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ABSTRACT. We consider the long time behavior of moments of solutions and
of the solutions itself to dissipative Quasi-Geostrophic flow (QG) with sub-
critical powers. The flow under consideration is described by the nonlinear
scalar equation

00
— 4 u-VO+k(-A) = f,
ot

0lt=0 = 6o

Rates of decay are obtained for moments of the solutions, and lower bounds of
decay rates of the solutions are established.

1. Introduction. We consider the solutions to the surface 2D dissipative Quasi-
Geostrophic flows (DQG) with sub-critical powers «

0
9 +u-VO+k(—A)*0 =0,

ot
0li=0 = 0o
Here a € (0,1], k > 0, 6(t) is a real function of two space variables z € R? and a
time variable t. The function 6(t) = 6(x,t) represents the potential temperature.
The fluid velocity u is determined from 6 by a stream function

(wn,10) = (g 20) o

where the function v satisfies
(—A)2p =0
Equation (1) is obtained when dissipative mechanisms are incorporated into the
inviscid 2D-Quasi-Geostrophic equation (2DQG). The 2DQG is derived from the

General Quasi Geostrophic (GQG) equations by reduction to the special case of
solutions with constant potential vorticity in the interior and constant buoyancy
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frequency [3]. For information on the GQG equations we refer the reader to [9]. The
fractional power o« = 1/2 is perhaps the most interesting one since it corresponds
to a fundamental model of quasi-geostrophic equations, see [4] and [9]. As pointed
out in [4] “Dimensionally the 2DQG equation with o = 1/2 is the analogue of the
3D Navier-Stokes equations.”

Two main questions will be addressed in this paper, provided 1/2 < « < 1; decay
of specific moments of the solutions of (1) and lower bounds of rates of decay of
the solutions in L? with data with zero or non zero total mass. The results will
be presented in the frame work of 1/2 < a < 1. Due to the bounds obtained in
[2] we believe that all the results presented here can be easily extended to the case
a = 1/2, provided the data is sufficiently small

We consider theA moments of the solutions with data in appropriate weighted
spaces satisfying |6p(&)| < C|E#, where 0 < p < 1. It will be shown that the
moments of order one of the temperature with such data, decay in norm L, with
2<r< ﬁ like

l2;0(t)||» < Co(1+1t)~*, where A, = L + po1
J r=0 ’ " ar! 20

and the corresponding velocity moments for 2 < r < ﬁ decay like

. 1 1 1
lzju(t)]], <Co(1+1t)"7, where 7 =min{\,, (a + u)(; — 5)}
The decay of the moments of the velocity will be improved if in addition it holds
that 136y € L*(R?) for some 3 > 0, where I is the Riesz potential.

Once this decay is established it will be used to obtain lower bounds of rates
of decay of the solutions to (1). The techniques to establish lower bounds are
based on the ones used for the lower bounds of rates of decay for solutions to the
Navier-Stokes equations ([6, 8]). In this direction the main result established is

Jim £/6(8) = ©o()ll2 = 0. 2)
where Og(t) is the solution of the “linear diffusive” part of the equation:
00
— —A)*0 =0
ot " ~(=4) ’

0)t=0 = 6o

In what follows we will refer to the above equation as the “linear” one. An easy
corollary from this last result is that solutions to the geostrophic equation have
similar lower bounds than solutions to the “linear diffusive” equation. In particular
one can show that

102 > Co(1 + )=/,

where the constant C; will depend on norms of the datum. The class of solutions

~

we consider, will include solutions such that 6(0) = 0 as well as solutions with data

~

such that 6(0) # 0. The case when
6(6) = A >0, for |¢| < (3)
was already considered by Constantin and Wu in [4]. This case is an easy corollary
of our results.
The paper consists of an introduction, four sections and two appendices. In Sec-
tion 2 notation is described and several preliminary results are mentioned. Section
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3 considers the existence and decay of the moments. Section 4 has the main result
describing the asymptotics of the solutions compared with the “linear” equation.
As a corollary we obtain lower bounds of the rates of decay. The appendices contain
several results, mostly with simple proofs, included to make the paper self-contained.

We note that under appropriate conditions for a forcing term f, many of the
results obtained in this paper can be extended to treat the solutions of

00
— 4 u-VO+r(=AN)*0=f,

ot
Oli=0 = o

Acknowledgments. The authors would like to express their thanks to the anony-
mous referee for many very helpful and thoughtful comments and suggestions.

2. Notation and Preliminaries. The Fourier transform of v € S(R?) is defined
by

96 = em ™t [ ) da,

]R2
extended as usual to S’. For a function v : R? — C and a multi-index v = (71, 72),
D7v denotes derivation of order v with respect to the two (space) variables. If v
also depends on time, the symbol Df is used to denote j derivatives with respect
to t. We denote by z7v (with some abuse of language) the function whose value at
x is 27v(x). Similarly, x; f is the function whose value at z is z; f(z), j = 1,2.

If k is a nonnegative integer, W*?(R?) will be, as is standard, the Sobolev space
consisting of functions in L”(R?) whose generalized derivatives up to order k belong
to LP(R?). As usual, when p = 2, then W*2(R?) = H*(R?) where the space H* is
defined for all s € R as the space of all f € & such that (1 + |£[2)¥/2f(¢) € L2

Let 1 < r < oco. The spaces L7, j = 1,2, will denote the weighted spaces
L"(R?,|z;|" dx); i.e., the spaces of all measurable functions f defined on R? such
that

1/
We define the space L;, by

fi= [ @l do < .

L= U@ NLINLE = {5 [ (4] do < oc).
R2
Following Constantin and Wu [4], we denote by
A=(-A)2
the operator defined by K} (&) = |€]f(€). More generally, if s > 0, we define A* by

A= f(&) = [EI°f ()
Clearly A®f is well defined (and in L?) if f € H*. More generally, the domain of A®
will consist of all elements f € S’ such that f is a function (i.e., locally integrable); it
is then clear that the definition given above defines A®f as a tempered distribution.
We denote by R, Ro the Riesz-transforms in R?; i.e., 7€J\f(£) = —i(fj/|§|)f(§).
The operator R+ taking scalar valued functions to vector valued functions is defined
by
R = (=00, A7 f,00, A7 f) = (=Raf, Ruf). (4)
The relation between u and € in (1) can then briefly be stated as u = R6.
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If F is a function defined on R? x [0,00), we define for ¢ > 0 the function F(t)
on R? by F(t)(x) = F(z,t). For such F, the Fourier transform (and inverse Fourier
transform) is always with respect to the space variables; thus

—

(&, t) = F(t)(§)
for all t > 0. The letters C, Cy, C1, etc., will denote generic positive constants,
which may vary from expression to expression during computations.

Let 0 < a < 1. We collect here a few formulas and results concerning the
operator (—A)® and the semi-group it generates. Most of the proofs are omitted
and will be presented in the Appendix.

The following notation is used throughout. We let K, : R? x R — C be given by

Ko (z,t) = (2m)72 / e € tIE ge,
-
i.e., by
Ko (6,1) = (2m)~Le el
Then

Lemma 1. Let 8,v be multi-indices, |y| < |8] + 2amax(j,1), 7 =0,1,2,...,1 <
p < o0o. Then

=18l _;_p=1
[e3

||x’yDgDﬁKa(t)”p =Ct = I e
for some constant C depending only on «, 3, v, 7, p.

