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Abstract. We consider the long time behavior of moments of solutions and
of the solutions itself to dissipative Quasi-Geostrophic flow (QG) with sub-

critical powers. The flow under consideration is described by the nonlinear

scalar equation

∂θ

∂t
+ u · ∇θ + κ(−4)αθ = f,

θ|t=0 = θ0

Rates of decay are obtained for moments of the solutions, and lower bounds of
decay rates of the solutions are established.

1. Introduction. We consider the solutions to the surface 2D dissipative Quasi-
Geostrophic flows (DQG) with sub-critical powers α

∂θ

∂t
+ u · ∇θ + κ(−4)αθ = 0,

θ|t=0 = θ0

Here α ∈ (0, 1], κ > 0, θ(t) is a real function of two space variables x ∈ R2 and a
time variable t. The function θ(t) = θ(x, t) represents the potential temperature.
The fluid velocity u is determined from θ by a stream function ψ

(u1, u2) = (− ∂ψ

∂x2
,
∂ψ

∂x1
) (1)

where the function ψ satisfies

(−4)
1
2ψ = −θ

Equation (1) is obtained when dissipative mechanisms are incorporated into the
inviscid 2D-Quasi-Geostrophic equation (2DQG). The 2DQG is derived from the
General Quasi Geostrophic (GQG) equations by reduction to the special case of
solutions with constant potential vorticity in the interior and constant buoyancy
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frequency [3]. For information on the GQG equations we refer the reader to [9]. The
fractional power α = 1/2 is perhaps the most interesting one since it corresponds
to a fundamental model of quasi-geostrophic equations, see [4] and [9]. As pointed
out in [4] “Dimensionally the 2DQG equation with α = 1/2 is the analogue of the
3D Navier-Stokes equations.”

Two main questions will be addressed in this paper, provided 1/2 ≤ α ≤ 1; decay
of specific moments of the solutions of (1) and lower bounds of rates of decay of
the solutions in L2 with data with zero or non zero total mass. The results will
be presented in the frame work of 1/2 < α ≤ 1. Due to the bounds obtained in
[2] we believe that all the results presented here can be easily extended to the case
α = 1/2, provided the data is sufficiently small

We consider the moments of the solutions with data in appropriate weighted
spaces satisfying |θ̂0(ξ)| ≤ C|ξ|µ, where 0 ≤ µ ≤ 1. It will be shown that the
moments of order one of the temperature with such data, decay in norm Lr, with
2 ≤ r < 1

α−1 like

‖xjθ(t)‖r ≤ C0(1 + t)−λr , where λr =
1
αr′

+
µ− 1
2α

and the corresponding velocity moments for 2 < r < 1
1−α decay like

‖xju(t)‖r ≤ C0(1 + t)−τ , where τ = min {λr, (
1
α

+ µ)(
1
r′
− 1

2
)}.

The decay of the moments of the velocity will be improved if in addition it holds
that Iβθ0 ∈ L1(R2) for some β > 0, where Iβ is the Riesz potential.

Once this decay is established it will be used to obtain lower bounds of rates
of decay of the solutions to (1). The techniques to establish lower bounds are
based on the ones used for the lower bounds of rates of decay for solutions to the
Navier-Stokes equations ([6, 8]). In this direction the main result established is

lim
t→∞

t1/α‖θ(t)−Θ0(t)‖2 = 0. (2)

where Θ0(t) is the solution of the “linear diffusive” part of the equation:

∂θ

∂t
+ κ(−4)αθ = 0,

θ|t=0 = θ0

In what follows we will refer to the above equation as the “linear” one. An easy
corollary from this last result is that solutions to the geostrophic equation have
similar lower bounds than solutions to the “linear diffusive” equation. In particular
one can show that

‖θ(t)‖2 ≥ C0(1 + t)−1/α,

where the constant C0 will depend on norms of the datum. The class of solutions
we consider, will include solutions such that θ̂(0) = 0 as well as solutions with data
such that θ̂(0) 6= 0. The case when

θ̂(ξ) ≥ λ > 0, for |ξ| ≤ γ (3)

was already considered by Constantin and Wu in [4]. This case is an easy corollary
of our results.

The paper consists of an introduction, four sections and two appendices. In Sec-
tion 2 notation is described and several preliminary results are mentioned. Section
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3 considers the existence and decay of the moments. Section 4 has the main result
describing the asymptotics of the solutions compared with the “linear” equation.
As a corollary we obtain lower bounds of the rates of decay. The appendices contain
several results, mostly with simple proofs, included to make the paper self-contained.

We note that under appropriate conditions for a forcing term f , many of the
results obtained in this paper can be extended to treat the solutions of

∂θ

∂t
+ u · ∇θ + κ(−4)αθ = f,

θ|t=0 = θ0

Acknowledgments. The authors would like to express their thanks to the anony-
mous referee for many very helpful and thoughtful comments and suggestions.

2. Notation and Preliminaries. The Fourier transform of v ∈ S(R2) is defined
by

v̂(ξ) = (2π)−1

∫
R2
e−ix·ξv(x) dx,

extended as usual to S ′. For a function v : R2 → C and a multi-index γ = (γ1, γ2),
Dγv denotes derivation of order γ with respect to the two (space) variables. If v
also depends on time, the symbol Dj

t is used to denote j derivatives with respect
to t. We denote by xγv (with some abuse of language) the function whose value at
x is xγv(x). Similarly, xjf is the function whose value at x is xjf(x), j = 1, 2.

If k is a nonnegative integer, W k,p(R2) will be, as is standard, the Sobolev space
consisting of functions in Lp(R2) whose generalized derivatives up to order k belong
to Lp(R2). As usual, when p = 2, then W k,2(R2) = Hk(R2) where the space Hs is
defined for all s ∈ R as the space of all f ∈ S ′ such that (1 + |ξ|2)s/2f̂(ξ) ∈ L2.

Let 1 ≤ r < ∞. The spaces Lr
j , j = 1, 2, will denote the weighted spaces

Lr(R2, |xj |r dx); i.e., the spaces of all measurable functions f defined on R2 such
that

‖f‖r
r,j =

∫
R2
|xj |r|f(x)|r dx <∞.

We define the space Lr
w by

Lr
w = Lr(R2) ∩ Lr

1 ∩ Lr
2 = {f :

∫
R2

(1 + |x|r)|f(x)|r dx <∞}.

Following Constantin and Wu [4], we denote by

Λ = (−4)
1
2

the operator defined by Λ̂f(ξ) = |ξ|f̂(ξ). More generally, if s ≥ 0, we define Λs by

Λ̂sf(ξ) = |ξ|sf̂(ξ).

Clearly Λsf is well defined (and in L2) if f ∈ Hs. More generally, the domain of Λs

will consist of all elements f ∈ S ′ such that f̂ is a function (i.e., locally integrable); it
is then clear that the definition given above defines Λsf as a tempered distribution.

We denote by R1,R2 the Riesz-transforms in R2; i.e., R̂jf(ξ) = −i(ξj/|ξ|)f̂(ξ).
The operatorR⊥ taking scalar valued functions to vector valued functions is defined
by

R⊥f = (−∂x2Λ
−1f, ∂x1Λ

−1f) = (−R2f,R1f). (4)
The relation between u and θ in (1) can then briefly be stated as u = R⊥θ.
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If F is a function defined on R2 × [0,∞), we define for t ≥ 0 the function F (t)
on R2 by F (t)(x) = F (x, t). For such F , the Fourier transform (and inverse Fourier
transform) is always with respect to the space variables; thus

F̂ (ξ, t) = F̂ (t)(ξ)

for all t ≥ 0. The letters C, C0, C1, etc., will denote generic positive constants,
which may vary from expression to expression during computations.

Let 0 < α ≤ 1. We collect here a few formulas and results concerning the
operator (−∆)α and the semi-group it generates. Most of the proofs are omitted
and will be presented in the Appendix.

The following notation is used throughout. We let Kα : R2×R → C be given by

Kα(x, t) = (2π)−2

∫
R2
eix·ξe−t|ξ|2α

dξ;

i.e., by
K̂α(ξ, t) = (2π)−1e−t|ξ|2α

.

Then

Lemma 1. Let β, γ be multi-indices, |γ| < |β| + 2αmax(j, 1), j = 0, 1, 2, . . ., 1 ≤
p ≤ ∞. Then

‖xγDj
tD

βKα(t)‖p = Ct
|γ|−|β|

2α −j− p−1
αp

for some constant C depending only on α, β, γ, j, p.

Proof. This is the case n = 2 of Lemma 6 proved in the Appendix.

In particular, we see that Kα(t) ∈ L1(R2) for all t > 0 and

‖Kα(t)‖1 ≤ C

for some constant C depending only on α. It is also easy to see that Kα(t)∗Kα(s) =
Kα(s+ t) for all s, t > 0 and that

lim
t→0

Kα(t) ∗ f = f

uniformly for every continuous function of compact support f : R2 → C. It follows
that if,for f ∈ Lp(R2), we define

e−t(−∆)α

f = Kα(t) ∗ f

then {e−t(−∆)α} is a one-parameter, strongly continuous, semi-group of uniformly
bounded operators in Lp(R2) for 1 ≤ p < ∞. We can then define (−∆)α as the
generator of this semi-group.

The next estimate will be used several times. It is stated as a lemma for easy
reference.

Lemma 2. Let 1 ≤ p ≤ q ≤ ∞. Assume K ∈ Lp(R2), u ∈ Lq(R2), v ∈ Lp′(R2).
Then

‖K ∗ (uv)‖q ≤ ‖K‖p‖u‖q‖v‖p′ . (5)

Proof. By Hausdorff-Young

‖K ∗ (uv)‖q ≤ ‖K‖p‖uv‖r

where 1/r = 1/q+1/p′; the condition q ≥ p guarantees that 1/r ≤ 1. The estimate
now follows by Hölder.
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Notice that if p ≤ 2, then p′ ≥ 2 ≥ p and (5) is valid with q = p′. The estimate
will be applied when 1 < p < 2 and K will be one of Kα(t), ∂Kα(t)/∂xj , xjKα(t),
or xi∂Kα(t)/∂xj .

