obtain

ku(�; t)kqq � C(ku0k1; ku0kq)(1 + t)�(n=2)(q�1)(3.5)

for all t � 0. Hence, computing the L1-norm of (2.1), using the assumption on

u0, and (3.5) we obtain

ku(�; t)k1 � ket�u0k1 +
Z t

0
ka � rG(�; t� �)k1ku(�; t)kqq d�

� Ct��=2 + C
Z t

0
(t� �)�1=2(1 + �)�(n=2)(q�1) d�(3.6)

� Ct��=2 + C

8>><>>:
t1=2�(n=2)(q�1); for q 2

�
1 + 1

n
; 1 + 2

n

�
;

t�1=2 log(e+ t); for q = 1 + 2
n
;

t�1=2; for q > 1 + 2
n
:

Now, for q � 1 + (� + 1)=n we derive (2.11) immediately from (3.6), because

1=2� (n=2)(q � 1) � ��=2 in this range of q.

Next, we consider 1 + 1=n < q < 1 + (� + 1)=n. A simple calculation shows

that � = �(1=2 � (n=2)(q � 1)) satis�es 0 < � < �=2. Moreover, it follows

from (3.6) that

ku(�; t)k1 � C(1 + t)��:(3.7)

Combining inequality (2.2) with (3.7) we obtain the improved decay of the

Lq-norm

ku(�; t)kq � C(1 + t=2)�(n=2)(1�1=q)ku(�; t=2)k1(3.8)

� C(1 + t)�(n=2)(1�1=q)��:

Hence, repeating the calculations from (3.6), using (3.8) instead of (3.5), we

obtain

ku(�; t)k1 � Ct��=2 +
Z t

0
(t� �)�1=2(1 + �)�(n=2)(q�1)�q�=2d�:(3.9)

If �(n=2)(q�1)�q�=2 � �1, the integral on the right hand side of (3.9) tends
to 0 as t!1 faster than t��=2 and this ends the proof. On the other hand, if

�(n=2)(q � 1)� q�=2 > �1, by the de�nition of �, it follows from (3.9) that

ku(�; t)k1 � Ct��=2 + Ct��(q+1):
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Hence, if ��(q + 1) � ��=2, the proof is �nished. In the opposite case, we

use the estimate

ku(�; t)k1 � C(1 + t)��(q+1)

in (3.8) (with � replaced by �(q+1)) in order to get an improved decay of the

Lq-norm. Consequently, after a �nite number of repetition of the reasoning

above, we obtain (2.11).

Finally, let us prove (2.11) for 1+1=(n+�) � q � 1+1=n under the assumption

that supt>0 ket�u0k1 is suÆciently small. For simplicity of notation, we put

q� = 1 +
1

n+ �
;

and we use systematically the following inequality (obtained from the H�older

inequality and from (2.2))

ku(�; t)kqq � ku(�; t)kq�q�ku(�; t)kq�q�1 � C(ku0k1)ku(�; t)kq�q�(3.10)

for all t > 0. We also de�ne a nonnegative continuous function

g(t) � sup
0���t

�
��=2ku(�; �)k1

�
+ sup

0���t

�
� (1=2+�=2)=q

�ku(�; �)kq�
�
:

Now, computing the L1-norm of the integral equation (2.1) and using (3.10)

we obtain

t�=2ku(�; t)k1 � t�=2ket�u0k1 + Ct�=2
Z t

0
(t� �)�1=2ku(�; �)kqq d�

� t�=2ket�u0k1(3.11)

+ gq
�

(t) Ct�=2
Z t

0
(t� �)�1=2��1=2��=2 d�

for all t > 0. An elementary calculation shows that the quantity

t�=2
Z t

0
(t� �)�1=2��1=2��=2 d�

is �nite for every t > 0 (since 0 < � < 1) and independent of t. A similar

reasoning gives

ku(�; t)kq� � (t=2)�(n=2)(1�1=q
�)ke(t=2)�u0k1(3.12)

+ gq
�

(t)C
Z t

0
(t� �)�(n=2)(1�1=q

�)�1=2��1=2��=2 d�:

Note now that �((n=2)(1 � 1=q�) � �=2 = �(1=2 + �=2)=q�. Moreover, the

quantity

t(1=2+�=2)=q
�

Z t

0
(t� �)�(n=2)(1�1=q

�)�1=2��1=2��=2 d�



16 G. Karch & M.E. Schonbek

is �nite (because �(n=2)(1� 1=q�)� 1=2 > �1) and independent of t (by the

change of variables).

Combining inequalities (3.11) and (3.12) we obtain

g(t) � C1 sup
0��

��=2ket�u0k1 + C2g
q�(t)(3.13)

for all t � 0 and constants C1 and C2 independent of t.