Proof. This is the case n = 2 of Lemma 6 proved in the Appendix. O

In particular, we see that K, (t) € L'(R?) for all ¢t > 0 and
[Ka()lh <C

for some constant C depending only on a. It is also easy to see that K, (t)* K, (s) =
Kq(s+t) for all s,¢ > 0 and that

tlirr(l)Ka(t) xf=f
uniformly for every continuous function of compact support f : R? — C. It follows
that if,for f € LP(R?), we define
e TR = Ko (t) * f

then {e’t(*A)a} is a one-parameter, strongly continuous, semi-group of uniformly
bounded operators in LP(R?) for 1 < p < co. We can then define (—A)* as the
generator of this semi-group.

The next estimate will be used several times. It is stated as a lemma for easy
reference.

Lemma 2. Let 1 < p < q < oo. Assume K € LP(R?), u € LY(R?), v € L” (R?).
Then
1 (uv)llg < (K lpllullgllvlly- ()

Proof. By Hausdorff-Young
1K (wo)llg < [[K|pluollr

where 1/r = 1/g+ 1/p’; the condition ¢ > p guarantees that 1/r < 1. The estimate
now follows by Holder. O
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Notice that if p < 2, then p’ > 2 > p and (5) is valid with ¢ = p’. The estimate
will be applied when 1 < p < 2 and K will be one of K(t), 0K, (t)/0x;, ;K. (t),
or ;0K (t)/0x;.

3. The Moments. This section is focused on mild solutions of the geostrophic
equations (1); that is, solutions of the integral equation

o) = @o(t)—/o Kao(t —s)* [u(s) - VO(s)] ds (6)

= 0ot = [ [ VEa(t == p)ROG9) 00y 5) du s

where ©¢(t) = Kq(t) * g and R(0(y, s) = (—Ra20(y, s), R10(y,s)) = u(y, s), and
7€j\0(y, s) = z%é is the j-th Riesz Transform of the function 6. It will be supposed
that o € (1/2,1]. As mentioned before we expect that our results can be easily
extended to the case o = 1/2, provided the data is in H? and ||0|| is sufficiently
small, since then the solutions are bounded in H? (see [2]), and the techniques
applied here and in [12] will hold. In the case that our datum is in a sufficiently
high Sobolev space, the results of [4] or [12] yield that we are working with regular
solutions.

The following decay rates for the moments of order one are the main results of
this section. Let 2 <r < ﬁ then the moments decay like

_ 1110 p—1 1
Ar _
lz;0(t)|» dv < Co(1+¢t)™"", where A, = mm{a(i — ;), 500 + J} (7)
and the corresponding velocity moment for 2 < r < ﬁ, 0 < p <1 decays like
1 1 1
lzju(t)]], <Co(1+t)~7, where 7 = min{\,, (a + u)(; - 5)} (8)

The decay of the moments of the velocity will be improved if in addition for g > 0,
it holds that 156y € L' (R?).

The first step in obtaining the decay (7) is to prove that (6) has a solution in
C([0,T],L?) for some T > 0, then proving that this solution has to coincide with
a standard solution of the integral equation which exists for all times ¢ > 0. The
following version of a fixed point theorem will be very useful in establishing local
existence.

Lemma 3. Let X be a Banach space and let B : X x X — X be a bilinear mapping
of norm n; i.e., such that

1B (21, 2)|| < nll[[[lz2]- (9)
for all 1,20 € X. Then, for all y € X satisfying
nllyll < 1,
there exists a unique x € X satisfying the equation
x=y+ B(z,z) (10)
and such that
]l < 2[lyl- (11)

Proof. For a proof see [1] O
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We apply this lemma with the bilinear operator B defined (at least formally) as
follows. The space X of Lemma 3 will be a space of the form C([0,7],Y), where Y
is a Banach space to be specified. If wq,ws € C([0,T],Y) we define

Blwn,wn) () = /0 VKo (t — 5) % [wa(s)R(wi(s))] ds. (12)

For the rest of this section we fix p such that 1 < p < 2/(3 — 2a) and set

3p—2
p:

20p
Remark 1. Notice that 2/(3 — 2a)) > 1 (since we are assuming « > 1/2) and that
0 < 6, < 1. The significance of §, is due to Lemma 1 (withn =2, j =0, |8 =1)
according to which
0K,
15

for all ¢ > 0 and some constant C' depending only on p.

lp=Ct™%,j=1,2, (13)

Moreover, it is well known that if 6 € L?' (R?) there exists a unique mild solution
0 € C(]0,00), L*' (R?)) such that §(0) = 6. We include this result in the statement
of our next theorem, which also establishes the boundedness of the moments of a
mild solution with datum in L2,.

Theorem 1. Let 1 < p < q < oo, with p’ the conjugate of p. Let 0y € L”,(Rz).
There exists a unique mild solution

heC ([o, o0), LV (R?)) of (1) with 6(0) = 6y. If, in addition,

iz 0y € LY(R?) for some q € [p,o0], then 6 € C ([0, 00), L1(R?)).
ii.: 6y € L2(R?), then 6 € C ([0,00), L2).

Proof. If T >0, ¢ > 1, let X, v = C([0,T], L%(R?)), a Banach space with the norm

[fllx,r = sup [If#)llg-
0<t<T

We begin sketching a proof of the existence and uniqueness of a mild solution 6
with datum 6y € L? (R?); i.e., a solution § € C ([O,oo)7Lp/ (R2)) of the integral

equation (6). Using the bilinear operator B we can write the integral equation in
the form

6 =g+ B(0,0), (14)
where g(t) = ©¢(t) = Ku(t) * 0p.

By Lemma 2, with K replaced by VK, (¢t — s), whose LP-norm is given by (13),
¢
[B(wr,w2)(t)llq < C/O (t = 5) % [lwa(s) g R(w1(5)) [l ds
t
= ¢ / (t = )~ llwa(s)llgllwn (5) | ds (15)

CT"*||wallx, 2 lwillx,p- (16)

IN

Inequality (15) is due to the boundedness of the Riesz transforms in L?’ (because
1 < p’ < 00); the constant C' depends only on p, g and varies from line to line.
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Consider first the case ¢ = p’. Notice that if 6, 6 are two solutions in Xp 1 of
the integral equation (6) with initial datum 6y, 6y, respectively, then by (14)

166) = 6@l < 1Kalt) * (60— Bolly + B, 0)(2) = BO.B)YD)],
< cllto — folly + 1B, 0 = O)(®)l + IBO ~ 8,0)(0)]]
< cllbo — byl +C / (t = 5)7% (105)ly + 185)ll ) 10(5) = B(5)ll ds
< el = dolly +C (15, + 101, ) [ (6= 575 1005) = 6s) .

where ¢ = || K, (t)|1 and C is the same constant as in (16). It follows by a modified
Gronwall inequality argument® that

106t) = 88)l < s, (T, 10l1x,. . + 19]1x,... ) 100 = olly (17)

for some (continuous) function ®;, on [0, 00) x [0, 00). In particular ||6(t) —0(t)|l =
0 for all t € [0,T] if Oy = 50, proving the uniqueness of the solution of the integral
equation in C([0,T], LP), in any interval [0, 7] in which it is defined. Moreover,
the short term existence of such a solution is also immediate. In fact, fix T > 0
and let T be such that T < Ty and 4CoT*~% < 1/(c||fo||,’), where the solution to
the“linear part” satisfies ||©g||,» < ¢[|fo]|,7- Lemma 3 applies (with n = CoT*~%)
to prove the existence of 6 € X, 1 solving (6).