3. The Moments. This section is focused on mild solutions of the geostrophic
equations (1); that is, solutions of the integral equation

θ(t) = Θ0(t)−
∫ t

0

Kα(t− s) ∗ [u(s) · ∇θ(s)] ds (6)

= Θ0(t)−
∫ t

0

∫
R2
∇Kα(t− s, · − y)R(θ(y, s)) · θ(y, s) dy ds,

where Θ0(t) = Kα(t) ∗ θ0 and R(θ(y, s) = (−R2θ(y, s),R1θ(y, s)) = u(y, s), and
R̂jθ(y, s) = i

ξj

|ξ| θ̂ is the j-th Riesz Transform of the function θ. It will be supposed
that α ∈ (1/2, 1]. As mentioned before we expect that our results can be easily
extended to the case α = 1/2, provided the data is in H2 and ‖θ‖∞ is sufficiently
small, since then the solutions are bounded in H2 (see [2]), and the techniques
applied here and in [12] will hold. In the case that our datum is in a sufficiently
high Sobolev space, the results of [4] or [12] yield that we are working with regular
solutions.

The following decay rates for the moments of order one are the main results of
this section. Let 2 ≤ r < 1

1−α then the moments decay like

‖xjθ(t)‖r dx ≤ C0(1 + t)−λr , where λr = min { 1
α

(
1
2
− 1
r
),
µ− 1
2α

+
1
αr′

} (7)

and the corresponding velocity moment for 2 < r < 1
1−α , 0 ≤ µ ≤ 1 decays like

‖xju(t)‖r ≤ C0(1 + t)−τ , where τ = min {λr, (
1
α

+ µ)(
1
r′
− 1

2
)}. (8)

The decay of the moments of the velocity will be improved if in addition for β > 0,
it holds that Iβθ0 ∈ L1(R2).

The first step in obtaining the decay (7) is to prove that (6) has a solution in
C([0, T ], L2

w) for some T > 0, then proving that this solution has to coincide with
a standard solution of the integral equation which exists for all times t ≥ 0. The
following version of a fixed point theorem will be very useful in establishing local
existence.

Lemma 3. Let X be a Banach space and let B : X×X → X be a bilinear mapping
of norm η; i.e., such that

‖B(x1, x2)‖ ≤ η‖x1‖‖x2‖. (9)

for all x1, x2 ∈ X. Then, for all y ∈ X satisfying

4η‖y‖ < 1,

there exists a unique x ∈ X satisfying the equation

x = y +B(x, x) (10)

and such that
‖x‖ ≤ 2‖y‖. (11)

Proof. For a proof see [1]
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We apply this lemma with the bilinear operator B defined (at least formally) as
follows. The space X of Lemma 3 will be a space of the form C([0, T ], Y ), where Y
is a Banach space to be specified. If ω1, ω2 ∈ C([0, T ], Y ) we define

B(ω1, ω2)(t) =
∫ t

0

∇Kα(t− s) ∗ [ω2(s)R(ω1(s))] ds. (12)

For the rest of this section we fix p such that 1 < p < 2/(3− 2α) and set

δp =
3p− 2
2αp

.

Remark 1. Notice that 2/(3− 2α) > 1 (since we are assuming α > 1/2) and that
0 < δp < 1. The significance of δp is due to Lemma 1 (with n = 2, j = 0, |β| = 1)
according to which

‖∂Kα

∂xj
‖p = Ct−δp , j = 1, 2, (13)

for all t > 0 and some constant C depending only on p.

Moreover, it is well known that if θ0 ∈ Lp′(R2) there exists a unique mild solution
θ ∈ C([0,∞), Lp′(R2)) such that θ(0) = θ0. We include this result in the statement
of our next theorem, which also establishes the boundedness of the moments of a
mild solution with datum in L2

w.

Theorem 1. Let 1 ≤ p ≤ q ≤ ∞, with p′ the conjugate of p. Let θ0 ∈ Lp′(R2).
There exists a unique mild solution
θ ∈ C

(
[0,∞), Lp′(R2)

)
of (1) with θ(0) = θ0. If, in addition,

i.: θ0 ∈ Lq(R2) for some q ∈ [p,∞], then θ ∈ C
(
[0,∞), Lq(R2)

)
.

ii.: θ0 ∈ L2
w(R2), then θ ∈ C

(
[0,∞), L2

w

)
.

Proof. If T > 0, q ≥ 1, let Xq,T = C([0, T ], Lq(R2)), a Banach space with the norm

‖f‖Xq,T
= sup

0≤t≤T
‖f(t)‖q.

We begin sketching a proof of the existence and uniqueness of a mild solution θ

with datum θ0 ∈ Lp′(R2); i.e., a solution θ ∈ C
(
[0,∞), Lp′(R2)

)
of the integral

equation (6). Using the bilinear operator B we can write the integral equation in
the form

θ = g +B(θ, θ), (14)

where g(t) = Θ0(t) = Kα(t) ∗ θ0.
By Lemma 2, with K replaced by ∇Kα(t− s), whose Lp-norm is given by (13),

‖B(ω1, ω2)(t)‖q ≤ C

∫ t

0

(t− s)−δp‖ω2(s)‖q‖R(ω1(s))‖p′ ds

≤ C

∫ t

0

(t− s)−δp‖ω2(s)‖q‖ω1(s)‖p′ ds (15)

≤ CT 1−δp‖ω2‖Xq,T
‖ω1‖Xp′T . (16)

Inequality (15) is due to the boundedness of the Riesz transforms in Lp′ (because
1 < p′ <∞); the constant C depends only on p, q and varies from line to line.
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Consider first the case q = p′. Notice that if θ, θ̃ are two solutions in Xp′,T of
the integral equation (6) with initial datum θ0, θ̃0, respectively, then by (14)

‖θ(t)− θ̃(t)‖p′ ≤ ‖Kα(t) ∗ (θ0 − θ̃0‖p′ + ‖B(θ, θ)(t)−B(θ̃, θ̃)(t)‖p′

≤ c‖θ0 − θ̃0‖p′ + ‖B(θ, θ − θ̃)(t)‖p′ + ‖B(θ − θ̃, θ̃)(t)‖p′

≤ c‖θ0 − θ̃0‖p′ + C

∫ t

0

(t− s)−δp

(
‖θ(s)‖p′ + ‖θ̃(s)‖p′

)
‖θ(s)− θ̃(s)‖p′ ds

≤ c‖θ0 − θ̃0‖p′ + C
(
‖θ‖Xp′,T + ‖θ̃‖Xp′,T

) ∫ t

0

(t− s)−δp‖θ(s)− θ̃(s)‖p′ ds,

where c ≡ ‖Kα(t)‖1 and C is the same constant as in (16). It follows by a modified
Gronwall inequality argument∗ that

‖θ(t)− θ̃(t)‖p′ ≤ Φδp

(
T, ‖θ‖Xp′,T + ‖θ̃‖Xp′,T

)
‖θ0 − θ̃0‖p′ (17)

for some (continuous) function Φδp
on [0,∞)×[0,∞). In particular ‖θ(t)− θ̃(t)‖p′ =

0 for all t ∈ [0, T ] if θ0 = θ̃0, proving the uniqueness of the solution of the integral
equation in C([0, T ], Lp′), in any interval [0, T ] in which it is defined. Moreover,
the short term existence of such a solution is also immediate. In fact, fix T0 > 0
and let T be such that T ≤ T0 and 4C0T

1−δp < 1/(c‖θ0‖p′), where the solution to
the“linear part” satisfies ‖Θ0‖p′ ≤ c‖θ0‖p′ . Lemma 3 applies (with η = C0T

1−δp)
to prove the existence of θ ∈ Xp′,T solving (6).

To see that this short term solution can be extended to a global solution in
C([0,∞), Lp′(R2)), as is usual, one only needs to see that if θ solves the integral
equation in an interval [0, T ), T < ∞, then lim supt→T− ‖θ(t)‖p′ < ∞. Thanks
to (17) it suffices to prove this assuming θ0 smooth. In this case the so called
“maximum principle” (cf. [2]) implies that

‖θ(t)‖q ≤ ‖θ0‖q (18)

for t in any interval [0, T ) in which θ solves (1) with initial datum in Lq; 1 < q <∞.
Applying this result with q = p′ completes the proof of the existence of a global
solution θ ∈ C

(
[0,∞), Lp′(R2)

)
of the integral equation (6).

Assume now that, in addition, θ0 ∈ C([0,∞), Y ) where Y is either Lq(R2) with
q ∈ [p,∞] or L2

w(R2). We need to prove that if θ0 ∈ Y , then Θ0(t) = Kα(t) ∗ θ0
stays bounded in Y and B (as defined above) is a bounded bilinear map

(XT,p′ ∩ C([0,∞), Y ))× (XT,p′ ∩ C([0,∞), Y )) → XT,p′ ∩ C([0,∞), Y )

of norm of order o(1) as T → 0. Once this is done, Lemma 3 establishes the short
term existence of a solution θ ∈ XT,p′ ∩ C([0,∞), Y ). Next we need to prove that
this solution remains bounded in Y over bounded intervals; it can then be extended
to a solution valid for all values of t ≥ 0 that, by the uniqueness of the solution in
XT ′,p (for all T > 0), must coincide with the previous one.

The case Y = Lq(R2) is particularly simple. We have ‖Θ0(t)‖q ≤ c‖θ0‖q for all
t ≥ 0, (c ≡ ‖Kα(t)‖1) and (16) proves that the norm of B as a bilinear map from
(XT,p′ ∩XT,q) × (XT,p′ ∩XT,q) to XT,p′ ∩ XT,q is of order T 1−δp → 0 as T → 0.
By the maximum principle (18) this solution cannot blow up in finite time, hence
can be extended to a global solution.

