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Abstract. This paper considers the existence and large time behavior of solu-

tions to the convection-diffusion equation ut−∆u+b(x) ·∇(u|u|q−1) = f(x, t)

in Rn × [0,∞), where f(x, t) is slowly decaying and q ≥ 1 + 1/n (or in some

particular cases q ≥ 1). The initial condition u0 is supposed to be in an ap-

propriate Lp space. Uniform and nonuniform decay of the solutions will be

established depending on the data and the forcing term.

1. Introduction

In this paper, we study the existence and large time behavior of solutions u =
u(x, t), x ∈ Rn, t > 0, n ≥ 2 to the Cauchy problem for the nonlinear convection-
diffusion equation

(1.1)
{
ut −∆u+ b(x) · ∇(u|u|q−1) = f(x, t),
u(x, 0) = u0(x),

where the vector function b(x) ∈ Rn is bounded and divergence free. Depending
on the question addressed q will satisfy either q ≥ 1 + 1

n ( or in some particular
cases q ≥ 1). We note that the condition q ≥ 1 + 1

n is used in many decay results
when the forcing term f = 0, see [19]. The initial data will be supposed to satisfy
u0 ∈ L1(Rn) or u0 ∈ L1 ∩ L∞(Rn). The aim of this paper is first to establish
existence of solutions in the presence of appropriate external functions. Second, to
study the decay of these solutions when the external forces are slowly decaying. The
results obtained can be extended to the more general case where the convective term
has the form ∇·g(u), where g is a C1-vector function which satisfies |g(u)| ≤ C|u|q,
|g′(u)| ≤ C|u|q−1 for every u ∈ R, q ≥ 1, and a constant C.

The typical nonlinear term occurring in hydrodynamics in the one dimensional
case has the form uux = (u2/2)x (as in the case of the viscous Burgers equation).
The most obvious generalization of this nonlinearity consists in replacing the square
by a power uq where q is a positive integer. The problem with the definition of uq

for negative u and for non-integer q as usual is avoided by choosing the nonlinear
power as ∇(u|u|q−1). The interest for studying these equations lies also in the fact
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that one particularly important example corresponds to the vorticity for the 2-d
Navier-Stokes equations.

(1.2) ωt −∆ω + u · ∇ω = f

In this case the function b(x) = u(x) is given by the velocity u = (u1, u2),
the solution to the non-stationary incompressible 2-dimensiona Navier-Stokes. It
is well known that for suitable data, the corresponding solution u is bounded and
divergence free. The solutions to equation (1.2) has been studied by several authors
starting with the work of Kato-Fujita [6] and more recently by Galley-Wayne [3].
The interest in functions that are slowly decaying lies in the fact that when the
decay of the forcing term is fast then the methods used in the case that f = 0 will
apply with small modifications. In particular one is interested in the case when f

is time independent. Thus understanding the case when f is slowly decaying is a
first step in that direction.

For the existence of solutions fixed point methods and technical a priori estimate
will be used. For similar techniques see [2] and [19]. The second part of the paper
will focus on the long time behavior of the solutions. Uniform and non-uniform
decay will be established depending on the choice of the external function, which
either decays very slowly or is in a specified Sobolev space. For fast decaying forcing
terms simple extensions of the Fourier-Splitting technique [12, 13, 10, 17, 18] will
easily give decay. Two types of decay will be obtained

1. Non–uniform decay in Lp, 2 ≤ p ≤ ∞,

2. Decay in Lp, 2 ≤ p ≤ ∞ with a slow rate depending on the decay rate of
the forcing term.

The first step will be to obtain decay of the energy of the solutions (i.e. decay
in the L2 norm). The general Lp decay will follow by interpolation. The methods
for energy decay are based on ideas of [7, 10] and the Fourier–Splitting technique
[12, 13, 10, 17, 18]. Specifically non-uniform decay will be established for forces
as described below in Assumption A.1. This class of forces include forces f ∈
L1(0,∞;L2).

Uniform decay at slow algebraic rate will be established under Assumptions A.2
and A.3 below. The slowness of the decay is due to the influence of the external
forces. More precisely we will obtain uniform decay (UD) in Lp for a class of forces
that include functions of the type

• [f1] f ∈ L∞(0,∞;L1).
• [f2] ‖f(t)‖2 ≤ C(1 + t)−1−ε.
• [f3] ‖rf(t)‖2 ≤ C(1 + t)−1/2−2ε with ε > 0 is a small constant and r = |x|.
• [f4] Consideration will also be given to force which are gradients.

Acknowledgments. The author would like to thank Enrique Zuazua and Xu
Zhang for many discussions on the results in this paper and helpful suggestions
on how to improve the presentation.
The autor would also like to thank an anonymous reviewer who pointed out several
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corrections and made many extremely helpful suggestions to improve the content
and presentation of the paper.