Now, we consider the function

F (y) = A + C2y
q� � y where A = C1 sup

0��
��=2ket�u0k1

and q� > 1. If A > 0 is suÆciently small, there exists y0 > 0 such that

F (y0) = 0 and F (y) > 0 if y 2 [0; y0). Moreover, it follows from (3.13)

that F (g(t)) � 0. Since g(t) is a nonnegative, continuous function such that

g(0) = 0, we deduce that g(t) 2 [0; y0) for all t � 0. This completes the proof

of Theorem 2.1. 2

Proof of Corollary 2.1. We obtain (2.12) combining inequality (2.2) with (2.11)

as in (3.8) replacing q by p and � by �=2.

To prove (2.13), in view of the integral equation (2.1), it suÆces to estimate

the Lp-norm of the second term on the right hand side of (2.1). Here, we split

the integration range with respect to � into [0; t=2][ [t=2; t] and we study each

term separately as follows. Using the Young inequality for the convolution and

(2.12) we obtainZ t=2

0
ka � re(t��)�(ujujq�1)(�)kp d�

�
Z t=2

0
ka � rG(�; t� �)kpku(�; �)kqq d�(3.14)

� C
Z t=2

0
(t� �)�(n=2)(1�1=p)�1=2(1 + �)�(n=2)(q�1)��q=2 d�

� C

8>><>>:
t�(n=2)(q�1=p)�(�q�1)=2 for q 2

�
1 + 1

n+�
; n+2
n+�

�
;

t�(n=2)(1�1=p)�1=2 log(e+ t) for q = n+2
n+�

;

t�(n=2)(1�1=p)�1=2 for q > n+2
n+�

for all t > 0.

A similar calculation givesZ t

t=2
ka � re(t��)�(ujujq�1)(�)kp d�

�
Z t

t=2
(t� �)�1=2ku(�; �)kqpq d�(3.15)
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� C
Z t

t=2
(t� �)�1=2(1 + �)�(n=2)(q�1=p)��q=2 d�

� Ct�(n=2)(q�1=p)�(�q�1)=2

for all t > 0.

Finally, combining (3.14) and (3.15) (note that �(n=2(q�1=p)� (�q�1)=2 �
�(n=2)(1� 1=p)� 1=2 for q � (n+ 2)=(n+ �)) we obtain (2.13). 2

4 Nonlinear asymptotics

The following two lemmata give the crucial estimates for the integral equation

(2.1) systematically used in the proof of Theorem 2.2.

Lemma 4.1 Let a 2 IRn be a �xed constant vector. There exists a constant

C > 0 such that for every w 2 L1(IRn) we have

ka � ret�wkB��;1
1

� Ct(��1)=2kwk1(4.1)

for all t > 0.

Proof. Here, we use the de�nition of the norm in B��;11 and properties of the

heat semigroup as follows

ka � ret�wkB��;1
1

= sup
s>0

s�=2kes�a � ret�wk1
= sup

s>0
s�=2ka � re(t+s)�wk1

� Ckwk1 sup
s>0

s�=2(t+ s)�1=2

for all t > 0. Now, a direct calculation shows that sups>0 s
�=2(t + s)�1=2 =

C(�)t(��1)=2 with C(�) independent of t. 2

Lemma 4.2 Assume that v 2 B��;11 . Then for each p 2 [1;1] there exists a

constant C > 0 such that

ket�vkp � Ct�(n=2)(1�1=p)��=2kvkB��;1
1

for all t > 0.



18 G. Karch & M.E. Schonbek

Proof. Standard properties of the heat semigroup et� and the de�nition of the

norm in B��;11 give

ket�vkp � C(t=2)�(n=2)(1�1=p)ke(t=2)�vk1 � Ct�(n=2)(1�1=p)��=2kvkB��;1
1

:

for all t > 0 and a constant C. 2

Proof of Theorem 2.2. Our reasoning is similar to that in [4, 5, 6, 18]. Moreover,

the calculations below resemble those in the proof of Theorem 2.1 with 1 +

1=(n+ �) � q � 1 + 1=n, thus we shall be brief in details. Recall that

q = q� = 1 +
1

n+ �

which is equivalent to

n

2

 
1� 1

q

!
+
�

2
=

1

q

 
1

2
+
�

2

!
:

We equip the space X with the norm

kukX = maxfsup
t>0

ku(t)kB��;1
1

; sup
t>0

t(n=2)(1�1=q)+�=2ku(t)kqg

and we show that the nonlinear operator

N (u)(t) � et�u0 �
Z t

0
a � re(t��)�(ujujq�1)(�) d�(4.2)

is a contraction on the box

BR;" = fu 2 X : ku(t)kB��;1
1

� R and sup
t>0

t(n=2)(1�1=q)+�=2ku(t)kq � 2"g

for suÆciently large R > 0 and a suitably small " > 0. This will be guaranteed

provided we shall prove the following estimates

kN (u)(t)kB��;1
1

� ku0kB��;1
1

+ C"q;(4.3)

t(n=2)(1�1=q)+�=2kN (u)(t)kq � Cku0kB��;1
1

+ C"q;(4.4)

and

kN (u)(t)�N (v)(t)kB��;1
1

(4.5)

� C"q�1 sup
t>0

t(n=2)(1�1=q)+�=2ku(�; t)� v(�; t)kq
t(n=2)(1�1=q)+�=2kN (u)(t)�N (v)(t)kq(4.6)

� C"q�1 sup
t>0

t(n=2)(1�1=q)+�=2ku(�; t)� v(�; t)kq:
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with constants C independent of u and t.

For the proof of (4.3) observe that ket�u0kB��;1
1

� ku0kB��;1
1

. Hence comput-

ing the B��;11 -norm of (4.2) for u 2 BR;" and applying Lemma 4.1 we obtain

kN (u)(t)kB��;1
1

� ket�u0kB��;1
1

+
Z t

0
ka � re(t��)�(ujujq�1)(�)kB��;1

1

d�

� ku0kB��;1
1

+ C
Z t

0
(t� �)(��1)=2ku(�)kqq d�

� ku0kB��;1
1

+ C"q
Z t

0
(t� �)(��1)=2��(n=2)(q�1)��q=2 d�:

Note now that the assumptions � 2 (0; 1) and q = 1 + 1=(n + �) guarantee

that the integral on the right hand side is �nite for any t > 0. Moreover, since

(��1)=2�n(q�1)=2��q=2+1 = 0, it follows that this integral is independent

of t. Hence, estimate (4.3) holds true.

The proof of (4.4) is similar. It involves Lemma 4.2 as follows

kN (u)(t)kq � ket�u0kq +
Z t

0
ka � re(t��)�(ujujq�1)(�)kq d�

� Ct�(n=2)(1�1=q)��=2ku0kB��;1
1

(4.7)

+ C"q
Z t

0
(t� �)�(n=2)(1�1=q)�1=2��(n=2)(q�1)��q=2 d�:

In this case, the conditions on �; q imply again that the integral on the right

hand side is �nite for every t > 0. In fact, by a change of variables, it equals

Ct�(n=2)(1�1=p)��=2 for a constant C > 0. Hence (4.4) is proved.

The proofs of (4.5) and (4.6) are completely analogous. The only di�erence

consists in using elementary inequality


ujujq�1 � vjvjq�1




1
� Cku� vkq

�
kukq�1q + kvkq�1q

�
(4.8)

valid for all u; v 2 Lq(IRn).

Finally, it follows from (4.3){(4.6) that N : BR;" ! BR;" is a contraction for

R > 2ku0kB��;1
1

and a suitably small " > 0. Hence the sequence de�ned as

u0(t) = et�u0 and un+1(t) = N (un(t)) converges to a unique (in BR;") global-

in-time solution to (1.1)-(1.2) provided u0(t) 2 BR;", i.e. ku0kB��;1
1

< ".

2

The proof of Theorem 2.3 requires the following result from [18, Lemma 6.1].

Lemma 4.3 Let w 2 L1(0; 1), w � 0, and
R 1
0 w(x) dx < 1. Assume that f

and g are two nonnegative, bounded functions such that

f(t) � g(t) +
Z 1

0
w(�)f(�t) d�:(4.9)
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Then limt!1 g(t) = 0 implies limt!1 f(t) = 0. 2

Proof of Theorem 2.3. The subtraction of equation (2.1) for v from the anal-

ogous expression for u leads to the following identity

u(t)� v(t) = et�(u0 � v0)

�
Z t

0
a � re(t��)�

�
ujujq�1 � vjvjq�1

�
(�) d�:(4.10)

Next, repeating the reasoning from the proof of (4.4) involving inequality (4.8)

we estimate

ku(�; t)� v(�; t)kq
� Ct�(n=2)(1�1=q)��=2

�
(t=2)�=2ke(t=2)�(u0 � v0)k1

�
(4.11)

+C
Z t

0
(t� �)�(n=2)(1�1=q)�1=2ku(�; �)� v(�; �)kq

�
�
ku(�; �)kq�1q + kv(�; �)kq�1q

�
d�:

By Theorem 2.2, the both quantities

sup
t>0

t(n=2)(1�1=q)+�=2ku(�; t)kq and sup
t>0

t(n=2)(1�1=q)+�=2kv(�; t)kq

are bounded by 2". Hence, multiplying (4.11) by t(n=2)(1�1=q)+�=2, putting

f(t) = t(n=2)(1�1=q)+�=2ku(�; t)� v(�; t)kq;(4.12)

and changing variable � = ts, we get

f(t) � C(t=2)�=2ke(t=2)�(u0 � v0)k1
+2C"q�1

Z 1

0
(1� s)�(n=2)(1�1=q)�1=2s�(n=2)(q�1)��q=2f(ts) ds:(4.13)

Since (1� s)�(n=2)(1�1=q)�1=2s�(n=2)(q�1)��q=2 2 L1(0; 1) (cf. comments following

inequalities (4.7)), we may apply Lemma 4.3 obtaining f(t)! 0 as t!1 for

suÆciently small " > 0. This proves (2.19) for p = q.

Next, we prove (2.19) for p = 1. Computing the L1-norm of (4.10) and repeat-

ing the calculations from (4.11) and (4.13) yield

t�=2ku(�; t)� v(�; t)k1 � t�=2ket�(u0 � v0)k1
+ C

Z 1

0
(1� s)�1=2s�(n=2)(q�1)��q=2f(ts) ds;
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where f , de�ned in (4.12), is a bounded function satisfying limt!1 f(t) = 0,

by the �rst part of this proof. Hence (2.18) and the Lebesgue Dominated

Convergence Theorem give

lim
t!1 t�=2ku(�; t)� v(�; t)k1 = 0:(4.14)

The next stage of the proof deals with (2.19) for all p 2 (1;1). The calcula-

tions from (3.8) show that ku(�; t)k1 and kv(�; t)k1 can be both bounded by

Ct�n=2��=2 for all t > 0 and a constant C independent of t. Hence, by the

H�older inequality and (4.14) it follows that

ku(�; t)� v(�; t)kp � Cku(�; t)� v(�; t)k1=p1

�
�
ku(�; t)k1�1=p1 + kv(�; t)k1�1=p1

�
= o

�
t�(n=2)(1�1=p)��=2

�
as t!1;

where we used the following inequality���gjgjq�1 � hjhjq�1
��� � C(q)jg � hj

�
jgjq�1 + jhjq�1

�
(4.15)

valid for all g; h 2 IR, q > 1, and C(q) depending on q, only.

Finally, the proof of (2.19) for p = 1 involves equation (4.10) and (2.19)

proved already for all p 2 [1;1). Standard Lp � Lq estimates of the of the

heat semigroup imply that

tn=2+�=2ket�(u0 � v0)k1 � Ctn=2+�=2(t=2)�n=2ke(t=2)�(u0 � v0)k1
= C(t=2)�=2ke(t=2)�(u0 � v0)k1 ! 0

as t!1 by assumption (2.18).

To study the second term on the right hand side of (4.10), the integration

range with respect to � is decomposed into [0; t] = [0; t=2] [ [t=2; t].

Combining inequality (4.15) with estimates of the heat semi-group and the

H�older inequality yields


a � re(t��)� �ujujq�1 � vjvjq�1
�
(�)



1

� C(t� �)�n=2�1=2ku(�)� v(�)k1
�
ku(�)kq�11 + kv(�)kq�11

�
(4.16)

� C(t� �)�n=2�1=2���=2�(n+�)(q�1)=2f1(�);

where C is independent of t and � , and f1(�) = ��=2ku(�) � v(�)k1 is the

bounded function which tends to 0 as t!1 by (2.19) for p = 1.
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Moreover, choosing 1=r + 1=z = 1, similar calculations lead to


a � re(t��)� �ujujq�1 � vjvjq�1
�
(�)



1

� C(t� �)�(n=2)(1�1=z)�1=2��(n=2)(1�1=r)��=2�(n+�)(q�1)=2fr(�)(4.17)

where fr(�) = � (n=2)(1�1=r)+�=2ku(�) � v(�)kr also tends to 0 as t ! 1 by

(2.19). Hence, by the change of variables � = ts, it follows from (4.16) that

Z t=2

0




a � re(t��)� �ujujq�1 � vjvjq�1
�
(�)



1 d�

� Ct�n=2��=2
Z 1=2

0
(1� s)�n=2�1=2s��=2�(n+�)(q�1)=2f1(st) ds:

The integral on the right hand side is �nite (recall that q = 1 + 1=(n + �)),

because

��

2
� (n + �)(q � 1)

2
= �� + 1

2
> �1 for � 2 (0; 1):

This integral tends to 0 as t ! 1 by the Lebesgue Dominated Convergence

Theorem.

The case of the integral
R t
t=2 ::: d� involves inequality (4.17) with z > 1 chosen

such that �(n=2)(1� 1=z)� 1=2 > �1. The proof here is analogous as in the

last case and as such will be omitted. This completes the proof of Theorem 2.3.
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