∗see Appendix 2
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Finally, consider the case θ0 ∈ L2
w(R2). By Lemma 1,

‖xjKα(t)‖1 ≡ Ct1/2α.

Using this and once again the fact that ‖Ka(t)‖1 is a constant, we get from

xjΘ0(t) = xj(Kα(t) ∗ θ0) = (xjKα(t)) ∗ θ0 +Kα(t) ∗ (xjθ0)

that ‖xjΘ0(t)‖2 ≤ C(1 + t)1/2α (j = 1, 2). Thus ‖Θ0(t)‖L2
w

remains bounded in
bounded intervals, hence the same is true of its Lp′ ∩ L2

w norm.
Since B has already been proved bounded from (XT,p′ ×XT,2)× (XT,p′ ×XT,2)

to XT,p′ ×XT,2, with norm going to 0 as T → 0. It remains to be proved that it is
similarly bounded from C([0, T ], L2

j )× C([0, T ], L2
j ) to C([0, T ],∩L2

w) for j = 1, 2.
We have

xjB(ω1, ω2)(t) =∫ t

0

(xj∇Kα) ∗ [ω2(s)R(ω1(s)) ds+
∫ t

0

∇Kα(t− s) ∗ [(xjω2(s))R(ω1(s))] ds = I1 + I2.

By Lemma 1 (with |γ| = |β| = 1, j = 0),

‖xj
∂Kα

∂xk
‖p = Ct−ρ,

with ρ = 1/(αp′) < 1 (since α > 1/2, p′ ≥ 2) for j, k = 1, 2, t > 0. From this, and
(5) (with q = 2),

‖I1‖2 ≤ C

∫ t

0

(t− s)−ρ‖ω1(s)‖p′‖ω2(s)‖2 ds.

In I2 we estimate ‖∇Kα(t− s)‖p as before and get

‖I2‖2 ≤ C

∫ t

0

(t− s)−δp‖ω1(s)‖p′‖xjω2(s)‖2 ds.

It follows that

‖xjB(ω1, ω2)(t)‖2 ≤ C(T 1−δp + T 1−ρ)‖ω1‖XT,p′‖ω2‖C([0,T ],L2
w)

for 0 ≤ t ≤ T , j = 1, 2. The desired boundedness of B has been proved, hence
the short term existence of a solution taking values in L2

w ∩ Lp′ ; by uniqueness
of the Lp′ solution this solution coincides with the Lp′ solution. To see that the
solution remains in L2

j for all t ≥ 0 (j = 1, 2), we observe that xjθ solves the integral
equation

(xjθ)(t) = gj(t)−
∫ t

0

∇Kα(t− s) ∗ [(xjθ(s))u(s)] ds

where u(s) = R(θ(s)) thus u ∈ C
(
[0,∞), Lp′(R2)

)2

and

gj(t) = xjΘ0(t)−
∫ t

0

[xj∇Kα(t− s)] ∗ [θ(s)R(θ(s))] ds.

From what we proved, using the fact that θ ∈ C([0,∞), Lp′ ∩ L2), we see that
gj ∈ C([0,∞), Lp′ ∩ L2). Thus

‖xjθ(t)‖2 ≤ ‖gj(t)‖2 + C

∫ t

0

(t− s)−ρ‖u(s)‖p′‖xjθ(s)‖2 ds



MOMENTS AND LOWER BOUNDS TO QUASI-GEOSTROPHIC FLOWS 9

and a (modified) Gronwall inequality argument proves that ‖xjθ(t)‖2 cannot blow
up in finite time.

From now on, θ will always denote the solution of the geostrophic equations
with initial datum θ0 ∈ Lp′ ∩ L2 given by Theorem 1 and u will always denote
the corresponding velocity, u = R⊥θ. Thus θ ∈ C

(
[0,∞), L2(R2) ∩ Lp′(R2)

)
and (since The Riesz transforms are bounded in L2, Lp′ , it follows that u ∈
C

(
[0,∞), L2(R2) ∩ Lp′(R2)

)
. In the sequel we shall need the following properties

of this solution.
1.: Let m be a non-negative integer and assume θ0 ∈ L1 ∩ Hm ∩ Lp′ . There

exists a constant C ≥ 0, depending only on L1 ∩Hm-norm of θ0 such that

‖Λmθ(t)‖2 ≤ C(1 + t)−
m+1
2α (19)

for all t ≥ 0. See [4, Theorem 3.1] for the case m = 0, [12, Theorem 3.2] for the
generalization to the case m ≥ 0. We observe that since the space dimension is
2, the condition θ0 ∈ Lp′ (which assures uniqueness of our solution) is implied
by θ0 ∈ Hm if m ≥ 1.

2.: With the same hypotheses as in 1.,

‖Λmu(t)‖2 ≤ C(1 + t)−
m+1
2α , (20)

same C as in (19). This follows at once from (19) because the Riesz transforms
are bounded in L2 and commute with Λm.

3.: Let 1 < q <∞ and assume that θ0 ∈ Lq ∩ Lp′ . Then

‖θ(t)‖q ≤ ‖θ0‖q (21)

for all t ≥ 0. This is the so called maximum principle (see [2]).
The next theorem is a simple extension of the decay rate (19), which was obtained
in [4] and [12]. The main tool used in the proof is Fourier splitting.

Theorem 2. Assume θ is a solution of (1) with data θ0 ∈ L1 ∩ Hm, m ≥ 0.
Suppose additionally that |θ0(ξ)| ≤ C0|ξ|µ for ξ in some neighborhood of the origins
and for some constants C0, µ; C ≥ 0, 0 ≤ µ ≤ 1. Moreover, if α = 1 assume that
µ < 1. Then

‖Λmθ(t)‖L2 ≤ C(t+ 1)−
m+1+µ

2α , (22)
where C is a constant which depends only on C0 and the norms of the initial datum.

Proof. Suppose first that m = 0. Because θ0 ∈ L1 implies θ̂0 ∈ L∞, we may assume
that the inequality |θ̂0(ξ)| ≤ C0|ξ|µ is valid for all ξ ∈ R2. Claim that

|θ̂(ξ, t)| ≤ C|ξ|µ (23)

for ξ ∈ R2, where C does not depend on t. In fact, taking the Fourier Transform in
(6) one sees that

θ̂ = θ̂0e
−|ξ|2αt +

2∑
k=1

∫ t

0

e−|ξ|
2α(t−s)ξkûkθ ds.

By (19), (20) (case m = 0),

|ûkθ(s)| ≤ ‖uk(s)θ(s)‖1 ≤ ‖uk(s)‖2‖θ(s)‖2 ≤ C(1 + s)−1/α,
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so that

|θ̂(ξ)| ≤ C|ξ|µ + C|ξ|
∫ t

0

e−|ξ|
2α(t−s)(1 + s)−1/α ds.

To establish the claim, it suffices to see that∫ t

0

e−|ξ|
2α(t−s)(1 + s)−1/α ds ≤ C|ξ|−ε

where C does not depend on t and 1− ε ≥ µ. This is obvious (with ε = 0) if α < 1,
so assume α = 1, in which case we assume µ < 1. Then, if σ > 1, by Hölder,∫ t

0

e−|ξ|
2α(t−s)(1 + s)−1 ds ≤

(∫ t

0

e−σ′|ξ|2α(t−s) ds

)1/σ′ (∫ t

0

(1 + s)−σ ds

)1/σ

≤
(∫ ∞

0

e−σ′|ξ|2αs ds

)1/σ′ (∫ ∞

0

(1 + s)−σ ds

)1/σ

= C|ξ|− 2α
σ′ .

Taking σ′ large enough, we get ε = 2α/σ′ ≤ 1− µ. The claim is established.
We are ready for the Fourier Splitting argument. For this, multiply (1) by θ and

integrate in space. Using Parseval and integration by parts it follows in frequency
space that

d

dt

∫
R2
|θ̂(ξ)|2 dξ = −

∫
R2
|ξ|2α|θ̂(ξ)|2 dξ

Now split the domain of integration of the integral on the right hand side of the
last equation yields into S ∪ Sc where S is defined by

S = {ξ : |ξ| ≤
(

k

t+ 1

)1/2α

};

k a constant to be determined below. Noting that for ξ ∈ Sc one has −|ξ|2α ≤ − k
t+1 ,

it follows that
d

dt

∫
R2
|θ̂(ξ)|2 dξ ≤ − k

t+ 1

∫
Sc

|θ̂(ξ)|2 = − k

t+ 1

∫
R2
|θ̂(ξ)|2 dξ +

k

t+ 1

∫
S
|θ̂(ξ)|2 dξ.

By (23) the last integral can be estimated by∫
S
|θ̂(ξ)|2 dξ ≤ C

∫
S
|ξ|2µ dξ = C(t+ 1)−(1+µ)/α

so that multiplying by (t+ 1)k one gets
d

dt
(1 + t)k

∫
R2
|θ̂(ξ)|2 dξ ≤ C(t+ 1)k−1−(1+µ)/α.

We choose k > (1 + µ)/α. Integrating from 0 to t and then dividing out (t + 1)k

yields∫
R2
|θ̂(ξ)|2 dξ ≤ (t+ 1)−k

∫
R2
|θ̂0(ξ)|2 dξ + C(t+ 1)−k + C(t+ 1)−(1+µ)/α

≤ C(t+ 1)−(1+µ)/α

as desired. To establish the decay for the higher derivatives; i.e., cases with m > 0,
follow the steps in the proof of [12, Theorem 3.4] where µ = 0, and replace the
decay for the L2 norm with the new decay obtained for the case µ ≥ 0. The faster
decay in L2 will yield the desired faster decay for the L2 norm of Λβ .