To see that this short term solution can be extended to a global solution in
C([0, ), L¥' (R2)), as is usual, one only needs to see that if 6 solves the integral
equation in an interval [0,T), T < oo, then limsup, ,,_ [|0(¢)|,y < oco. Thanks
to (17) it suffices to prove this assuming 6y smooth. In this case the so called
“maximum principle” (cf. [2]) implies that

16 1lg < 116ollq (18)

for ¢ in any interval [0, T") in which 6 solves (1) with initial datum in L?; 1 < ¢ < oo.
Applying this result with ¢ = p’ completes the proof of the existence of a global

solution § € C ([0, o0), L¥' (RQ)) of the integral equation (6).

Assume now that, in addition, 6y € C([0,00),Y) where Y is either LI(R?) with
q € [p,00] or L2 (R?). We need to prove that if 6y € Y, then ©y(t) = K,(t) * 6
stays bounded in Y and B (as defined above) is a bounded bilinear map

(X7 NC([0,00),Y)) X (X7r NC([0,00),Y)) — X,y NC([0,00),Y)

of norm of order o(1) as T — 0. Once this is done, Lemma 3 establishes the short
term existence of a solution # € X, N C([0,00),Y). Next we need to prove that
this solution remains bounded in Y over bounded intervals; it can then be extended
to a solution valid for all values of ¢t > 0 that, by the uniqueness of the solution in
X1 p (for all T' > 0), must coincide with the previous one.

The case Y = L9(R?) is particularly simple. We have [|©q(t)]|, < c||6o||, for all
t >0, (¢c=|Ka(t)|1) and (16) proves that the norm of B as a bilinear map from
(X1 N X1,q) X (X1 N X14) to X1 N X7,4 is of order T17% — 0 as T — 0.
By the maximum principle (18) this solution cannot blow up in finite time, hence
can be extended to a global solution.

*see Appendix 2
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Finally, consider the case 0y € L2 (R?). By Lemma 1,
| Kao(t)]1 = CtY/2.
Using this and once again the fact that | K, (¢)|]1 is a constant, we get from
2;O0(t) = ;(Ka(t) ¥ 0o) = (z;Ka(t)) * b0 + Ka(t) * (;60)

that [|lz;00(t)|l2 < C(1+1)/2* (j = 1,2). Thus ||©¢(t)||z2 remains bounded in
bounded intervals, hence the same is true of its L* N L2 norm.

Since B has already been proved bounded from (Xr 0 X Xp2) x (Xppr X X7,2)
to X7 X Xr2, with norm going to 0 as 7' — 0. It remains to be proved that it is

similarly bounded from C([0,T1], L?) x C([0,T], L3) to C([0,T],NL,) for j = 1,2.
We have

ij(wl,wg)(t) =
/0 (x;VEK,) * [wa(s)R(w1(s)) ds + /0 VEy(t—s)* [(xjwa(s))R(wi(s))] ds = I1 + Is.

By Lemma 1 (with |y| = |8 =1, j =0),
0K, N
||$j87m||p =Ct’,
with p = 1/(ap’) < 1 (since a > 1/2, p’ > 2) for j,k = 1,2, ¢t > 0. From this, and
(5) (with g = 2)

t
[all2 < C/O (t = &) llwr(8)llpr w2 (s) 2 ds.

In I, we estimate |VE(t — s)||, as before and get

t
[12]|2 < C/O (t =) wi ()| |02 (5) |2 ds.
It follows that
2 B(wr,wa) (t)]l2 < C(TT % + T )|l x, w2l ogo,r,22)

for 0 <t <T,j=1,2. The desired boundedness of B has been proved, hence
the short term existence of a solution taking values in L? N L' by uniqueness
of the LP" solution this solution coincides with the LP" solution. To see that the
solution remains in L? forallt > 0 (j = 1,2), we observe that z ;0 solves the integral
equation

(z;0)(t) = g;(t) —/O VEq(t = s) * [(2;0(s))u(s)] ds
where u(s) = R(6(s)) thus u € C <[07 o), L¥' (RQ))2 and
03(8) = 2,00(0) = [ [, VK (t = 9)] = DRO(3)] ds.

From what we proved, using the fact that § € C([0,00), L* N L?), we see that
g; € C([0,00), LP N L?). Thus

;0|2 < llg; (B2 + C/O (= 8) " llu(s)llpll2;6(s)l|2 ds
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and a (modified) Gronwall inequality argument proves that ||z;6(¢)||2 cannot blow
up in finite time. O

From now on, 6 will always denote the solution of the geostrophic equations
with initial datum 6, € L' N L2 given by Theorem 1 and u will always denote

the corresponding velocity, v = R*+0. Thus § € C ([O,oo),L2(R2) N LY (RQ))
and (since The Riesz transforms are bounded in L?, LP/, it follows that u €
C ([O7 00), L2(R2) N LY (R2)). In the sequel we shall need the following properties
of this solution.
1.: Let m be a non-negative integer and assume 6, € L' N H™ N L?. There
exists a constant C' > 0, depending only on L' N H™-norm of #y such that
|AT0@)]2 < O+ 1)~ 5 (19)

for all t > 0. See [4, Theorem 3.1] for the case m = 0, [12, Theorem 3.2] for the
generalization to the case m > 0. We observe that since the space dimension is
2, the condition 6y € v (which assures uniqueness of our solution) is implied
by 6p € H™ if m > 1.
2.: With the same hypotheses as in 1.,
[A™u(t)]2 < C(1 + )"

same C as in (19). This follows at once from (19) because the Riesz transforms
are bounded in L? and commute with A™.
3.: Let 1 < ¢ < 0o and assume that 0y € L N LP . Then

16)1lg < 116ollq (21)

for all ¢ > 0. This is the so called maximum principle (see [2]).

m+1
2a s

(20)

The next theorem is a simple extension of the decay rate (19), which was obtained
in [4] and [12]. The main tool used in the proof is Fourier splitting.

Theorem 2. Assume 0 is a solution of (1) with data 6 € L* N H™, m > 0.
Suppose additionally that |0y(€)] < Col|€|* for € in some neighborhood of the origins
and for some constants Co,u; C >0, 0 < u < 1. Moreover, if « = 1 assume that
w<1. Then

m+14p
2a

[ATO(t)|| > < C(t+ 1)~ (22)

where C'is a constant which depends only on Cy and the norms of the initial datum.

Proof. Suppose first that m = 0. Because 8y € L! implies 6o € L™=, we may assume
that the inequality |0o(£)| < Col&|* is valid for all £ € R2. Claim that

6(¢, )| < Cle” (23)

for € € R, where C does not depend on t. In fact, taking the Fourier Transform in
(6) one sees that

2 t
6= foe 1" & Z/ eI =g 00 ds.
k=10

By (19), (20) (case m = 0),
ur0(s)] < Jur()0(s) | < Jun(s)[2ll0(s)]l2 < C(1+5)72,
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so that .
8(6)] < Clep + Cle) / (I =) (1 4 g)=1a g
0

To establish the claim, it suffices to see that
t
/ eI =) (1 4 gy ds < Cl¢|
0

where C' does not depend on ¢ and 1 — e > p. This is obvious (with € = 0) if a < 1,
so assume « = 1, in which case we assume p < 1. Then, if o > 1, by Holder,

t 2a t ’ 2a 1/0, t
/ eTlET=9(1 45yl ds < (/ e~ 67 (t=s) ds) (/ (1+4+s)7° ds)
0 0 0
o0 ’ 2 1/0/ > 1/0- 2
(/ e~ Il asds) (/ (1+s)_"d8> =ClE| .
0 0