1.1. Notation. For 1 ≤ p ≤ ∞, we denote by Lp the usual Banach space con-
sisting of all Lebesgue measurable functions defined on Rn with norm ‖v‖p =
(
∫

Rn |v(·)|p dx)1/p(< ∞). We will always denote by ‖ · ‖X the norm of any other
Banach space X used in this paper.

If k is a nonnegative integer, W k,p will be the Sobolev space consisting of func-
tions in Lp whose generalized derivatives up to order k belong to Lp.

The Fourier transform of v is defined as F(v) = v̂(ξ) ≡ (2π)−n/2
∫

Rn e
−ixξv(x)dx.

Given a multi-index γ = (γ1, . . . , γn), we denote ∂γ = ∂|γ|/∂γ1
x1
· · · ∂γn

xn
. On the

other hand, for β > 0, the operator Dβ is defined via the Fourier transform as
(̂Dβw)(ξ) = |ξ|βŵ(ξ). Let L2 and Ḣ1

0 denote the completions of C∞0 (Rn) in the
L2-norm ‖ · ‖2 and the Dirichlet (homogeneous Ḣ1) norm ‖∇ · ‖2. We denote

Lp(a, b;Lq) =
{
f : (a, b)× Rn → Rn; ‖f‖Lp(a,b;Lq) =

(∫ b

a

‖f(τ)‖q
pdτ

)1/q

<∞
}
.

The notation of ‖ · ‖p,q will be used as the norm of Lp(0,∞;Lq). H1 = Ḣ1 ∩L2.
The symbol 〈 ·, · 〉 denotes the inner product in L2. Various constants are simply
denoted by C.

2. Existence results

The focus of this section is the existence of solutions to (1.1). Fixed point theory
techniques will yield local existence. A priori estimates will then allow to pass to a
global solution. The main result in this section the following:

Theorem 2.1. Let u0 ∈ L1, q ≥ 1 and b ≡ (b1, b2, · · · , bn) ∈ (L∞)n with div b = 0.
Then the following assertions hold:
•1 If f ∈ L1(0,∞;L1) then there exists a unique mild solution u ∈ C((0,∞);L1)

of (1.1) such that

(2.1) ‖u(t)‖1 ≤ ‖u0‖1 + ‖f‖1,1, ∀t > 0.

•2.a If f ∈ L∞(0,∞;Lp) ∩ L1(0,∞;L1), p ∈ [1,∞) then there exists a unique
mild solution u ∈ C((0,∞);Lp) of (1.1), and constants

Np = N(p, n, ‖u0‖1‖f‖1,1), Mp = M(p, n, ‖u0‖1), and βp = β(p, n)

such that

(2.2) ‖u‖p ≤ max {Npt
−n/2(1−1/p),Mp‖f‖βp

p,∞}, ∀t > 0,

where Mp →∞, Np →∞ as p→∞.

•2.b If in addition to hypothesis in •2.a, f ∈ C(0,∞;W 2,p) then the solution
constructed in •2.a will satisfy u ∈ C((0,∞);W 2,p ∩ L1) ∩ C1((0,∞);Lp).
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•3 If f ∈ L1(0,∞;L1 ∩ L∞) ∩W 2,p, u0 ∈ Lp, p ∈ [1,∞) then there exists a
unique solution u ∈ C([0,∞) : W 2,p ∩ L1) ∩ C1((0,∞);Lp), and

(2.3) ‖u(t)‖p ≤ exp
{p− 1

p
‖f ||∞,1

}[
‖u0‖p + ‖f‖1/p

1,1

]
, ∀t > 0.

•4 If in addition to the hypothesis in •3 u0 ∈ L∞, then

(2.4) ‖u(t)‖∞ ≤ exp{‖f‖∞,1}
[
‖u0‖∞ + 1

]
, ∀t > 0.

Proof.

Remark 2.2. When q = 1 the equation is linear and existence is a well known result.

Part 1: As in [2] we first consider data u0 ∈ L1 ∩ L∞ . Supposing that f ∈
L1(0,∞;L1 ∩ L∞) ∩ C(0,∞;W 2,p) we show that u ∈ C((0,∞);W 2,p ∩ L1) ∩
C1((0,∞);Lp), where p ∈ (1,∞). By appropriate simplifications, the argument
presented yields for the less restrictive initial hypothesis given in part •1 that
u ∈ C([0,∞);L1) and in part •2 that u ∈ C([0,∞);Lp). These simplifications
are straightforward and as such omitted.

Let G = G(x, t) be the heat kernel, then

(2.5)
u(x, t) = G ∗ u0 +

∫ t

0

n∑
j=1

∂xjG(t− s) ∗ (bju(s)|u(s)|q−1)ds

+
∫ t

0

G(t− s) ∗ f(s)ds.