Remark 2. It is possible to include the case α = µ = 1 in the considerations of
Theorem 2, except that the estimates need to be modified by a factor of log(t+ 1).
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We can also extend (20).

Corollary 1. Under the conditions of the last theorem we have the same decay
rates for u;

‖Λβu‖L2 ≤ C(t+ 1)−
1+β+µ

2α , (24)
where C is a constant that depends only on the initial datum.

Proof. Follows immediately since the Riesz transforms are bounded in L2 and com-
mute with Λ.

The estimates of Theorem 2 and Corollary 1 can be used to improve the Lp decay
of the temperature and the velocity.

Lemma 4. Assume θ is a solution of (1) with datum θ0 ∈ L1 ∩ H1 and that
|θ̂0(ξ)| ≤ |ξ|µ for some C ≥ 0, µ ∈ [0, 1], µ < 1 if α = 1. Then, for q ∈ [2,∞),
t ≥ 0,

‖θ(t)‖q ≤ C(t+ 1)−
1
α ( µ

2 + 1
q′ ), (25)

‖u(t)‖q ≤ C(t+ 1)−
1
α ( µ

2 + 1
q′ ). (26)

Proof. By the Gagliardo-Nirenberg inequality (see [5, Chapter 1,Theorem 9.3]),

‖θ‖q ≤ ‖θ‖1−a
2 ‖Λθ‖a

2

if 0 ≤ a ≤ 1 and
1
q

= a

(
1
2
− 1

2

)
+ (1− a)

1
2

= (1− a)
1
2
;

i.e., a = (q − 2)/q, 1 − a = 2/q. Inequality (25) now follows from the estimates in
Theorem 2. Since the Riesz transforms are bounded in Lq (q 6= 1,∞), (26) is an
immediate consequence of (25). See also [12, Corollary 3.1].

Corollary 2. Let θ0 ∈ L1 ∩H1 then the solution θ with data θ0 belongs to L1 for
all time.

Proof. Write the solution in integral form then it follows that

‖θ(t)‖1 ≤ ‖θ0‖1 +
∫ t

0

‖u‖2‖∇θ‖2 ds

where we used Young’s and Hölder inequalities to get the last term. From here, the
decay of the L2 norm of the velocity and the gradient of the temperature yields

‖θ(t)‖1 ≤ ‖θ0‖1 +
∫ t

0

(1 + t)−
3
2α ds

and we conclude that the L1norm of the solution is bounded.

Remark 3. The next two theorems give the bounds for the moments of θ and of
u. In the proof of the first one we will have occasion to use the following estimate.
Assume 0 ≤ ρ < 1, τ ≥ 0. Then there exists a constant C ≥ 0 (depending on ρ, τ)
such that

∫ t

0

(t− s)−ρ(1 + s)−τ ds ≤

 Ct−ρ if τ > 1,
Ct−ρ(1 + log(1 + t)) if τ = 1,
Ct−ρ(1 + t)1−τ if τ < 1.

(27)
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Theorem 3. Let θ0 ∈ L1 ∩L2
w ∩Lr

w ∩H1 where 2 ≤ r < 1/(1− α). Let 0 ≤ µ ≤ 1
be such that

|θ̂0(ξ)| ≤ C|ξ|µ (28)
for all ξ in a neighborhood of the origin, some C ≥ 0;µ < 1 if α = 1 . Let

λr =
1
αr′

+
µ− 1
2α

.

Then
‖xjθ(t)‖r ≤ C(1 + t)−λr

for some constant C (depending on θ0 and r), all t ≥ 0.

Proof. Note first that since θ0 ∈ L1 hence θ̂0 ∈ L∞, and inequality (28) always
holds for all ξ ∈ R2 with µ = 0. The following auxiliary estimate for the L2 norm
of the temperature moment will be needed

‖xjθ(t)‖2 ≤ C(1 + log(1 + t)) (29)

for all t ≥ 0, where the constant C ≥ 0, depends on θ0. Here we work with no
information on θ̂(ξ) near zero; that is, we assume (as we may) that µ = 0. The first
step is to rewrite equation (1) in the form

(xjθ)t + (−∆)α(xjθ)− u · ∇(xjθ) = fj (30)

where fj = ujθ + hj and

ĥj(ξ) = −2αi|ξ|2α−2ξj θ̂(ξ).

We need to estimate ‖fj(t)‖2. We suppose that |θ̂0(ξ)| ≤ C|ξ|µ, with µ ≥ 0 to
derive some preliminary estimates. Due to the boundedness of the Riesz transforms
in L4,

‖uj(t)θ(t)‖2 ≤ ‖uj(t)‖4‖θ(t)‖4 ≤ C‖θ(t)‖24;
thus by (25), (26),

‖uj(t)θ(t)‖2 ≤ C(1 + t)−
3
2α .

Turning to the other term in fj ,

‖hj(t)‖2 = ‖ĥj(t)‖2 ≤ 2α
∥∥∥|ξ|2α−1θ̂(t)

∥∥∥
2

= ‖(−∆)α− 1
2 θ(t)‖2.

and by Theorem 2 (or [12, Theorem 3.4]) it follows that

‖hj(t)‖2 ≤ C(1 + t)−1.

Since3/(2α) > 1 we see that there exists a constant C such that

‖fj(t)‖2 ≤ C(1 + t)−1 (31)

for t ≥ 0. Let

E(t) =
∫

R2
x2

j |θ(t)|2 dx.

Then, by (30), with (·, ·) denoting the inner product of L2, and considering that
(xjθ(t), u · ∇(xjθ)) = 0 because div u = 0,

E′(t) = 2(xjθ(t), (xjθ)t(t)) = −2(xjθ(t), (−∆)α(xjθ(t)) + (xjθ, fj)

= −2
∫

R2
|ξ|2α|[xjθ(t)]̂ (ξ)|2 dξ + (xjθ, fj).

Thus
E′(t) ≤ −2

∫
R2
|ξ|2α|[xjθ(t)]̂ (ξ)|2 dξ + ‖fj(t)‖2E(t)1/2. (32)
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Dropping the first negative term on the right hand side, using (31), we get

E′(t) ≤ C(1 + t)−1E(t)1/2 (33)

hence integration yields

E(t) ≤ (E(0)1/2 + C log(1 + t))2 = C(1 + log(1 + t))2,

proving (29). Assume now 2 ≤ r < 1/(1−α), θ0 ∈ Lr
w∩L2

w∩H1, and θ̂0(ξ) = O(|ξ|µ)
near 0; 0 ≤ µ < 1, µ < 1 if α = 1. We can write

xjθ(t) = xjΘ0(t)−
∫ t

0

(xj∇Kα)(t−s)∗[θ(s)u(s)] ds−
∫ t

0

∇Kα(t−s)∗[(xjθ(s))u(s)] ds.

(34)
From the assumptions on r, 1/2 − 1/r < α − 1/2 and we can select p such that
1/2− 1/r < 1/p′ < α− 1/2. Then 1/2 < 1/r + 1/p′ < 1 so that if we set

1
q

=
1
r

+
1
p′

=
1
r

+ 1− 1
p

we get 1 < q < 2. Moreover, 1/r = 1/p + 1/q − 1, hence ‖f ∗ g‖r ≤ ‖f‖p‖g‖q, as
well as ‖f ∗ g‖r ≤ ‖f‖r‖g‖1. We use both Young estimates in (34) to get

‖xjθ(t)‖r ≤ ‖xjΘ0(t)‖r +
∫ t

0

‖xj∇Kα)(t− s)‖r‖θ(s)u(s)‖1 ds

+
∫ t

0

‖∇Kα(t− s)‖p‖xjθ(s)u(s)‖q ds

≤ ‖xjΘ0(t)‖r +
∫ t

0

‖xj∇Kα)(t− s)‖r‖θ(s)‖2‖u(s)‖2 ds

+
∫ t

0

‖∇Kα(t− s)‖p‖xjθ(s)‖2‖u(s)‖ν ds,

where ν is such that 1/2 + 1/ν = 1/q, thus ν > 2 and the last estimates being due
to Hölder’s inequality. By Corollary 4 of the Appendix (case n = 2),

‖xjΘ0(t)‖r ≤ C(1 + t)−
2+(µ−1)r′

2αr′ = C(1 + t)−λr

for all t ≥ 0; by Theorem 2 ‖θ(s)‖2, ‖u(s)‖2 are bounded by C(s + 1)−(1+µ)/(2α),
by (26), ‖u(s)‖ν is bounded by C(s+ 1)−(1/2α)(µ/2+1/ν′), while

‖xj∇Kα)(t− s)‖r ≤ C(t− s)−1/αr′

‖∇Kα(t− s)‖p ≤ C(t− s)−
1
2α−

1
αp′

by Lemma 1. Using these estimates as well as the logarithmic bound (29) for
‖xjθ(t)‖2 in the last estimate of ‖xjθ(t)‖r, we get

‖xjθ(t)‖r ≤ C(1 + t)−λr + C

∫ t

0

(t− s)−1/αr′(1 + s)−
1+µ

α ds

(35)

+
∫ t

0

(t− s)−
1
2α−

1
αp′ (1 + log(1 + s))(1 + s)−

1
α ( µ

2 + 1
ν′ ) ds = I + II.

(Notice 1/(αr′) < 1 by r < 1/(1 − α) and 1
2α + 1

αp′ < 1 since 1
2 + 1

p′ < α.) To
complete the proof, it suffices to show that the two integrals on the right hand side
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of (35) are bounded by C(1 + t)−λr . The first integral is smallest for µ = 0, thus

I ≤
∫ t

0

(t− s)−1/αr′(1 + s)−1/α ds =
∫ t/2

0

+
∫ t

t/2

≤ Ct−
1

αr′

∫ t/2

0

(1 + s)−
1
α ds+ (1 + t)−

1
α

∫ t

t/2

(t− s)−
1

αr′ ds

≤
{
Ct−1/αr′ [1 + (1 + t)−1/αt], if α < 1,
Ct−1/r′ [(1 + log(1 + t)) + (1 + t)−1t], if α = 1.