Taking ¢’ large enough, we get € = 2a/0’ <1 — u. The claim is established.
We are ready for the Fourier Splitting argument. For this, multiply (1) by 6 and
integrate in space. Using Parseval and integration by parts it follows in frequency

space that
d ~ ~
G oo de=— [ jepier ae

Now split the domain of integration of the integral on the right hand side of the
last equation yields into S U 8¢ where S is defined by

s=te:16 < (1 )W};

t+1

k a constant to be determined below. Noting that for £ € S¢ one has —|£[?* < —H—l,
it follows that

G LR a < 45 [ ier =—25 [ A©F a5 [0 d

By (23) the last mtegral can be estimated by
@ ae<c [ g ag = o oo
S S

so that multiplying by (¢ + 1)* one gets

1/0

IN

d

We choose k > (1 + p)/a. Integrating from 0 to ¢ and then dividing out (¢ + 1)*
yields

| e ae
< Ot 41)"(+w/a

as desired. To establish the decay for the higher derivatives; i.e., cases with m > 0,
follow the steps in the proof of [12, Theorem 3.4] where p = 0, and replace the
decay for the L? norm with the new decay obtained for the case > 0. The faster
decay in L? will yield the desired faster decay for the L? norm of A”. O

LA / B(E) de < Ot + 1)k 1= (m/er
t 2

IN

(t+ 1)_'“/ 00(&)|2 de + C(t+1)7F + C(t + 1)~ (OFm/e
]R2

Remark 2. It is possible to include the case & = p = 1 in the considerations of
Theorem 2, except that the estimates need to be modified by a factor of log(¢ + 1).
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We can also extend (20).

Corollary 1. Under the conditions of the last theorem we have the same decay
rates for u;
14B8+p

[Aullpe < O+ 1) 2, (24)
where C' is a constant that depends only on the initial datum.

Proof. Follows immediately since the Riesz transforms are bounded in L? and com-
mute with A. O

The estimates of Theorem 2 and Corollary 1 can be used to improve the L? decay
of the temperature and the velocity.

Lemma 4. Assume 0 is a solution of (1) with datum 6y € L' N H' and that
100(&)| < |E* for some C > 0, p € [0,1], p < 1 if « = 1. Then, for q € [2,00),
t>0,

16(2)llq

l[u(®)llq

Proof. By the Gagliardo-Nirenberg inequality (see [5, Chapter 1,Theorem 9.3]),
19114 < ll6ll;~llA6]l

. IR e

q 272 2 2
ie,a=(q—2)/q, 1 —a=2/q. Inequality (25) now follows from the estimates in
Theorem 2. Since the Riesz transforms are bounded in LY (q # 1,00), (26) is an
immediate consequence of (25). See also [12, Corollary 3.1]. O

<
<

if0<a<1and

Corollary 2. Let 6y € L' N H' then the solution 6 with data 6y belongs to L' for
all time.

Proof. Write the solution in integral form then it follows that

t
1611 < (1602 +/O [ull2[IVO]l2 ds

where we used Young’s and Hélder inequalities to get the last term. From here, the
decay of the L? norm of the velocity and the gradient of the temperature yields

t
J6E) < 6ol + [ (1+)7% ds
0

and we conclude that the L'norm of the solution is bounded. O

Remark 3. The next two theorems give the bounds for the moments of # and of
u. In the proof of the first one we will have occasion to use the following estimate.
Assume 0 < p < 1, 7 > 0. Then there exists a constant C > 0 (depending on p, )
such that

: Ctr if >,
/ (t—s)7P(14+s8) Tds< (¢ CtP(1+4+log(l+1)) if 7=1, (27)
0 Ct=P(1+t)i- it 7<1.
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Theorem 3. Let 0y € L' N L2 NLT NH' where2 <r <1/(1—a). Let 0 < p <1
be such that A
60(8)] < Cl&* (28)
for all £ in a neighborhood of the origin, some C > 0;u <1 if a =1 . Let
1 w—1

Ap = — .
" 047"Jr 2«

Then

lz;0)- < C(1+1)~A
for some constant C' (depending on 6y and r), all t > 0.
Proof. Note first that since 6y € Ly hence by € L%, and inequality (28) always

holds for all ¢ € R? with p = 0. The following auxiliary estimate for the L? norm
of the temperature moment will be needed

lz;0(8)]l2 < C(1 + log(1 4 1)) (29)

for all ¢ > 0, where the constant C' > 0, depends on 0y. Here we work with no

~

information on () near zero; that is, we assume (as we may) that u = 0. The first
step is to rewrite equation (1) in the form

(2j0) + (=2)%(2;0) —u-V(z;0) = f; (30)
where f; = u;0 4+ h; and
hi(€) = —20il¢[**72¢;0(¢).
We need to estimate || f;(t)||2. We suppose that 05(8)| < Clé|*, with x> 0 to
derive some preliminary estimates. Due to the boundedness of the Riesz transforms
in L4,
luj (8|2 < [lu; (@)]lall0E)]la < ClO@)IE:
thus by (25), (26),
3
[y @)O(#)]l2 < C(1 + ) 2.
Turning to the other term in f;,

1

1hs @l = s 1)l < 20 |[lE2>00) | = 1I-8)2~ Fo(0) =

and by Theorem 2 (or [12, Theorem 3.4]) it follows that

;2 < L+ 1)~
Since3/(2a) > 1 we see that there exists a constant C' such that

I£; @Ol <+~ (31)
for t > 0. Let

— 2 2
E(t) = /Rz z510(t)|* de.

Then, by (30), with (-,-) denoting the inner product of L?, and considering that
(x;0(t),u - V(z;0)) = 0 because div u = 0,

E'(t) = 2(w;00), (2;0):(1) = =2(w;0(1), (=A)*(w;0(1)) + (w,0, f;)
2 [ 1Pl 6O dE + (w361
R2

Thus
E'(t) < -2 /Rz 2|20 (€)1 dE + || £3(1) 2B (2) /2. (32)
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Dropping the first negative term on the right hand side, using (31), we get
E'(t) <O +t) E{t)Y/? (33)
hence integration yields
E(t) < (E(0)Y2 4 Clog(1 +1))? = C(1 4 log(1 + ))?,

proving (29). Assume now 2 < r < 1/(1—a), 6y € L7,NL2NH", and 0y(¢) = O(|¢]*)
near 0; 0 < pu <1, p < 1if o =1. We can write

¢ t
20(t) = 2;00(t)~ [ (2 VKa)(t=5)0()u(o)] ds— | VKolt-5)sl(a,0(5)u(s)] ds.
0 0
(34)
From the assumptions on r, 1/2 — 1/r < a— 1/2 and we can select p such that
1/2—-1/r <1/p’ <a—1/2. Then 1/2 < 1/r+1/p’ < 1 so that if we set
1 1 1 1 1
- =—-+ -~ = -+ 1— -
q rop r p
we get 1 < ¢ < 2. Moreover, 1/r = 1/p+1/q — 1, hence || f « gl < |[fllpllgllq, as
well as || f * g|l» < || fll+llgll.. We use both Young estimates in (34) to get

l20@)], < 200l + / V)t — ) 10(s)u(s)]1 ds
+ / IV Kot — ) l250(5)u(s)ll, ds
< le@ot)l + / 123V ) (& — )1 10(3) 2] u(5)]]2 ds

+ / IV Kat = 3)llpll;0(5) 1o ()l ds,

where v is such that 1/2 4 1/v = 1/q, thus v > 2 and the last estimates being due
to Holder’s inequality. By Corollary 4 of the Appendix (case n = 2),