Following standard Banach fixed theorem techniques (see also [2]) introduce the
operator:

[Φ(u)] = G ∗ u0 +
∫ t

0

 n∑
j=1

∂xj
G(t− s) ∗ (bju(s)|u(s)|q−1) +G(t− s) ∗ f(s)

 ds.
Apply fixed point theorem to Φ in the closed subset of C([0, T ];L1 ∩ L∞):

B =
{
u ∈ C((0, T ];L1 ∩ L∞); sup

0<t<T
(‖u(t)‖1 + ‖u(t)‖∞) ≤M

}
with M large enough and T small enough to insure that Φ has a unique fixed point.
By the hypothesis on f , standard computations yield that the integral equation
(2.5) has a unique local in time solution u = u(x, t) in B, see [2].

As in [2] classical regularity yields

(2.6) u ∈ C((0, T );W 2,p) ∩ C1((0, T );Lp)

for every p ∈ (1,∞). The solution can be extended to a maximal interval Tmax. To
obtain a global solution it suffices to show the a priori estimate

(2.7) sup
[0,Tmax)

(‖u(t)‖1 + ‖u(t)‖∞) < C,

where C is a constant independent of Tmax. For this we follow in part the steps in
[2]. Due to the added forcing term new estimates will be needed.
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Note that the since b is divergence free it will enter in the estimates similarly
than if it would be a constant. Let φ ∈ C1, then the following integral vanishes

(2.8)

∫
Rn

b · ∇(|u|q−1u)φ(u)dx

= −
∫

Rn

(div b)|u|q−1uφ(u)dx−
∫

Rn

|u|q−1uφ′(u)b · ∇udx

= −
∫

Rn

|u|q−1uφ′(u)b · ∇udx = −
∫

Rn

b · ∇
∫ u

0

|s|q−1sφ′(s)dsdx

=
∫

Rn

(div b)
∫ u

0

|s|q−1sφ′(s)dsdx = 0.

Since u(t) ∈W 2,p (for t > 0), for any φ ∈ C1(R) we have

(2.9)
∫

Rn

φ(u)∆udx = −
∫

Rn

φ′(u)|∇u|2dx.

By density argument, (2.9) holds for φ(s) = sign s, hence

(2.10)
∫

Rn

(signu)∆u dx ≤ 0.

Thus multiplying (1.1) by signu and integrating it in Rn gives

(2.11)
d

dt

∫
Rn

|u(x, t)|dx ≤
∫

Rn

|f(x, t)| dx

Since f ∈ L1(0,∞;L1) and u0 ∈ L1 it follows that the solution u has the required
L1 a priori bound:

(2.12) ‖u(t)‖1 ≤ ‖u0‖1 + ‖f‖1,1.

This concludes the L1 estimate.

Remark 2.3. Note that up to now only conditions on ‖u0‖1 and ‖f‖1,1 have been
used. If the hypothesis on the initial data is just given by •1, as noted above simple
modifications of the above argument yield u ∈ C([0,∞);L1). The modifications to
the argument are straightforward and as such are omitted.

The L∞ a priori estimate is obtained as follows. Multiply equation (1.1) by
sign(u− ‖u0‖∞ −

∫ t

0
f ds)+, integrate in space to yield

d

dt

∫
Rn

(u− ‖u0‖∞ −
∫ t

0

|f | ds)+dx ≤ 0

Now multiply equation (1.1) by sign(u+‖u0‖∞+
∫ t

0
f ds)−, integrating in space

gives

d

dt

∫
Rn

(u+ ‖u0‖∞ +
∫ t

0

|f | ds)−dx ≤ 0

Hence
||u||∞ ≤ ‖u0‖∞ + ||f(·, t)||1,1

. This completes the the existence in the case when the data u0 ∈ L1 ∩ L∞
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Part 2: The next step is to obtain an Lp a priori bound for t > 0 which depends
only on the L1 data. Suppose first, that the data u0 is in L1 ∩ Lp and obtain
an estimate on the solution which depends only on the L1 norm of u0. Then
suppose that the data u0 is in L1 alone. Standard approximation theorems insure
that it is possible to construct a sequence of data functions uk

0 ∈ L1 ∩ Lp which
converge strongly to u0 . We show that the solutions corresponding to the data uk

0

converge to the solution with data in L1 only. Hence the solution constructed via
approximation , will be bounded in Lp with the bound depending only on the L1

norm of the data.

Lp-a priori estimate
Recall first the following known interpolation inequality, which will be needed

below:

Lemma 2.4. ([2]) For every p ∈ [2,∞) there exists some constant C = C(n) > 0
such that

(2.13) ‖v‖(n(p−1)+2)p/n(p−1)
p ≤ C‖v‖2p/n(p−1)

1 ‖∇(|v|p/2)‖2
2

for every v ∈W 2,p(Rn) ∩ L1(Rn).