This takes care of the first integral in (35). In fact, if α < 1 then 1/αr′ ≥ λr while
if α = 1 then 1/r′ > λr because then µ < 1.

To bound the second integral in (35) we notice first that

II ≤ (1 + log(1 + t))
∫ t

0

(t− s)−
1
2α−

1
αp′ (1 + s)−

1
α ( µ

2 + 1
ν′ ) ds

and we can apply Remark 3 with

ρ =
1
2α

+
1
αp′

, τ =
1
α

(
µ

2
+

1
ν′

).

In applying this remark, we can assume t ≥ 1 and replace t by t + 1 on the right
hand sides. If τ ≥ 1, then

II ≤ C(1 + t)−ρ (1 + max(0, 1− τ) log(t+ 1)) (1 + log(t+ 1).

By the choice of p,

ρ =
1
α

(
1
2

+
1
p′

)
>

1
αr′

≥ λr

Hence
II ≤ C(1 + t)−ρ(1 + log(t+ 1)2 ≤ C(t+ 1)−λr .

On the other hand, if τ ≤ 1 then the estimate in Remark 3 implies

II ≤ C(t+ 1)−(ρ+τ−1)(1 + log(t+ 1).

An easy calculation shows that with ρ, τ as given above,

ρ+ τ − 1 =
1
α

(
1
r′
µ

2
+ 1− α

)
>

1
α

(
1
r′
µ

2
− 1

2

)
= λr.

Thus we also get II ≤ C(t + 1)−λr in this case. This concludes the proof of the
theorem.

The case r = 2, µ = 0 is an important case of the previous Theorem. We state
it as a corollary.

Corollary 3. Assume θ0 ∈ L2
w ∩ L1 ∩ H1. Then there exists a constant C ≥ 0

depending only on the initial datum θ0 such that

‖xjθ(t)‖2 ≤ C

for all t ≥ 0.

We also want to estimate the moments of u. The following result is auxiliary
and gives a uniform bound for the first moments of the velocity.
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Theorem 4. Assume θ0 ∈ L1∩L2
w ∩Lr

w ∩H1 where 2 < r < 1/(1−α). Then there
exists a constant C ≥ 0 such that ‖xju(t)‖r ≤ C for all t ≥ 0. The same result
holds for r = 2 if θ0 ∈ L1

w ∩ L2
w ∩H1 and there exist constants c ≥ 0, µ > 0 such

that |θ̂0(ξ)| ≤ C|ξ|µ in a neighborhood of the origin.

Proof. Let j, k ∈ {1, 2}; then xjRk = Rkxj + Lkj , where (up to constant factor)

Lkjf(x) =
∫

R2

yjyk

|y|3
f(x− y) dy,

hence

|Lkjf(x)| ≤
∫

R2

1
|y|
|f(x− y)| dy = I1|f |(x),

where I1 is the Riesz potential. In the case r > 2 we use the fact that I1 is bounded
from Lq to Lr, where 1/r = 1/q − 1/2, thus

‖Lkjθ(t)‖r ≤ ‖θ(t)‖q ≤ C‖θ0‖q = C0

the last inequality being due to the maximum principle (21); notice that q > 1 since
r > 2. By Theorem 3 ‖xjθ(t)‖r is (at least) bounded uniformly in t, thus

‖xju`(t)‖r = ‖xjRkθ(t)‖r ≤ ‖Rk(xjθ(t))‖r + ‖Lkjθ(t)‖r

≤ C‖xjθ(t)‖r + C0 ≤ C.

Assume now r = 2 and |θ̂0(ξ)| ≤ C|ξ|µ near ξ = 0. We may assume µ < 1. Then,
as shown in the proof of Theorem 2, estimate (23) is valid hence, by Parseval, if
R > 0,

‖I1(|θ(t)|)‖22 = C

∫
R2

|θ̂(ξ, t)|2

|ξ|2
dξ ≤ C

∫
|ξ|<R

|ξ|µ−2|θ̂(ξ, t)|2 dξ + C

∫
|ξ|≥R

θ̂(ξ, t)|2 dξ

≤ C‖θ(t)‖2σ′ + ‖θ(t)‖22
where σ satisfies σ(2− µ) < 2. By the maximum principle (21),

‖I1(|θ(t)|)‖2 ≤ C(‖θ0‖σ′ + ‖θ0‖2)

(Since θ0 ∈ H1, we have θ0 ∈ Lσ′
and the maximum principle applies). Thus,

proceeding as for the case r > 2, we obtain

‖xju`(t)‖2 = ‖xjRkθ(t)‖2 ≤ ‖Rk(xjθ(t))‖2 + ‖Lkjθ(t)‖2
≤ C‖xjθ(t)‖2 + ‖I1(|θ(t)|)‖2 ≤ C.

The following result can be found in [12]. Combined with the results of the last
theorem one can use it to improve the algebraic decay of the velocity moments.

Theorem 5. Let β > 0, assume that Iβθ0 ∈ L1(R2), and let θ be the solution of
the homogeneous DQG with initial datum θ0.

i: Assume 1
2 ≤ α < 1. Then

‖θ(t)‖1 ≤ Ct−ν

for all t > 0, some constant C, where

ν =
{

min(β, 1
2 ) if α = 1

2 ,

min( β
2α ,

1
2α ) if 1

2 < α < 1.
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ii: Assume α = 1. Then

‖θ(t)‖1 ≤

{
Ct−

β
2 if β < 1,

Ct−
1
2 log(t+ 1) if β ≥ 1,

for some constant C.

Proof. See [12]

The next theorem combines Theorems 4, 5to give an improved decay of the
moments of the velocity.

Theorem 6. • Assume θ0 ∈ L1∩L2
w∩Lr

w∩H1 where 2 < r < 1/(1−α). Then
there exists a constant C ≥ 0 such that

‖xju(t)‖r ≤ C(t+ 1)−τ , for all t ≥ 0,

where τ = min {λr, [ 1
α [ 1

r′ −
1
2 ]}, and λr was defined in (7) in the last theorem.

• If θ0 as before, 2 ≤ r < 1/(1−α) (for r = 2, we only require θ0 ∈ L1∩L2
w∩H1),

and there exist constants c ≥ 0, 0 ≤ µ ≤ 1 such that |θ̂0(ξ)| ≤ C|ξ|µ in a
neighborhood of the origin (as before µ < 1 if α = 1), then

‖xju(t)‖r ≤ C(t+ 1)−τ

where τ = min {λr, [ 1
α + µ][ 1

r′ −
1
2 ]}.

• if in addition for β > 0 it holds that Iβθ0 ∈ L1(R2), then

‖xju(t)‖r ≤ C(t+ 1)−τ ,

where τ = min {λr, [ 1
α + µ][ 1

r′ −
1
2 + 2

rν]} and ν was defined in Theorem 5.

Proof. Proceeding as in the proof of Theorem 4we write xjRk = Rkxj + Lkj for
j, k ∈ {1, 2}. As before in the case r > 2, we use the fact that I1 is bounded from
Lq to Lr, where 1/r = 1/q − 1/2; thus by (25)

‖Lkjθ(t)‖r ≤ ‖θ(t)‖q.

Note that 1 < q < 2, hence we can interpolate between L1 and L2 to obtain

‖θ‖q ≤ C‖θ‖2/q−1
1 ‖θ‖2/q′

2 = C‖θ‖2/r
1 ‖θ‖1−2/r

2

The conclusion of the theorem follows combining this last inequality with the decay
rates of the L2 norms obtained in [4] when µ = 0 , the decay rates of L2 obtained
in Lemma (4) when µ > 0, the decay rates for the L1 norm obtained in Theorem 5
when β > 0. As in Theorem 4 we have to consider separately the case when r = 2
and when 2 < r < 1/(1− α). We omit the details since they are straightforward.
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4. Estimates. In this section we assume that the space dimension is 2 and that
α ∈ (1/2, 1]. We suppose that θ0 ∈ H1 ∩ L1. As before we write the solution θ in
integral form

θ(t) = Θ0(t)−
∫ t

0

Kα(t− s) ∗ [u(s) · ∇θ(s)] ds (36)

= Θ0(t)−
∫ t

0

∫
R2
Kα(t− s, · − y)u(y, s) · ∇θ(y, s) dy ds,

where
Θ0(t) = e−t(−∆)α

θ0 = Kα(t) ∗ θ0 (37)

and u = (u1, u2) = (−R2θ,R1θ); R1,R2 being the Riesz transforms in R2.
We start with some preliminary observations that will be needed later. For this

we recall Taylor’s formula (as used by Fujigaki and Miyakawa [6]) in the form

Kα(x− y, t− s) =
∑

|β|+j≤m

(−1)|β|+j

β!j!
Dj

tD
βKα(x, t)yβsj +H(x, y, t, s),

where

H(x, y, t, s) =
∑

|β|+j=m

(−1)|β|+jyβsj

β!j!

∫ 1

0

[Dj
tD

βKα(x−σy, t−σs)−Dj
tD

βKα(x, t)] dσ.

From here it follows choosing m = 1

Kα(x− y, t− s)
(38)

= Kα(x, t)−
2∑

j=1

∂Kα

∂xj
(x, t)yj −

∂Kα

∂t
(x, t)s+H(x, t, y, s) (39)

with

H(x, t, y, s) =
∫ 1

0

 2∑
j=1

(
∂Kα

∂xj
(x, t)− ∂Kα

∂xj
(x− σy, t− σs)

)
yj

+
(
∂Kα

∂t
(x, t)− ∂Kα

∂t
(x− σy, t− σs)

)
s

]
dσ.

Observe that ∫
R2
u(s) · ∇θ(s) dy ds =

∫
R2

div [θ(s)u(s)] dy = 0.