24+ (u—1)r’

|2;00(t)|lr < C(A+t)" " 2ar — =C(1L41t)"*

for all t > 0; by Theorem 2 ||6(s)]|2, ||u(s)||2 are bounded by C(s 4 1)~ (1+#)/(2a)
by (26), |[u(s)]|, is bounded by C(s + 1)~ (1/20)(/2+1/v") \yhile

||ijKa)(t_3)||r < O(t_s)_l/ar/
[VE.(t=s)l, < C(t—s) 2 o

by Lemma 1. Using these estimates as well as the logarithmic bound (29) for
lz;6(t)||2 in the last estimate of ||x;6(t)]|,, we get

t
||xJ0(t)H7’ S C(1+t)7)\’+0\/ (tis)*l/ar’(1+$),%ds
0
(35)
t : TR
+/ (t— srﬁ—Tp’(l +log(1+s))(1 +8)—§(5+7)d8 — T4l
0

(Notice 1/(ar’) < 1 by r < 1/(1 — a) and 5 + O%p, < 1 since 3 + i < a.) To
complete the proof, it suffices to show that the two integrals on the right hand side
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of (35) are bounded by C(1 +t)~*~. The first integral is smallest for u = 0, thus

t , t/2 t
Ig/(t—s)’l/‘” (1+s) " Yods = / +/
0 0 t/2
t

1 t/2 1 1 1
<Cta / (I+8) Fds+(1+)* / (t— )5 ds
0 t/2
_ ot e g (L )TV, if a0 < 1,
=L etV (A log(1+1) + (14871, ifa=1.
This takes care of the first integral in (35). In fact, if @ < 1 then 1/ar’ > A, while
if « =1 then 1/r" > A, because then u < 1.
To bound the second integral in (35) we notice first that

t
I71<(1+log(l +t))/ (t— )" (14 8) £ 5+) d
0
and we can apply Remark 3 with
1 1 1. 1
In applying this remark, we can assume ¢ > 1 and replace ¢ by ¢ + 1 on the right
hand sides. If 7 > 1, then

IT<C(1+t)77(1+max(0,1 —7)log(t+1)) (1 +log(t+1).

- 4 =
P= % ap’’ a

By the choice of p,

Hence
IT<CO+t)P(1+logt+1)2<Ct+1)"*.
On the other hand, if 7 < 1 then the estimate in Remark 3 implies
II < Ct+1)"PH=1(1 + log(t + 1).

An easy calculation shows that with p, 7 as given above,

1/ 1u T/1p 1Y\
Thus we also get I < C(t + 1)~ in this case. This concludes the proof of the
theorem. O

The case 7 = 2, . = 0 is an important case of the previous Theorem. We state
it as a corollary.

Corollary 3. Assume 0y € L2 N L' N H'. Then there exists a constant C > 0
depending only on the initial datum 0y such that

lz;0()]|2 < C
for allt > 0.

We also want to estimate the moments of u. The following result is auxiliary
and gives a uniform bound for the first moments of the velocity.
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Theorem 4. Assume 0y € L*NL2 NLY NH' where2 <r < 1/(1—a). Then there
exists a constant C > 0 such that ||z;u(t)||, < C for allt > 0. The same result

holds for r = 2 if 0y € L1, N L2 N H' and there exist constants ¢ > 0, u > 0 such
that |0p(&)| < C|E|* in a neighborhood of the origin.

Proof. Let j,k € {1,2}; then ;R = Ryx; + Ly;, where (up to constant factor)

Liyf@) = [ ¥ fa =y,

hence )
Lot @) < [ i@ =)l dy = 11 fl(@)

where I is the Riesz potential. In the case r > 2 we use the fact that I; is bounded
from L9 to L", where 1/r = 1/q — 1/2, thus
[ Lii @)l < 10(t)]lq < Cll6ollq = Co

the last inequality being due to the maximum principle (21); notice that ¢ > 1 since
r > 2. By Theorem 3 ||z;6(t)||, is (at least) bounded uniformly in ¢, thus

lesue®ll = ey Re®lr < [Rie00)], + | i),
< Clla;6(t)], + Co < C.

Assume now r = 2 and |0p(§)| < C|€|* near & = 0. We may assume u < 1. Then,
as shown in the proof of Theorem 2, estimate (23) is valid hence, by Parseval, if
R >0,

[FAGIODIE

s etie o) o
¢ o[ e tpeorare [ oeor

€12 l€|>R
Clowz + 165
where o satisfies 0(2 — ) < 2. By the maximum principle (21),
[1:(18@)Dll2 < C(ll6ollor + [[60]l2)

(Since 6y € H', we have 0y € L°" and the maximum principle applies). Thus,
proceeding as for the case r > 2, we obtain

lzjue(®)llz = [lzRr0®)[l2 < [[Ra(z;0()ll2 + [|1Lx; 002
Cllz; 0]z + [11.(16()Dl2 < C.

IA

IN

O

The following result can be found in [12]. Combined with the results of the last
theorem one can use it to improve the algebraic decay of the velocity moments.

Theorem 5. Let 3 > 0, assume that 150y € L*(R?), and let 0 be the solution of
the homogeneous DQG with initial datum 6.

i: Assume % <a<1l. Then

0] < Ct™

for allt > 0, some constant C', where

v = mln(ﬁa%) Zf a = %a
min(%,ﬁ) if $<a<l
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ii: Assume o = 1. Then

Cct=% if B<1,

19Ol < { Ct-Hlog(t+1) if B>1,

for some constant C.

Proof. See [12] O

The next theorem combines Theorems 4, 5to give an improved decay of the
moments of the velocity.

Theorem 6. o Assume 6y € L*NLENLT NH! where2 <r < 1/(1—a). Then
there exists a constant C > 0 such that

lzju@)], <CE+1)"", forall t>0,

where 7 = min {\, [2[L — 1]}, and A\, was defined in (7) in the last theorem.
o Iffy as before, 2 < r < 1/(1—a) (forr = 2, we only require 0y € L*NL2NH"),
and there exist constants ¢ > 0, 0 < p < 1 such that |6p(§)| < CI€)* in a

neighborhood of the origin (as before u < 1 if « = 1), then
lzju(@)l <CE+1)77

where 7 = min {\,, [X + ][5 — 3]}

[e3% T

e if in addition for 8 > 0 it holds that I30y € L'(R?), then
[zju(®)ll- < CE+1)77,
where T = min {\,, [1 + p][F — 3 + 2v]} and v was defined in Theorem 5.

Proof. Proceeding as in the proof of Theorem 4we write x;R;, = Ryx; + Lyi; for
J,k € {1,2}. As before in the case r > 2, we use the fact that I is bounded from
L% to L, where 1/r = 1/q — 1/2; thus by (25)

1Lk O) |l < [10(2)]]q-
Note that 1 < ¢ < 2, hence we can interpolate between L' and L? to obtain
2/q—1 2/q 2/r 1-2/r
611, < ClloI*~ 015" = clely el ™

The conclusion of the theorem follows combining this last inequality with the decay
rates of the L? norms obtained in [4] when u = 0 , the decay rates of L? obtained
in Lemma (4) when g > 0, the decay rates for the L' norm obtained in Theorem 5
when 3 > 0. As in Theorem 4 we have to consider separately the case when r = 2
and when 2 < r < 1/(1 — a)). We omit the details since they are straightforward.
O
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4. Estimates. In this section we assume that the space dimension is 2 and that
a € (1/2,1]. We suppose that 6y € H! N L. As before we write the solution € in
integral form

0(t) = Oo(t) — /0 Ko (t—s)*[u(s) - VO(s)]ds (36)

t
= oo [ [ Kalt— s = y)uty.s)- V() dy s,
0 Jr2
where
@0(t) = e_t(_A)a% = Ka (t) * 90 (37)
and u = (u1,uz) = (—R20,R10); R1, Ro being the Riesz transforms in R2.