To estimate the Lp norm, multiply equation (1.1) by p|u|p−2u, use (2.8) and
integrate in space

(2.14)
d

dt

∫
Rn

|u|pdx+ 4
(p− 1)
p

∫
Rn

|∇(|u|p/2)|2dx = p

∫
Rn

f |u|p−2udx.

Let

Bp = 4C
p− 1
p

(
‖u0‖1 + ‖f ||1,1

)−2p/n(p−1)

≥ C
(
‖u0‖1 + ‖f ||1,1

)−2p/n(p−1)

,

where C is constant depending on n. Using Lemma (2.4), equation (2.12) and the
last equality yields

(2.15)
d

dt
‖u‖p

p +Bp‖u‖pγ
p ≤ p

∫
Rn

f |u|p−2udx = I,

where γ = n(p−1)+2
n(p−1) = 1 + 2

n(p−1) .
The RHS of the last equation is bounded as follows:

(2.16) I ≤ p

∫
Rn

f |u|p−1dx ≤ p‖f‖p‖u‖p−1
p ≤ Aα

α
‖u‖pγ

p +
‖f‖βpβ

β Aβ
,

where α(p − 1) = p(1 + 2
n(p−1) ) = pγ. Let 1

α + 1
β = 1 and choose A so that

Aα

α = Bp

2 = Cp. Combining (2.15) with (2.16) yields

(2.17)
d

dt
‖u‖p

p + Cp‖u‖pγ
p ≤

‖f‖β
pp

β

β Aβ
.

Denote by v = ‖u‖p
p. The last equation can be rewritten as

(2.18)
dv

dt
+ Cpv

γ ≤
‖f‖β

p,∞p
β

βAβ
.
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Let Kp = pβ‖f‖β
p,∞

β Aβ . Now consider two cases:

• Case 1. Intervals where Kp ≥ Cp

2 v
γ ,

• Case 2. Intervals where Kp ≤ Cp

2 v
γ .

We consider the problem separately on intervals where v ≤
[

2
Cp
Kp

]1/γ

and in-

tervals where v ≥
[

2
Cp
Kp

]1/γ

, then take the maximum as a bound. If for all time

Case 1 holds then v = ‖u‖p
p ≤

[
2

Cp
Kp

]1/γ

and we are done. Thus to estimate the
solution of equation (2.18) it is only necessary to address intervals where Case 2 is
satisfied. In this situation we work on intervals which start at t = 0 if v(0) ≥ Kp

or on intervals starting at t = t1, where t1 is such that v(t1) = Kp. For intervals
where Case2 holds the Lp norm of the solution satisfies the differential inequality:

dv

dt
+ Cpv

γ ≤ Cp

2
vγ ,(2.19)

v(t0) = v0,

where t0 = 0, or t0 = t1 and v0 = v(0) or v0 = Kp respectively. We work on
intervals where v ≥ Kp > 0, hence the last equation reduces to

(2.20) v−γ dv

dt
≤ −Cp

2
.

An easy computation yields

(2.21) vγ−1 ≤
[
v1−γ
0 + (γ − 1)

Cpt

2

]−1

.

Note that γ − 1 = n
2(p−1) . Hence the last inequality can be expressed as

(2.22) v ≤ [v−n/2(p−1)
0 + tCp(

n

4(p− 1)
]−

2
n (p−1) ≤ [tCp

n

4(p− 1)
]−

2
n (p−1).

Here one uses that v−n/2(p−1)
0 > 0, which holds since v0 = v(t1) = Kp or v0 = v(0)

and in both cases v0 > 0 ( See definition of Kp above).
Let

Np = [Cp(
n

4(p− 1)
]−

n
2 (p−1), Mp =

(
2pβ

CpβAβ

)1/γ

.

Combining the above estimates yields

(2.23) v ≤ max {Mp‖f‖β/γ
p,∞, Npt

− 2
n (p−1)} = Hp.

This last estimate gives an Lp estimate for all t > 0 independent of the Lp norm
of the initial data. By their definition it follows that Np → ∞ and Mp → ∞ as
p→∞. This concludes the proof of Theorem(2.1), part •2a, in the case where the
data satisfies u0 ∈ L1 ∩ Lp.

As remarked above, the proof when the initial data is in L1 alone uses an ap-
proximation argument similar to the one presented in [2]. We need first an L1
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stability estimate. Let u, v ∈ C([0, t];L1 ∩ Lp) be two solutions of (1.1) with data
u0, v0 ∈ L1 ∩ Lp. The following property will be necessary.

(2.24)
d

dt

∫
Rn

|u(t, x)− v(t, x)|dx ≤ 0, ∀t > 0.

Notice that the equation for u − v is the same as the difference of the corre-
sponding homogeneous equations. Hence (2.24) follows as in he homogeneous case,
[2], multiplying the equation by sign(u − v) and integrating in space. Thus the
following contraction property holds

(2.25) ‖u(t)− v(t)‖1 ≤ ‖u0 − v0‖1, ∀t > 0.