One also has ∫
R2
yj [u(s) · ∇θ(s)] dy = 0, j = 1, 2.

In fact, ∫
R2
yj [u(s) · ∇θ(s)] dy =

∫
R2
yjdiv (θu) dy = −

∫
R2
ujθ dy.

The last integral can be written in the form

±
∫

R2
(Rkθ)θ dy (k 6= j)
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and is zero by the skew-adjointness of the Riesz transforms. Using the vanishing
of these integrals when multiplying (38) by u(y, s) · ∇θ(y, s) and integrating over
R2 × [0, t] with respect to (y, s), one gets

θ(x, t)−Θ0(x, t) = −
∫ t

0

∫
R2
Kα(t− s)[u(y, s) · ∇θ(y, s)] dy ds

(40)

= −
∫ t

0

∫
R2
H(x, t, y, s)u(y, s) · ∇θ(y, s)] dy ds.

Theorem 7. Assume θ0 ∈ L1 ∩ L2
w ∩ H1, and α ∈ (1/2, 1).In the case α = 1 we

suppose additionally that ‖θ̂(ξ)‖ ≤ c|ξ|µ, with µ > 0. Then

lim
t→∞

t1/α‖θ(t)−Θ0(t)‖2 = 0.

Proof. By (40), it suffices to prove

lim
t→∞

t1/α

∫ t

0

∥∥∥∥∫
R2
H(·, t, y, s)u(y, s) · ∇θ(y, s) dy

∥∥∥∥
2

ds = 0. (41)

From the definition of H,in (39) the fact that u∇θ = div(θu), and some integra-
tion by parts, one can write∫

R2
H(x, t, y, s)u(y, s) · ∇θ(y, s) dy =

∑
1≤j,k≤2

Ajk +B1 +B2 +B3

where

Ajk = Ajk(x, t, s) = −
∫ 1

0

∫
R2

∂2Kα

∂xj∂xk
(x− σy, t− σs)(σyj)uk(y, s)θ(y, s) dy dσ

= −
∫ 1

0

1
σ

∂2Kα

∂xj∂xk
(·, t− σs) ∗ [(

yj

σ
)uk(

·
σ
, s)θ(

·
σ
, s)] dσ, j, k = 1, 2.

Bj = Bj(x, t, s) =
∫ 1

0

∫
R2

(
∂Kα

∂xj
(x, t)− ∂Kα

∂xj
(x− σy, t− σs)

)
uj(y, s)θ(y, s) dy dσ, j = 1, 2;

B3 = B3(x, t, s) =
∫ 1

0

∫
R2

(
∂Kα

∂t
(·, t)− ∂Kα

∂t
(x− σy, t− σs)

)
su(y, s) · ∇θ(y, s) dy dσ.

Then (41) is equivalent to

lim
t→∞

t
1
α

∫ t

0

‖Ajk(t, s)‖2 ds = 0, j, k = 1, 2, (42)

lim
t→∞

t
1
α

∫ t

0

‖Bj(t, s)‖2 ds = 0, j = 1, 2, 3. (43)

Let 2 ≤ r <∞; by Lemma 2, with p = r′, q = 2, and by lemma 1,

‖Ajk(t, s)‖2 ≤
∫ 1

0

1
σ
‖ ∂2Kα

∂xj∂xk
(t− σs)‖r′‖uk(

·
σ
, s)‖r‖(

yj

σ
)θ(

·
σ
, s)‖2 dσ

=
∫ 1

0

σ2/r‖ ∂2Kα

∂xj∂xk
(t− σs)‖r′‖uk(s)‖r‖yjθ(s)‖2 dσ

≤ C

(∫ 1

0

σ2/r(t− σs)−
1
α−

1
αr dσ

)
‖u(s)‖r‖yjθ(s)‖2;
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estimating σ2/r ≤ 1, performing the integration with respect to σ and using (26) to
estimate the Lr-norm of u and Theorem 2 for the L2-norm of the moment yjθ, we
get

‖Ajk(t, s)‖2 ≤
C

s

(
(t− s)1−

r+1
αr − t1−

r+1
αr

)
(1 + s)−

1
α ( 1

r′ +µ). (44)

We assume that µ = 0 if 1/2 < α < 1, 0 < µ < 1 if α = 1. Let r be large enough
so that its conjugate exponent satisfies

1 < r′ < min
(

1
α− µ

,
1

2(1− α)

)
.

Notice that 1/(α − µ) = 1/α > 1 if α < 1, 1/(α − µ) = 1/(1 − µ) > 1 if α = 1.
Notice also that 1/(2(1− α)) > 1. The condition r′ < 1/(2(1− α)) is equivalent to
1 − ((r + 1)/(αr) > −1. The condition r′ < 1/(α − µ) is equivalent to having the
exponent of 1 + s in (44) be less than −1; i.e., to

1
α

(
1
r′

+ µ

)
> 1.

We will estimate

(t− s)1−
r+1
αr − t1−

r+1
αr

s
≤

{
Ct−

r+1
αr , if 0 ≤ s ≤ t/2,

C (t−s)1−
r+1
αr

t if t/2 < s < t.

Thus ∫ t/2

0

(
(t− s)1−

r+1
αr − t1−

r+1
αr

)
s

(1 + s)−
1
α ( 1

r′ +µ) ds

≤ Ct−
r+1
αr

∫ ∞

0

(1 + s)−
1
α ( 1

r′ +µ) ds ≤ Ct−
1
α−

1
αr ,

while ∫ t

t/2

(
(t− s)1−

r+1
αr − t1−

r+1
αr

)
s

(1 + s)−
1
α ( 1

r′ +µ) ds

≤ Ct−1− 1
α ( 1

r′ +µ)
∫ t

t/2

(t− s)1−
r+1
αr ds ≤ Ct1−

2
α−

µ
α .

It follows that

t
1
α

∫ t

0

‖Ajk(t, s)‖2 ds ≤ C
(
t−

1
αr + t1−

1
α−

µ
α

)
.

Notice that 1− 1
α −

µ
α < 0 because 1− 1/α < 0 if α < 1, −µ < 0 if α = 1. Thus

lim
t→∞

t
1
α

∫ t

0

‖Ajk(t, s)‖2 ds = 0,

proving (42).
Consider next the terms Bj , j = 1, 2, 3. For convenience we set ∂/∂t = ∂/∂x3

and introduce

kj(t, y, s, σ) =
∥∥∥∥∂Kα

∂xj
(·, t)− ∂Kα

∂xj
(· − σy, t− σs)

∥∥∥∥
2
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for j = 1, 2, 3; then

‖Bj(t, s)‖2 ≤


∫ 1

0

∫
R2 kj(t, y, s, σ)|u(y, s)||θ(y, s)| dy dσ, j = 1, 2,∫ 1

0

∫
R2 kj(t, y, s, σ)s|u(y, s)||∇θ(y, s)| dy dσ, j = 3.

(45)

Using that{
∂K̂α

∂xj
(·, t)− ∂K̂α

∂xj
(· − σy, t− σs)

}
(ξ) =


iξje

−t|ξ|2α
(
1− e−iσy·ξeσs|ξ|2α

)
, j = 1, 2,

−|ξ|2αe−t|ξ|2α
(
1− e−iσy·ξeσs|ξ|2α

)
, j = 3,

it follows by Parseval and changing variables by η = t
1
2α ξ that

kj(t, y, s, σ) ≤
(∫

R2
|ξ|λje−2t|ξ|2α

∣∣∣1− e−iσy·ξeσs|ξ|2α
∣∣∣2 dξ)1/2

(46)

= t
−

“
2
α +

λj
4α

” (∫
R2
|η|λje−2|η|2α

∣∣∣1− e−it−1/2ασy·ηeσ(s/t)|η|2α
∣∣∣2 dη)1/2

where λ1 = λ2 = 2, λ3 = 4α. The integrand of the last integral in (46) goes
pointwise to 0 as t→∞ and is bounded by

C|η|λje−2(1−σs
t )|η|2α

≤ C|η|λje−|η|
2α

if t ≥ 2s, which is integrable over R2 hence, by Lebesgue’s dominated convergence
theorem,

lim
t→∞

t
1
2α +

λj
4α kj(t, y, s, σ) = 0 (47)

for all fixed values of y, s, σ, j = 1, 2, 3.
Assume now 0 ≤ s ≤ t/2. Then the integrand of the final integral in (46) can be

estimated, as mentioned, by the integrable expression C|η|λje−|η|
2α

, hence

t
1
α kj(t, y, s, σ) ≤ Ct

1
2α−

λj
4α =

{
C, j = 1, 2,
Ct−1+ 1

2α , j = 3.
(48)

Let j = 1, 2; then

t
1
α

∫ t/2

0

‖Bj(t, s)‖2 ds ≤
∫ ∞

0

∫ 1

0

∫
R2
t1/αkj(t, y, s, σ)χ[0,t/2](s)|u(y, s)||θ(y, s)| dy dσ ds.

The integrand of this integral converges to 0 for t→∞, by (47) (1/(2α)+λj/(4α) =
1/α if j = 1, 2). By (48) it is bounded by C|u(y, s)||θ(y, s)|, which is integrable over
the domain of integration; in fact, by Theorem 2 and Corollary 1 it follows that∫ ∞

0

∫ 1

0

∫
R2
|u(y, s)||θ(y, s)| dy dσ ds ≤

∫ ∞

0

‖u(s)‖2‖θ(s)‖2 ds ≤ C

∫ ∞

0

(1+s)−
1+µ

α ds <∞

this last integral is bounded for α ≤ 1 since for α = 1 we assume that µ > 0.
Invoking again the Lebesgue dominated convergence theorem it follows from (47)

that

lim
t→∞

t1/α

∫ t/2

0

‖Bj(t, s)‖2 ds = 0, (49)

for j = 1, 2.
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If j = 3, then by (48),

t
1
α

∫ t/2

0

‖B3(t, s)‖2 ds ≤
∫ t/2

0

∫ 1

0

∫
R2
t1/αkj(t, y, s, σ)s|u(y, s)||∇θ(y, s)| dy dσ ds

≤ Ct−1+ 1
2α

∫ t/2

0

s‖u(s)‖2‖∇θ(s)‖2 ds;

by Theorem 2 and Corollary 1,

t
1
α

∫ t/2

0

‖B3(t, s)‖2 ds ≤ Ct−1+ 1
2α

∫ t/2

0

s(1 + s)−
3+µ
2α ds.