We start with some preliminary observations that will be needed later. For this
we recall Taylor’s formula (as used by Fujigaki and Miyakawa [6]) in the form

_1)\IB1+3
Ko(x —y,t—s) = Z (D)7

olrrem P!

where
—1)IBl+iyBgs L )
H(z,y,t,s) = Z ()ﬁ'j'ys/o [DIDPK,(x—0y,t—0s)—D] DP K (x,t)] do.
|Bl+j=m e
From here it follows choosing m =1
Ka(l' - y7t - S)
(38)

2
0K, 0K,
= Ko (z,t) — Z ~(z,t)y; — W(:&t)s + H(z,t,y,s) (39)

with

Observe that

/ u(s) - VO(s)dyds = / div [0(s)u(s)] dy = 0.
R2

R2
One also has

[ wluts)- w0y =0.5 = 1.2
In fact,
/R? yjlu(s) - VO(s)] dy = /]R2 y;div (Qu) dy = — /}R2 u;i6 dy.

The last integral can be written in the form

+ [ ROy (7 J)
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and is zero by the skew-adjointness of the Riesz transforms. Using the vanishing
of these integrals when multiplying (38) by u(y, s) - VO(y, s) and integrating over
R? x [0, ] with respect to (y,s), one gets

O(x,t) — Og(z,t) = —/ . Kyt —s)u(y,s) - VO(y,s)| dyds
(40)
—/ . H(z,t,y,s)uly,s)  VO(y, s)] dyds.

Theorem 7. Assume 6y € L' N L2 N H, and o € (1/2,1).In the case o = 1 we
suppose additionally that ||0(£)]] < c|&|*, with p > 0. Then

Jlim ¢1/%)6(t) = ©o(1)]|2 = 0.
Proof. By (40), it suffices to prove
ds = 0. (41)

t
lim tl/o‘/
t—o0 0 2

From the definition of H,in (39) the fact that «V6 = div(fu), and some integra-
tion by parts, one can write

H('a t,y, S)U(y, S) : ve(ya S) dy
R2

H(x7t,y,s)u(y, 8) ! va(y7s) dy = Z Ajk? +Bl +BQ +BB

R 1<4,k<2

where
A; Ajp(x,t,s) / / 0*K, (@ — — o5)(oy;)ur(y, $)0(y, s) dy d

o= A g2 020}, ot oY)y, 8)01Y, 8) 4y 4o

"1 9’°K yi
= | Saran it *)up(—, )0 do,j, k= 1,2.
/0 Ual‘jaxk( ’ 0'8) [( g )Uk(o' S) (O' )] 0,7, )

T - 3% dz; oyt —o iy, 8)0(y, s) dy do, j =1,2;

B3 = B3($7t78) = / / (aK@é (7t) - 6K0¢ ((E - Jy’t - US)) Su(y7s) : ve(yws) dy do.
o Jr2 \ Ot ot

Then (41) is equivalent to

t
Jim t%/ 1Ayt s)lads = 0, jik=1,2, (42)
— 00

thm ta/ |Bj(t,s)ll2ds = 0, j=1,2,3. (43)

Let 2 <7 < oo; by Lemma 2, with p =7/, ¢ = 2, and by lemma 1,

2
|4t s)ll2 < /Oaif;( 7)o e ()| ()6 5)]|2 do

0’K,
_ 2/1‘ _ , .
/O Hax gz, 09 w8l lly;0(s)ll2 do

IN

o[ o7t 74 7 o) )
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estimating 02/" < 1, performing the integration with respect to o and using (26) to
estimate the L"-norm of u and Theorem 2 for the L%-norm of the moment y;0, we
get
| O (4 o _ st} (g o ()
Jutt )l < = (=)' =% =% ) @472 )
We assume that p =0if 1/2 < a < 1,0 < p < 1if a = 1. Let r be large enough
so that its conjugate exponent satisfies

1<+ <min | ——, ——
a—p 2(l—a)/)’
Notice that 1/(a —p) =1/a>1ifa <1, 1/(a —pu) =1/1—p) > 1if a = 1.
Notice also that 1/(2(1 — «)) > 1. The condition ' < 1/(2(1 — «)) is equivalent to

1—((r+1)/(ar) > —1. The condition ' < 1/(a — ) is equivalent to having the
exponent of 1 + s in (44) be less than —1; i.e., to

1 /1
7/+'U > 1.
« T

We will estimate

(t— )=t — <{ Ot~ ,if  0<s<t/2

1ordl
8 o l=sl =7 if t/2<s<t.
Thus
41 r41
t/2 ((t— 3)1_ ar — tl7%r )
/ (1—|—S)_é(7’+“) ds
0 S
—m [ (-+)
< Ct ar (14+s8) =\ ds < Ct =" ar
0
while

t (t—s)lf% — L
/ ( )(1 +5)"w () d
t

/2 s
t
< ot 1= (5r+n) / (t—s)l=%7 ds < Ctl=a-%,
t/2
It follows that

t
o [Tt llads < © (e 48 )
0

Notice that 1 — L — £ < ( because 1 — 1/a < 0 if a < 1, —u < 0 if @ = 1. Thus

t
Jlim té/ | Aji(t, s)|2ds =0,
— 00 0

proving (42).
Consider next the terms B;, j = 1,2,3. For convenience we set /0t = 9/0x3
and introduce

0K, 0K,

2
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for 7 = 1,2, 3; then
1 .
Jo Jez kit y, s, 0)uly, s)l|0(y, s)| dy o, j=1,2,
1Bl < (15)
fo f]R2 kj(t7 Y, 8,0)s|u(y, S)va(y, s)|dydo, j=3.
Using that

o tEP (1 _ pg—ioy-&oslél*® =
LT NP PR (). =
8a:j ’ 8xj 7Y, 7% a

—|g[2eetlel* (1 - e*i"yfe“slglM) , J=3,
it follows by Parseval and changing variables by n = tif that

2a . 2a |2 1/2
kj(t,y,s,0) < (/ || e 2HE |1 — ety goslél ‘ dg)
]R2

(46)
2 dn) 1/2

where Ay = Ay = 2, A3 = 4a. The integrand of the last integral in (46) goes
pointwise to 0 as ¢ — oo and is bounded by

Cln|*i e 2= < Op|rie=In*

2, N -
o~ (2+32) (/ i =2l ‘1 it ey (s /0) 02
RQ

if t > 2s, which is integrable over R? hence, by Lebesgue’s dominated convergence
theorem,

A
lim tiJrﬁkj(t,y,s,a) =0 (47)

t—o0o
for all fixed values of y,s,0, j =1,2,3.
Assume now 0 < s < t/2. Then the integrand of the final integral in (46) can be
estimated, as mentioned, by the integrable expression C|n|*i e""'m7 hence

¢, J=12,
Ct~l*ae, j=3.