Let u0 ∈ L1(Rn). Let uo,k ∈ L1(Rn) ∩ Ls(Rn) approximate u0 in L1, with s

as high as needed. Let uk = uk(x, t) be the sequence of solutions with data uo,k.
Then by the contraction property (2.25) it follows that {un} is a Cauchy sequence
in C([0,∞);L1(Rn)). Let u(t) be the limit in L1. Clearly u(x, 0) = u0. The same
sequence uk will be Cauchy in Lp, as can be seen by choosing a to sequence to be
bounded in L1 ∩ Ls, with s = 2p− 1, hence for each fixed p and t > 0

(2.26)

(
∫
|un(t)− um(t)|pdx)1/p = (

∫
|un(t)− um(t)|1/2|un(t)− um(t)|p−1/2dx)1/p

≤ (
∫
|un(t)− um(t)|dx

∫
|un(t)− um(t)|2p−1 dx)1/2p ≤ 2Qp(t)(

∫
|un − um|dx)1/2p

where we used ‖u‖
2p−1
2p

2p−1 ≤ [Hp]1/2p(t) = Qp(t). Thus the sequence of solutions is
Cauchy for each p when t > 0. The convergence of the uk to u is strong in L1 ∩Lp,
for all p ∈ [1,∞). Hence u is a solution of (1.1) which satisfies the required a priori
estimates. This concludes part •2.a of the theorem .

Part •2.b The additional regularity of f , f ∈ C(0,∞;W 2,p yields by classical
regularity arguments that the solution satisfies

u ∈ C((0, Tmax);W 2,p ∩ L1) ∩ C1((0, Tmax);Lp),

and by •2.a it follows that Tmax = ∞.

Part •3 From inequality (2.15) it follows that

(2.27)
d

dt
‖u‖p

pdx+Bp‖u‖pγ
p = p

∫
Rn

f |u|p−2udx ≤ p

∫
Rn

|f |(|u|p + 1)dx.

Hence

(2.28)
d

dt
‖u‖p

p ≤ p

∫
Rn

|f |dx+ p

∫
Rn

|f ||u|pdx ≤ p

∫
Rn

|f |dx+ p‖f(t)‖∞‖u‖p
p.

Gronwall’s inequality and taking the p-th root yields

(2.29) ‖u(t)‖p ≤ {exp‖f ||∞,1}[‖u0‖p + p1/p‖f‖1/p
1,1 ]..

By classical regularity arguments the local estimate of the solution was in the
space C((0, Tmax);W 2,p ∩ L1) ∩ C1((0, Tmax);Lp), hence so is the global solution.
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Part •4 To obtain the L∞ estimate simply pass to the limit as p tends to infinity
in the last equality. This completes the proof of the theorem. �

3. Assumptions on the external force

This section describes additional assumptions, on the forcing term f , under
which decay of the solutions will be studied. These assumptions require very weak
decay for the function f . Typical conditions we are seeking are of the form

• i. f ∈ L1(0,∞;L2).
• ii f ∈ L2(0,∞;L

2n
n+2 ) for n ≥ 3.

• iii. ρf ∈ L2(0,∞;L2) for an appropriate weight function ρ.

Three possible assumptions will be given: A.1, A.2 and A.3. Assumption A.1
yields non–uniform decay, while assumptions A.2, A.3 yield a slow algebraic rate
of decay. Functions satisfying i, ii, ii above will be special cases fitting into A.1,
A.2 or A.3 for appropriate parameters.

We remark that the assumptions here are the same as the ones used on forces
regarding non-homogeneous solutions to the Navier–Stokes equations ([10]).

Assumptions on f :

1. Assumption A.1: For x0 ∈ Rn, set

ρ = ρx0(x) =

{
|x− x0|, if n ≥ 3,

|x− x0|(1 + | ln |x− x0||), if n = 2.

Suppose that for 0 ≤ γ ≤ 1, 2 ≤ p ≤ 2n
n−2+2γ (< ∞ if n = 2) and

θ = 4p
2pγ+np−2n ,

ργf ∈ Lθ′(0,∞;Lp′),

where p′ and θ′ are the Hölder conjugates of p and θ.

Remark 3.1. (1) Assumption A.1 includes cases i, ii and iii in the special
case where ρ is given above, as follows:
◦ For i. let γ = 0, p = 2, θ = 1.
◦ For ii. let γ = 0, p = n−2

2n , θ = 2.
◦ For iii. let γ = 1, p = 2, θ = 2, and ρ is of the type described in A.1.

2. Assumption A.2: Let γ, p, θ and ρ be the same as in assumption A.1. For
small ε > 0 suppose that f satisfies

(1 + t)βργf ∈ L∞(0,∞;Lp′),

where β = 1
θ′ + ε θ+2

θ .