The integral in this last expression is largest if µ = 0, in which case it is uniformly
bounded in t if 1/2 < α < 3/4, and it is of order t2−(3/2α) if 3/4 ≤ α < 1. If α = 1
we assume µ > 0 and the integral in question is of order t2−(3/2)µ. In each case,
multiplying by t−1+(1/2α) gives an expression going to 0 for t → ∞, proving that
(49) is also valid for j = 3.

Assume now t/2 < s < t. We claim that∫ 1

0

kj(t, y, s, σ) dσ ≤

 Ct−1(t− s)−
1
α +1, j = 1, 2;α < 1

Ct−1 log(t/(t− s)), j = 1, 2;α = 1,
Ct−1(t− s)−

1
2α , j = 3.

(50)

In fact, by the first inequality in (46), if we bound

|ξ|λje−2t|ξ|2α
∣∣∣1− e−iσy·ξeσs|ξ|2α

∣∣∣2 ≤ C|ξ|λje−2(t−σs)|ξ|2α

,

then ∫ 1

0

kj(t, y, s, σ) dσ ≤ C

∫ 1

0

(∫
R2
|ξ|λje−2(t−σs)|ξ|2α

dξ

)1/2

dσ

= C

∫ 1

0

(t− σs)−
1
α−

λj
2α dσ.

The claim follows performing this last integral, recalling that λj = 2 if j = 1, 2,
λ3 = 4α, and t/2 < s < t.

Let j = 1, 2. By Theorem 2and Corollary 1, and by (50), we get if α < 1,

t
1
α

∫ t

t/2

‖Bj(t, s)‖2 ds ≤
∫ t

t/2

t
1
α−1(t− s)1−

1
α (1 + s)−

1+µ
α ds

≤ Ct1−
1+µ

α

∫ 1

1/2

s1/α(1− s)1−
1
α ds ≤ Ct1−

1+µ
α

which goes to 0 as t → ∞. The same conclusion follows if α = 1; in this case the
factor (t− 2)−(1/α)+1 is replaced by log(t/(t− s) and the final estimate is

t
1
α

∫ t

t/2

‖Bj(t, s)‖2 ds ≤ Ct−µ

∫ 1

1/2

log(1/(1− s)) ds ≤ Ct−µ → 0

as t→∞. Assuming finally j = 3, then by (50)

t
1
α

∫
t/2

‖B3(t, s)‖2 ds ≤ t1/α

∫ t

t/2

∫
R2

∫ 1

0

k3(t, y, s, σ)s|u(y, s)||∇θ(y, s)| dσ dy ds

≤ Ct−1+ 1
α

∫ t

t/2

(t− s)−
1
2α s‖u(s)‖2‖∇θ(s)‖2 ds.
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Applying Theorem 2and Corollary 1,

t
1
α

∫
t/2

‖B3(t, s)‖2 ds ≤ Ct−1+1/α

∫ t

t/2

(t− s)−
1
2α s(1 + s)−

3+µ
2α ds ≤ Ct1−

2+µ
α → 0

as t→∞. We proved that

lim
t→∞

t
1
α

∫ t

t/2

‖Bj(t, s)‖2 ds = 0

for j = 1, 2, 3. Together with (49) (which was proved for j = 1, 2, 3) it follows that
(43) holds for j = 1, 2, 3. This concludes the proof of the theorem.

Remark 4. While Theorem 7 has somewhat stronger hypotheses than [Theorem
4.3] in [4], the conclusion is also considerably stronger.

The next theorem establishes the lower bounds of rates of decay for solutions
with zero or non zero initial mass.

Theorem 8. Assume the hypothesis of Theorem 7. Let θ be a solution to equation
(1) with initial datum θ0 and Θ0 be the solution of the linear geostrophic equation
with the same initial datum. Then for any τ ∈ [0, 1/α],

C0(t+ 1)−τ ≤ ‖Θ0(t)‖2 ≤ C1(t+ 1)−τ

if and only if
C0(t+ 1)−τ ≤ ‖θ(t)‖2 ≤ C1(t+ 1)−τ .

In particular, if 0 ≤ µ ≤ 1 and θ̂0(ξ) is of order |ξ|µ near the origin; i.e., satisfies
that there exists constants c1 ≥ c0 > 0 such that

c0|ξ|µ ≤ |θ̂0(ξ)| ≤ c1|ξ|µ

in a neighborhood of the origin, then there exist constants C0, C1 such that

C0(t+ 1)−
µ+1
2α ≤ ‖θ(t)‖2 ≤ C1(t+ 1)−

µ+1
2α .

for t ≥ 0.

Proof. The first part of the theorem is an immediate consequence of Theorem 7
and appropriate triangle inequalities. The second part follows from the first part in
view of Lemma 7.

Appendix. In this appendix we prove some of the properties of the one-parameter
semigroup of operators generated by (−∆)α. We will be working in Rn since there
is nothing to gain by assuming n = 2. That is, we define Kα : Rn × R → C by

K̂α(ξ, t) = (2π)−n/2e−t|ξ|2α

.

We notice that
Kα(x, t) = (2π)−n/2t−

n
2α gα

(
t−

1
2αx

)
where gα : Rn → C is defined by

ĝα(ξ) = e−|ξ|
2α

.

We will also consider the function gα,j defined for j = 0, 1, . . . by

ĝα,j(ξ) = (−1)j |ξ|2jαe−|ξ|
2α

,
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(so gα = gα,0). Then

Dj
tKα(x, t) = (2π)−n/2t−

n
2α−jgα,j

(
t−

1
2αx

)
. (51)

Lemma 5. Let j ∈ N∪{0}. Then gα,j ∈ C∞(Rn) and xγDβga,j ∈ L1(Rn)∩L∞(Rn)
for all multi-indices β, γ such that |γ| < |β|+ 2αmax(1, j).

Proof. We have

gα,j(x) = (2π)−n/2(−1)j

∫
Rn

eix·ξ|ξ|2jαe−|ξ|
2α

dξ,

from which it is obvious that ga ∈ C∞, Dβgα ∈ L∞ for all β. Next, we claim that
for all multi-indices λ = (λ1, . . . , λn) 6= 0,

Dλ
(
|ξ|2jαe−|ξ|

2α
)

=
m∑

`=0

p`(ξ)|ξ|2(`+j)α−2|λ|e−|ξ|
2α

(ξ 6= 0)

where m is a positive integer depending on λ and each p` is a homogeneous poly-
nomial, depending on λ, of degree |λ|. Moreover, p0(ξ) ≡ 0 if j = 0, |λ| ≥ 1. We
prove this by induction on |λ|. The case |λ| = 0 is, of course, obvious. If j = 0 and
|λ| = 1; say, λ = ej = (δj1, . . . , δjn), Then

Dλ
(
e−|ξ|

2α
)

= −2α|ξ|2α−2ξje
−|ξ|2α

which is of the claimed form, with m = 1, p1(ξ) = ξj and p0 = 0. Assuming the
result proved for |λ| = k, some k ≥ 0, to see it implies the result for k+1 it suffices
to see that differentiating with respect to ξj a term of the form

p`(ξ)|ξ|2(`+j)α−2ke−|ξ|
2α

,

where ` ∈ N and p` is a homogeneous polynomial of degree k, gives rise to a sum of
similar terms, with k replaced by k + 1. We have
∂

∂ξj

(
p`(ξ)|ξ|2(`+j)α−2ke−|ξ|

2α
)

=
(
∂p`

∂ξj
(ξ)|ξ|2(`+j)α−2k

+(2(`+ j)α− 2k)p`(ξ)|ξ|2(`+j)α−2k−2ξj − 2αp`(ξ)|ξ|2(`+j)α−2k+2α−2ξj

)
e−|ξ|

2α

= q1(ξ)|ξ|2(`+j)α−2(k+1)e−|ξ|
2α

+ q2(ξ)|ξ|2(`α+j)−2(k+1)e−|ξ|
2α

+q3(ξ)|ξ|2(`+j+1)α−2(k+1)e−|ξ|
2α

,

where q1, q2, q3 are given by

q1(ξ) =
∂p`

∂ξj
(ξ)|ξ|2,

q2(ξ) = (2(`+ j)α− 2k)p`(ξ)ξj ,
q3(ξ) = −2αp`(ξ)ξj ,

hence are homogeneous polynomials of degree k+ 1. The claim is established. It is
now an easy consequence of Leibniz’ formula, if we estimate |p`(ξ)| by const|ξ||λ|,
that for all multi-indices β, λ we can write

Dλ
(
ξβe−|ξ|

2α
)

=
{
|ξ|2α+|β|−|λ|h(ξ) if j = 0,
|ξ|2jα+|β|−|λ|h(ξ) if j ≥ 1.

(52)

where
|h(ξ)| ≤ |ξ|νe−|ξ|

2α
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for some ν ≥ 0 (depending, of course, on β, λ, and j). We thus proved, replacing λ
by λ+ γ and setting gα,j,β,γ = xγDβgα,j , that∣∣{xλgα,j,β,γ

}
(̂ξ)

∣∣ =
∣∣Dλ+γ

(
ξβ ĝα,j

)
(ξ)

∣∣ = |ξ|µh(ξ) (53)

where h is as described and

µ =
{

2α+ |β| − |γ| − |λ| if j = 0,
2αj + |β| − |γ| − |λ| if j = 0.