Aj

tékj(t,y,s,a) < Ctre~a = { (48)

Let j = 1,2; then

t/2 oo prl
(B slaas< [ [ [ 00k s 09l ) 1009 du dods.
0 0 0

The integrand of this integral converges to 0 for t — oo, by (47) (1/(2c)+X;/(4a) =
1/aif j =1,2). By (48) it is bounded by Clu(y, $)||6(y, s)|, which is integrable over
the domain of integration; in fact, by Theorem 2 and Corollary 1 it follows that

[e'e) 1 [e'e) [e'e)
/ //hwmwmw@wws/|me%mwsq/uﬂr#w<m
0 0 R2 0 0

this last integral is bounded for o < 1 since for & = 1 we assume that u > 0.
Invoking again the Lebesgue dominated convergence theorem it follows from (47)
that

/2
lim tl/a/ 1B, (t, 8)|l2 ds = 0, (49)
t—o0 0

for j =1,2.
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If j = 3, then by (48),

o2
i / 1Bs(t, )12 ds
0

IN

/2 p1
[ [ L st st 19009l dydods

IN

L2
Cr 1+ / slu(s) 2] V(s)]|2 ds:

by Theorem 2 and Corollary 1,
e Lot/ o
i / |Bs(t, 8|2 ds < Ct=1+3= / s(1+ 5)~ %2 ds.
0 0
The integral in this last expression is largest if ¢ = 0, in which case it is uniformly
bounded in ¢ if 1/2 < a < 3/4, and it is of order >~(/20) if 3/4 < a < 1. Ifa =1
we assume g > 0 and the integral in question is of order #>~(3/2#  In each case,
multiplying by t~1+t(1/2%) gives an expression going to 0 for t — oo, proving that
(49) is also valid for j = 3.
Assume now t/2 < s < t. We claim that

1 CtYt—s)"atl, j=12a<l1
/ ki(t,y,s,0)do < ¢ Ct~'log(t/(t —s)), j=1,2;a=1, (50)
0 Ct=Y(t —s) 2a, j=3.

In fact, by the first inequality in (46), if we bound

2
€ e 2t 1 _ i€ eoslél® ° < o|gy e 2(t-on) el

then
1/2

! 1
/ kj(tayasﬂo-) dO’ S C / ( ‘§|>\je—2(t—a’s)|§|2a dé‘) dO'
0 -

0
1 12
= C/ (t —os) =" 2= do.
0

The claim follows performing this last integral, recalling that \; = 2 if j = 1,2,
A3 = 4o, and t/2 < s < t.
Let j = 1,2. By Theorem 2and Corollary 1, and by (50), we get if o < 1,

t t
[ B alhas < [ TR
t/2 t/2
1
< ct'—=" sl/a(lfg)lfidsg(jtl*%
1/2

which goes to 0 as t — co. The same conclusion follows if o = 1; in this case the
factor (t —2)~(1/®)*1 is replaced by log(t/(t — s) and the final estimate is
¢ 1
1 / 1B, (£, 5)|l2 ds < Ct‘“/ log(1/(1 — s)) ds < Ct=" — 0
t/2 1/2

as t — 0o. Assuming finally j = 3, then by (50)

t 1
t / |Bs(t s)|2ds < /o / / / ks(t,y, 5, 0)s|u(y, $)||VO(y, 5)| do dy ds
t/2 t/2 JR2 Jo
t
< orith / (t — 5)~ 7 s]lu(s) 2] VO(s) |2 ds.
t/2
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Applying Theorem 2and Corollary 1,

244

t
té/ ||Bg(t7s)||2ds§Ct’1+1/o‘/ (t—s)"2as(l+s)" 2 ds < O 5" =0
t/2 t/2

as t — oco. We proved that

t
lim ¢4 / 1B, (¢, 8)|l2 ds = 0
2

t—o0o t/
for j =1,2,3. Together with (49) (which was proved for j = 1,2, 3) it follows that
(43) holds for 7 = 1,2,3. This concludes the proof of the theorem. O

Remark 4. While Theorem 7 has somewhat stronger hypotheses than [Theorem
4.3] in [4], the conclusion is also considerably stronger.

The next theorem establishes the lower bounds of rates of decay for solutions
with zero or non zero initial mass.

Theorem 8. Assume the hypothesis of Theorem 7. Let 0 be a solution to equation
(1) with initial datum 0y and ©¢ be the solution of the linear geostrophic equation
with the same initial datum. Then for any T € [0,1/a],

Co(t+1)77 < [©0(®)]2 < Ci(t+1)77

if and only if
Cot+1)"7 < ||0(#)||]2 < C1(t+1)77.

In particular, if 0 < p < 1 and 0o(€) is of order |E|* near the origin; i.e., satisfies
that there exists constants ¢1 > cg > 0 such that

colé]” < 10o(€)] < erlé)”
in a neighborhood of the origin, then there exist constants Cy, C1 such that
Co(t+1)~5% < [|0(8)]l> < Cr(t+1)~ "5
fort>0.

Proof. The first part of the theorem is an immediate consequence of Theorem 7
and appropriate triangle inequalities. The second part follows from the first part in
view of Lemma 7. O

Appendix. In this appendix we prove some of the properties of the one-parameter
semigroup of operators generated by (—A)*. We will be working in R™ since there
is nothing to gain by assuming n = 2. That is, we define K, : R® x R — C by

Ko (&,t) = (2m) /2t
We notice that
Ky(z,t) = (2m) /2%t 30 g, (tiﬁx)
where g, : R™ — C is defined by
Ga(8) = eI
We will also consider the function g, ; defined for j =0,1,... by

Gaj(€) = (— 1) |g[Pe €™,



MOMENTS AND LOWER BOUNDS TO QUASI-GEOSTROPHIC FLOWS 23

(80 go = ga,0). Then

DIKa(x,t) = (2m) "2t~ 35~ig, (t—ix) . (51)
Lemma 5. Letj € NU{0}. Then g, ; € C®(R") and 2 DPgq, ; € L*(R")NL>®(R")
for all multi-indices B,v such that |y| < |B] + 2a max(1, 7).
Proof. We have

() = (2m) A1) [ eimelgpnelo ag,

R

from which it is obvious that g, € C*®, DPg, € L™ for all 3. Next, we claim that
for all multi-indices A = (A\1,...,A\,) #0,

D (Igf2roe7E) = 37 pu(g) g2 NemlE (¢ £ 0)
=0

where m is a positive integer depending on A\ and each py; is a homogeneous poly-
nomial, depending on A, of degree |A|. Moreover, pg(§) = 0if j =0, |A| > 1. We
prove this by induction on |A|. The case |A| = 0 is, of course, obvious. If j = 0 and
IA| = 1; say, A = e; = (0;1,...,0jn), Then

DA (67\5\2”) = —2ale[Po2g el

which is of the claimed form, with m =1, pi(§) = &; and py = 0. Assuming the
result proved for |\| = k, some k > 0, to see it implies the result for k+ 1 it suffices
to see that differentiating with respect to &; a term of the form

pe(€)|€ 2D lEl*

where ¢ € N and py is a homogeneous polynomial of degree k, gives rise to a sum of
similar terms, with k replaced by k + 1. We have

(pz(é)\§|2<f+j>a*2ke"5'2a) = (g?(§)|£2(f+j>a2k
J

+2(0+ )a = 2R)pe(IEPET T2 2am<f>|£|2“+J’>“—2’“+2a—2£j) el

9%;

5 — _ 2« o N _ 2a
= (€PN D IE  g (6)Pet) 201 e
+Q3(f)\5|2(€+j+1)a_2(k+1)e_lflm,

where q1, qo, q3 are given by

wle) = ‘;Z(gnf?,
©&) = 20+ j)a—2k)p8)E;,
B) = —2ap(§)E;,

hence are homogeneous polynomials of degree k4 1. The claim is established. It is
now an easy consequence of Leibniz’ formula, if we estimate |p(£)| by const|¢|I*,
that for all multi-indices 3, A we can write
o 2a+|8|=[Alp, if i=0
A B—\£\2>: €% € if j=0,
D* (% { €N pe) i > 1. (52)
where

|2a

()] < €]
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for some v > 0 (depending, of course, on G, A, and j). We thus proved, replacing A
by A+ 7 and setting g, j 5, = 27 DPg, j, that