Remark 3.2. By choosing γ = 0, p = p′ = 2 and β = 1 + ε, A.2 is
specialized as

‖f(t)‖2 ≤ C(1 + t)−1−ε.
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The choice of γ = 1, p = p′ = 2, yields θ = 2 and β = 1/2 + 2ε which gives
class [f3.] in the introduction.

‖ρf(t)‖2 ≤ C(1 + t)−
1
2−2ε.

Remark 3.3. Assumption A.2 implies A.1.

3. Assumption A.3: Let f satisfy either:
i. f can be written as f = Dg, where D is any first order derivative and
g ∈ L∞(0,∞;L1) or,

ii. f ∈ L2(0,∞;L1).

4. Some preliminaries

The propositions and lemmas in this section are technical and provide several
auxiliary estimates that will be needed in the sequel.

Remark 4.1. In the remainder of the paper we will always assume that the external
force has enough regularity to insure the existence of a regular solution to equation
(1.1). To obtain the L2 decay it would suffice to work with solutions u described
in Remark (7.7). The arguments would be also possible for weak solutions via
approximations.

Auxiliary estimates on low and high frequency parts of the solutions

To establish decay of the solutions we will need to analyze separately low and
high frequencies of the solution u, in the sense that u can be split as

‖u‖2 ≤ ‖φû‖2 + ‖ψû‖2,

where ψ = 1 − φ and φ is centered on low frequencies. The next propositions and
corollary will be useful for this analysis, since u satisfies the integral equation (2.5)
the following corollary is straightforward to establish.

Proposition 4.2. Let E ∈ C1(R+; R), E ≥ 0 and ψ ∈ C1(0,∞;L∞). Let u be
a regular solution constructed in Theorem (2.1) or in or in Remark (7.7) then u

satisfies

(4.1)
E(t)‖ψ(t)û(t)‖2

2

≤ E(s)‖ψ(s)û(s)‖2
2 +

∫ t

s

E′(τ)‖ψ(τ))û(τ)‖2
2dτ

+2
∫ t

s

E(τ)
[
〈ψ′(τ)û(τ), ψû(τ) 〉−‖ξψ(τ)û(τ)‖2

2]dτ

+2
∫ t

s

E(τ)
[
〈 F(b · ∇(u|u|q−1(τ)), (1− ψ2)û(τ) 〉+ 〈 f̂(τ), ψ(τ)2û(τ) 〉

]
dτ,
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for almost all s > 0 with s = 0 and all t ≥ s. In particular, the solution satisfies

(4.2)

E(t)‖u(t)‖2
2

≤ E(s)‖u(s)‖2
2 +

∫ t

s

E′(τ)‖u(τ)‖2
2dτ

−2
∫ t

s

E(τ)‖∇u(τ)‖2
2dτ + 2

∫ t

s

E(τ) 〈 f(τ), u(τ) 〉 dτ

for almost all s ≥ 0 and all t ≥ s.

Proof. The proof is obtained via a slight modification of the proof of a sim-
ilar statement for solutions to the Navier–Stokes equations. Multiply the Fourier
Transform of equation (1.1) by 2E(τ)ψ2û(τ) and notice that

(4.3) 〈 b · ∇(u|u|q−1), u 〉 = 0.

Hence the result follows after integrating over the time interval [s, t]. For details
we refer the reader to [10].

The second inequality follows from the first one by choosing ψ = 1. �

Corollary 4.3. (Low frequency) Let u be a regular solutions constructed in Theorem
(2.1) or in Remark (7.7) and φ ∈ L2 ∩ L∞, then

(4.4)

‖φû‖2
2 = ‖φ̌ ∗ u(t)‖2

2

≤ ‖e∆(t−s)φ̌ ∗ u(s)‖2
2 + 2

∫ t

s

(∣∣∣ 〈 b · ∇(u|u|q−1), e2∆(t−τ)φ̌2 ∗ u(τ) 〉
∣∣∣

+
∣∣∣ 〈 f, e2∆(t−τ)φ̌2 ∗ u(τ) 〉

∣∣∣)dτ.
Proof. Define Φ(τ) by

Φ(τ) = F−1(e−|ξ|
2(t+η−τ)φ)(ξ), η > 0.

Thenletterviscous

Φ′(τ) = F−1(|ξ|2e−|ξ|
2(t+η−τ)φ)(ξ), η > 0,

and Φ(τ) ∗ u(τ) = e∆(t+η−τ)φ̌ ∗ u(τ). Thus

〈Φ′(τ) ∗ u(τ),Φ(τ) ∗ u(τ) 〉−‖∇Φ(τ) ∗ u(τ)‖2
2

= 〈−∆e∆(t+η−τ)φ̌ ∗ u(τ), e∆(t+η−τ)φ̌ ∗ u(τ) 〉−‖∇e∆(t+η−τ)φ̌ ∗ u(τ)‖2
2

= 0.