By the assumption on γ we conclude that |µ| > −|λ| so that taking now |λ| = n
we see that Dλ+γ

(
ξβ ĝα,j

)
is locally integrable in Rn, in particular, the classical

derivatives we computed for ξ 6= 0, coincide with the derivatives in the sense of
distributions. Moreover, we can select r such that 1 < r ≤ 2 and rµ > −n;
then |Dλ+γ

(
ξβ ĝα,j

)
|r is also locally integrable, hence integrable since at infinity it

decays faster than any negative power of |ξ|. In other words, the Fourier transform
of xλgα,j,β,γ is in Lr hence, since 1 < r ≤ 2, xλgα,j,β,γ ∈ Lr′ . Since this holds for
all λ with |λ| = n, we proved that |x|ngα,j,β,γ ∈ Lr′ . On the other hand, it is clear
that ĝα,j,β,γ ∈ L1 ∩L2, thus gα,j,β,γ ∈ L∞ ∩L2, in particular, gα,j,β,γ ∈ Lr′ proving
that (1 + |x|)ngα,j,β,γ ∈ Lr′ . Thus∫

Rn

|gα,j,β,γ(x)| dx =
∫

Rn

(1 + |x|)−n(1 + |x|)n|gα,j,β,γ(x)| dx

≤
(∫

Rn

(1 + |x|)−rn dx

) 1
r

(∫
Rn

|(1 + |x|)ngα,j,β,γ(x)|r
′
dx

) 1
r′

<∞.

This completes the proof that xγDβgα,j = (i)|β|+|γ|gα,j,β,γ ∈ L1.

As an immediate corollary to Lemma 5 we obtain

Lemma 6. Let β, γ be multi-indices, |γ| < |β| + 2αmax(j, 1), j = 0, 1, 2, . . ., 1 ≤
p ≤ ∞. Then

‖xγDj
tD

βKα(t)‖p = Ct
|γ|−|β|

2α −j−n(p−1)
2αp

for some constant C depending only on α, β, γ, j, p, and the space dimension n.

Proof. In view of (51),

xγDj
tD

βKα(t) = (2π)−n/2t−
n+|β|

2α −jxγ(Dβgα,j)
(
t−

1
2αx

)
.

By Lemma 5, xγDβgα,j ∈ L1 ∩ L∞ ⊂ Lp, hence

‖xγDj
tD

βKα(t)‖p = (2π)−n/2t
|γ|−|β|

2α −j−n(p−1)
2αp ‖xγDβgα,j‖p

proving the lemma with C = (2π)−n/2‖xγDβgα,j‖p.

In particular, we see that Kα(t) ∈ L1(Rn) for all t > 0 and

‖Kα(t)‖1 ≤ C

for some constant C depending only on α and the space dimension n. It is also easy
to see that Kα(t) ∗Kα(s) = Kα(s+ t) for all s, t > 0 and that

lim
t→0

Kα(t) ∗ f = f
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uniformly for every continuous function of compact support f : Rn → R. It follows
that if we define

e−t(−∆)α

f = Kα(t) ∗ f
for f ∈ Lp(Rn), then {e−t(−∆)α} is a one-parameter, strongly continuous, semi-
group of uniformly bounded operators in Lp(Rn) for 1 ≤ p < ∞. As mentioned
before, we can then define (−∆)α as the generator of this semi-group.

Let 1 < r <∞. If θ0 ∈ L1(Rn) ∩ Lr(Rn) then

‖Kα(t) ∗ θ0‖2 ≤ C(1 + t)−n/2αr′‖θ0‖1 (54)

for all t ≥ 0. This is, of course an immediate consequence of Lemma 6, according
to which ‖Kα(t)‖r = Ct−n/2αr′ (and ‖Kα(t)‖1 is constant in t). A better rate of
decay can be obtained if one knows something about the behavior of θ̂0(ξ) near the
origin. In fact, from

‖Kα(t) ∗ θ0‖22 = ‖K̂α(t)θ̂0‖22 =
∫

Rn

e−2t|ξ|2α

|θ0(ξ)|2 dξ

it is easy to derive the following result. We omit the simple proof.

Lemma 7. Assume θ0 ∈ L2 ∩L1 and there exist constants c1 ≥ c0 > 0, µ ≥ 0 such
that

c0|ξ|µ ≤ |θ̂0(ξ)| ≤ c1|ξ|µ

for all ξ in a neighborhood of the origin. Then there exist constants C1, C2 such
that

C1(1 + t)−
2µ+n
4α ≤ ‖Kα(t) ∗ θ0‖2 ≤ C2(1 + t)−

2µ+n
4α .

We use (54) to estimate the Lr norm of the moments of Kα(t) ∗ θ0.
Lemma 8. Let θ0 ∈ L1

w(Rn) ∩ Lr
w(Rn), where 2 ≤ r < ∞, and assume that

|θ̂0(ξ)| ≤ C|ξ|µ for some constants C, µ ≥ 0 and all ξ in a neighborhood of 0 in Rn.
Then

‖xj (Kα(t) ∗ θ0) ‖2 ≤ C(1 + t)−min( n
2αr′ ,

n+(µ−1)r′

2αr′ )

for all t ≥ 0, and some constant C depending on θ0 (j=1,2).

Proof. We have

xj (Kα(t) ∗ θ0) = (xjKα(t)) ∗ θ0 +Kα(t) ∗ (xjθ0) .

By (54), the second term on the right hand side has Lr norm bounded by C(1 +
t)−n/2αr′ . It suffices to estimate the Lr norm of the first term. Since r ≥ 2,

‖ (xjKα(t)) ∗ θ0‖r ≤ C‖∂Kα

∂ξj
θ̂0‖r′

≤ C

(∫
R2
tr

′
|ξ|(2α−1)r′e−r′t|ξ|2α

|θ̂0(ξ)|r
′
dξ

)1/r′

.

Since θ ∈ L1 we have θ̂ ∈ L∞, and we may assume that |θ(ξ)|leC|ξ|µ for all
ξ ∈ Rn. Thus, going over to polar coordinates ρ = |ξ| and then changing variables
by ρ′ = t1/2αρ,

‖ (xjKα(t)) ∗ θ0‖r ≤ Ct

(∫ ∞

0

ρn−1+(2α−1)r′e−r′tρ2α

dρ

)1/r′

= Ct−
n+(µ−1)r′

2αr′ .

The Lemma follows.
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The hypotheses θ0 ∈ L1
w of Lemma 8 implies θ0 ∈ L1, hence θ̂0 ∈ L∞ and if in

addition θ0 ∈ Lr
w then all hypotheses of Lemma 8 hold with µ = 0. In this case

n/2αr′ ≥ (n+ (µ− 1)r′)/2αr′ = (n− r′)/2αr′. We thus have

Corollary 4. Let θ0 ∈ L1
w(Rn) ∩ Lr

w(Rn), where 2 ≤ r <∞. Then

‖xj (Kα(t) ∗ θ0) ‖r ≤ C(1 + t)−
n−r′
2αr′

for all t ≥ 0, and some constant C depending on θ0 (j=1,2).

Appendix 2: A modified Gronwall inequality. Let 0 < δ < 1 and define
Φ : C → C by

Φ(z) =
∞∑

n=0

zn

Γ (n(1− δ) + 1)
.

It is easy to see that this series converges for all z ∈ C; for example, by Stirling’s
formula, Γ(x) ≥ ce−xxx−1/2 for some constant c > 0, thus

lim
x→∞

Γ(x)1/x ≥ lim
x→∞

e−1c1/xx1− 1
2x = ∞.

Thus also

lim
n→∞

Γ (n(1− δ) + 1)1/n = lim
n→∞

(
Γ (n(1− δ) + 1)1/[n(1−δ)+1]

)[n(1−δ)+1]/n

= ∞.

This proves that the series has infinite radius of convergence. The following lemma
can now be stated.
Lemma Let 0 ≤ T ≤ ∞ and let f : [0, T ) → [0,∞) be continuous and satisfy

f(t) ≤ A+B

∫ t

0

(t− s)−δf(s) ds (55)

for all t ∈ [0, T ). Then
f(t) ≤ AΦ(BΓ(1− δ)t1−δ)

for t ∈ [0, T ).
Proof. Let 0 ≤ T1 < T , which will remain fixed for a while, and let M =
sup0≤t≤T1

f(t). Claim

f(t) ≤ A
n−1∑
k=0

(
BΓ(1− δ)t1−δ

)k

Γ(k(1− δ) + 1)
+M

(
BΓ(1− δ)t1−δ

)n

Γ(n(1− δ) + 1)
(56)

for n = 0, 1, 2, . . ., 0 ≤ t ≤ T1.
In fact, if n = 0 the claim reduces to f(t) ≤ M in [0, T1], which is just the

definition of T1. Assume proved for some n ≥ 0. Then (55) implies

f(t) ≤ A+BA
n−1∑
k=0

(BΓ(1− δ))k

Γ(k(1− δ) + 1)

∫ t

0

(t− s)−δsk(1−δ) ds

+BM
(BΓ(1− δ))n

Γ(n(1− δ) + 1)

∫ t

0

(t− s)−δsn(1−δ) ds.

Now ∫ t

0

(t− s)−δsk(1−δ) ds = t(k+1)(1−δ)B(1− δ, k(1− δ) + 1)

where

B(1− δ, k(1− δ) + 1) =
Γ(1− δ)Γ(k(1− δ) + 1)
Γ((k + 1)(1− δ) + 1)

.
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Using this in (57) gives (56) with n replaced by n + 1. The claim is established.
Because the series converges, the last term in (56) goes to 0 as n → ∞. Letting
n→∞ in (56) proves the inequality of the lemma for 0 ≤ t ≤ T1. Since T1 ∈ [0, T )
was arbitrary, the lemma is proved. �
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