{290,554} )] = [ D7 (€%5ay) ()] = [€1"R(E) (53)
where h is as described and
_{ 20+ 1] =y = 1Al if j=0,
o 205+ B[y — AL i G =0.
By the assumption on v we conclude that || > —|A| so that taking now |A\| = n
we see that D7 (55 ga,j) is locally integrable in R™, in particular, the classical
derivatives we computed for £ # 0, coincide with the derivatives in the sense of
distributions. Moreover, we can select 7 such that 1 < r < 2 and ru > —n;
then | DM (55 gaj) |" is also locally integrable, hence integrable since at infinity it
decays faster than any negative power of |£|. In other words, the Fourier transform
of 21gq j 5, is in L" hence, since 1 < r < 2, g, 5,4 € L™, Since this holds for
all X with |A| = n, we proved that |#|"ga.j s~ € L. On the other hand, it is clear
that §a,j5~ € L' N L2, thus ga, .~ € LN L% in particular, o j - € L"" proving
that (1 +|%|)"ga.jp € L" . Thus

/R Gos (@) dz = / (L4 )" (L + 2])" g ()] de
a1

(/n(1+ |z[)~™ da;)i (/R 1+ |2))" ga s (2)]" dx) " s

This completes the proof that z7D?g, ; = (i)/#1*1lg, ; 5. € L . O

IN

As an immediate corollary to Lemma 5 we obtain

Lemma 6. Let 8, be multi-indices, |y| < |5 + 2amax(j,1), j =0,1,2,..., 1 <
p < oo. Then
; Iv1=18] _; n(p—1)
|27 DI DP Ko (#)||, = Ct 2= 7~ e
for some constant C depending only on «, 3, v, j, p, and the space dimension n.

Proof. In view of (51),

n+(B|

21 DID Ko (t) = (2m) /2R 0 (DPga ) (1w

By Lemma 5, xVDﬁga,j € L' N L C LP, hence

. n(p=1)

77 |27 DP g

[v[=18] _
a

HvagDﬁKa(t)Hp = (277)_n/2t 2

v

proving the lemma with C' = (27)~"/2||27D gy ;|-

In particular, we see that K, (t) € L*(R") for all ¢ > 0 and
[Ka(t)] <C

for some constant C' depending only on « and the space dimension n. It is also easy
to see that K, (t) * Ky (s) = Ko(s+t) for all s,¢ > 0 and that

lim Ko () # f = f
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uniformly for every continuous function of compact support f : R™ — R. It follows
that if we define
e MR = Ko (t) * f
for f € LP(R™), then {e’t(*A)a} is a one-parameter, strongly continuous, semi-
group of uniformly bounded operators in L?(R™) for 1 < p < oo. As mentioned
before, we can then define (—A)* as the generator of this semi-group.
Let 1 <r < oo. If 6y € L*(R™) N L"(R™) then

1Ko (8) # Goll2 < C(L+ )"/ [16o]|x (54)
for all ¢ > 0. This is, of course an immediate consequence of Lemma 6, according
to which || K (t)|, = Ct~"/2"" (and ||K,(t)||1 is constant in t). A better rate of
decay can be obtained if one knows something about the behavior of fy(€) near the
origin. In fact, from

1 Ka(®) % boll2 = | Ka(t)doll3 = /R e g (6 de

it is easy to derive the following result. We omit the simple proof.

Lemma 7. Assume 0y € L2N L' and there exist constants c; > ¢y > 0, i > 0 such
that .

col¢]" < 100(§)] < €]
for all & in a neighborhood of the origin. Then there exist constants C1,Cy such
that

2u+n 2u+4n

Ci(1+ )75 < | Ka(t) % folla < Ca(1+1)7 5"
We use (54) to estimate the L” norm of the moments of K (t) * 6y.

Lemma 8. Let 0y € L. (R™) N L7 (R™), where 2 < r < oo, and assume that

00(&)| < Cl€|™ for some constants C, > 0 and all € in a neighborhood of 0 in R™.
Then

n_ nt(p=1r’ )

2 (Ka(t) % 60) [l < C(1+ )™ e
for all t > 0, and some constant C' depending on 0y (j=1,2).
Proof. We have
xj (Ka(t) % 00) = (x; Ko (t)) * 0o + Ko (t) * (z,00) .
By (54), the second term on the right hand side has L" norm bounded by C(1 +
t)’”/QM/. It suffices to estimate the L" norm of the first term. Since r > 2,

0K, »
@ EKalt)) * Ooll- < Cliz5e =60l
J
’ / ’ 2 ~ ’ 1/7”/
< o [ e g a)
RQ

Since § € L' we have § € L, and we may assume that |0(¢)|leC|[* for all
¢ € R™. Thus, going over to polar coordinates p = |¢| and then changing variables
by pl _ t1/2ap,

o0 v N 2c 1/T/
leial)stoll, < o [ gt gy)
0

_nt(u=1)r’

= Ct 2ar/

The Lemma follows. O
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The hypotheses 6y € L. of Lemma 8 implies 6y € L', hence 6y € L> and if in
addition 6y € L], then all hypotheses of Lemma 8 hold with p = 0. In this case
n/2ar’" > (n+ (u—1)r")/2ar’ = (n — ') /2ar’. We thus have

Corollary 4. Let 0y € LL (R™) N LT (R™), where 2 < r < co. Then

n—r/

[ (Ka(t) * 00) [l < C(141)" 22"
for allt > 0, and some constant C' depending on 0y (j=1,2).

Appendix 2: A modified Gronwall inequality. Let 0 < § < 1 and define
®:C— Chy

oo n

z

= T

n=0
It is easy to see that this series converges for all z € C; for example, by Stirling’s
formula, I'(x) > ce™*2%~1/2 for some constant ¢ > 0, thus

lim F(l‘)l/x > lim e~ lel/opl=5 = o0,

r—00 €Tr—00
Thus also
[n(1=6)+1]/n
lim I (n(1-6)+1)"" = lim (D (n(1-6)+ 1"/ - co.

This proves that the series has infinite radius of convergence. The following lemma
can now be stated.
Lemma Let 0 < T < oo and let f:[0,7) — [0,00) be continuous and satisfy

flt) <A+ B/O (t—s) 0 f(s)ds (55)

for all t € [0,T). Then

f(t) < A®(BT(1 — 6)t'=°%)
fort € [0,T).
PrOOF. Let 0 < 77 < T, which will remain fixed for a while, and let M =
Supg<;<7, f(t). Claim

-1 _5\k _S5\M
BIL(1—06)t'—° BI(1—06)t'—°
— Lk(1-6)+1) L(n(l-90)+1)

forn=0,1,2,...,0<t<T.

In fact, if n = 0 the claim reduces to f(¢t) < M in [0,T3], which is just the
definition of T;. Assume proved for some n > 0. Then (55) implies

(56)

n—1 k t
(BI'(1-9)) _ gy gk(1-8) g
) < A+BAk§O )/O(t ) d

L T(l(1—0) + 1
(Br(1-9))" /t —5 n(1-4)
BM————— — " .
+ Tn(l=0)+1) Jo (t—s)"’s ds
Now .
/ (t — )09 g = tHADA=D B(1 — 6 k(1 — ) +1)
0
where

T(1— 8T (k(1 —8) + 1)
T((k+1)1-0)+1)

B(l-6k(1-6)+1)=
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Using this in (57) gives (56) with n replaced by n + 1. The claim is established.
Because the series converges, the last term in (56) goes to 0 as n — oo. Letting
n — oo in (56) proves the inequality of the lemma for 0 < ¢ <7Tj. Since Ty € [0,T)
was arbitrary, the lemma is proved. O
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