Here as usual the notation e∆(t)g is used to indicate the convolution in space of g
with the heat Kernel. By (4.1) with E(t) = 1 and ψ = Φ as defined above, using
(4.3) yields
(4.5)

‖e∆(η)φ̌ ∗ u(t)‖2
2

≤ ‖e∆(t+η−s)φ̌ ∗ u(s)‖2
2 + 2

∫ t

s

(∣∣∣ 〈 F(b · ∇(u|u|q−1)), e2∆(t+η−τ)φ̌2 ∗ u(τ) 〉
∣∣∣

+
∣∣∣ 〈 f, e2∆(t+η−τ)φ̌2 ∗ u(τ) 〉

∣∣∣)dτ.
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Letting η → 0 in (2.24), we obtain (2.23). �

Auxiliary estimates for the non-uniform decay of the solutions

For these estimates we apply Proposition (4.2) to a particular function ψ and
combine it with Fourier Splitting technique. The new estimate will be needed to
establish the non uniform decay of the solutions.

Proposition 4.4. Let u be a regular solution constructed in Theorem (2.1) or in
Remark (7.7). Let E(t) be as in (4.2), ψ = 1 − exp(−|ξ|2) = 1 − φ and b ∈
L∞, q ≥ 1 + 1

n , χ(t) = {ξ ∈ Rn; |ξ| ≤ G(t)}, where G is a continuos function. Let
χ(t)c = Rn \ χ(t). For n = 2 suppose additionally that u0 ∈ L∞. Then

(4.6)

E(t)‖(1− φ)û(t)‖2
2

≤ E(s)‖(1− φ)û(s)‖2
2 +

∫ t

s

E′(τ)
∫

χ

|(1− φ)û(τ)|2dξ dτ

+
∫ t

s

(E′(τ)− 2E(τ)G2(τ))
∫

χ(t)c

|(1− φ)û(τ)|2dξdτ

+C
∫ t

s

E(τ)‖∇u‖2
2dτ +

∫ t

s

E(τ)| 〈 f, {(1− φ)2}∨ ∗ u(τ) 〉 dτ.

Proof. Case 1: n ≥ 3. We use the notation Γ = 1 − (1 − φ)2. Note that in
this case ψ is independent of t, hence ψ′ = 0. Thus inequality (4.1) yields that
(4.7)

E(t)‖(1− φ)û(t)‖2
2

≤ E(s)‖(1− φ)û(s)‖2
2 − 2

∫ t

s

E(τ)‖ξ(1− φ)û(τ)‖2
2dτ

+
∫ t

s

E′(τ)
[∫

χ(t)

|(1− φ)û(τ)|2dξ +
∫

χc

|(1− φ)û(τ)|2dξ
]
dτ

+2
∫ t

s

E(τ)
(
| 〈 Fb · ∇(u|u|q−1)),Γû(τ) 〉 |+ | 〈 f̂ , (1− φ)2û(τ) 〉 |

)
dτ

≤ E(s)‖(1− φ)û(s)‖2
2 +

∫ t

s

E′(τ)
∫

χ(τ)

|(1− φ)û(τ)|2dξdτ

+
∫ t

s

(E′(τ)− 2E(t)G2(t))
∫

χ(τ)c

|(1− φ)û(τ)|2dξdτ

+2
∫ t

s

E(τ)
(
| 〈 F(b · ∇(u|u|q−1),Γû(τ) 〉 |+ | 〈 f, {(1− φ)2}∨ ∗ u(τ) 〉 |

)
dτ.

Since F−1(Γ) = F−1(1 − (1 − φ)2) ≡ ψ̃ is a rapidly decreasing function, the
fourth term of the right hand side of (4.7) is estimated using Haussdorf-Young’s
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(4.8)

∫ t

s

E(τ)| 〈 b · ∇(u|u|q−1), ψ̃ ∗ u(τ) 〉 |dτ

≤ ‖b‖∞
∫ t

s

E(τ)‖∇u|u|q−1‖ 2n
n+2

‖ψ̃ ∗ u‖ 2n
n−2

dτ.

By Hölder’s and Gagliardo-Nirenberg inequalities it follows that if q ≥ 1 + 1
n

(4.9) ‖∇u|u|q−1‖ 2n
n+2

‖ψ̃ ∗ u‖ 2n
n−2

≤ ‖u‖q−1
n(q−1)‖∇u‖2‖ψ̃‖1‖u‖ 2n

n−2
≤ C‖∇u‖2

2

Here we used that since n(q − 1) ≥ 1 we have u ∈ Ln(q−1). Combining the last
inequality with (4.8) and (4.7) establishes Proposition (4.4) in the case when n ≥ 3.

Case 2: Here n = 2, q ≥ 1 + 1/2 and u0 ∈ L1 ∩ L∞.
We replace the function Γ by 1 − Γ = (1 − φ)2 = ψ2 in (4.7). As mentioned
above 〈 b · ∇(u|u|q−1), u 〉 = 0. Hence inequality (4.7) remains the same with this
replacement. Define now ψ̃ = F−1(1−φ). In this case again we need to estimate the
fourth term of (4.7). Since b ∈ L∞, by Haussdorf-Young and Gagliardo-Nirenberg
it follows that

(4.10)

∫ t

s

E(τ)| 〈 b · ∇(u|u|q−1), ψ̃ ∗ u(τ) 〉 |dτ

≤ ‖b‖∞
∫ t

s

E(τ)
∫

Rn

|u|q−1|∇u(x)| δτ
∫

Rn

|ψ̃(x− y)u(y)|dy dx

≤ ‖b‖∞
∫ t

s

E(τ)‖u‖∞‖ψ̃‖1‖∇u‖2‖u‖(q−1)
2(q−1) dτ ≤ C

∫ t

s

E(τ)‖∇ u‖2
2 dτ

Note that 2(q−1) ≥ 1 and hence u ∈ L2(q−1). The last inequality holds since in 2
dimensions ‖u‖∞ ≤ C‖∇u‖2. The conclusion of the Proposition follows combining
the last inequality with (4.8) and (4.7). �

5. Non-uniform decay

In order to establish non-uniform Lp time decay we first study the decay of
energy in L2-norm. In this case high and low frequencies of the solutions are
analyzed separately. That is as described in the last section we split the L2 norm
of u

‖u‖2 ≤ ‖φû‖2 + ‖(1− φ)û‖2,

where φ is centered at low frequencies. Once the L2 decay is established, inter-
polation will yield Lp-decay. For the low frequency estimates, ideas developed by
Masuda [7] will be used. For high frequency estimates the main tool will be the
Fourier Splitting Method. Similar techniques were used for Navier-Stokes in [10].
In what follows all the constants that depend on norms of f, b, u0 and on q, n will
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be denoted by C. In some cases C might also depend on functions φ which will be
introduced below.

We remark that since in the case n ≥ 3 the initial data is only in L1 this non-
uniform decay might be optimal. We recall that such lack of uniformity can be
found even at the Heat equation level, where if the data is only in L2 there are
examples of solution that do not decay uniformly. For a reference see [14] .

Theorem 5.1. (Non-uniform decay) Let q ≥ 1 + 1
n . If n ≥ 3 let u0 ∈ L1. If

n = 2, let u0 ∈ L1 ∩ L∞ . Suppose f satisfies A.1 and u is a solution constructed
in Theorem (2.1). Let b ∈ (L∞)n with div b = 0. Then the solution u to (1.1)
satisfies the non-uniform energy decay:

‖u(t)‖p → 0 as t→∞,

where p ∈ (1,∞), for n ≥ 3 ( and p ∈ (1,∞] when n = 2).

Proof. To modulate the low frequencies choose φ(ξ) = exp(−|ξ|2). The proof
is split into three steps:

• Low frequency estimates : Estimates on ‖φ(ξ)û‖2.
• High frequency estimates : Estimates on ‖[1− φ(ξ)]û
|2.

• Lp decay.

The proof makes use of the generalized energy inequality and the auxiliary esti-
mates obtained in the Section on Preliminaries and in the Appendix.

Low Frequency decay
Corollary 4.3 and Plancherel’s identity yield

(5.1)

‖φû(t)‖2
2

≤ ‖e−|ξ|
2(t−s)φû(s)‖2 + 2

∫ t

s

| 〈 e2∆(t−τ)φ̌2 ∗
(
b · ∇(u|u|q−1), u 〉 |dτ

+2
∫ t

s

| 〈 f, e2∆(t−τ)φ̌2 ∗ u 〉 |dτ ≡ I + II + III.

To bound term II in the RHS of the last equation, two cases have to be considered
separately: n = 2, and n ≥ 3.

Case: n = 2 Since div b = 0, the derivative can be passed onto u after an
integration by parts. Using Hölder and Haussdorf-Young inequalities yields

(5.2)

II ≤ 2
∫ t

s

| 〈
n∑

j=1

φ̌2 ∗ bj(x)(u|u|q−1), e2∆(t−τ)∂ju 〉 |dτ

≤ C

∫ t

s

n∑
j=1

‖φ̌2 ∗ bj(x)u|u|q−1‖2‖∂ju‖2dτ ≤ C

∫ t

s

‖φ̌2‖1‖uq‖2‖∇u‖2dτ.

Here q ≥ 1+1/2 = 3/2,and since all the Lp, 1 ≤ p ≤ ∞ norms of u are bounded,

(5.3) ‖uq‖2 ≤ ‖u‖∞‖u‖q−1/2
2q−1 ≤≤ C‖∇u‖2.
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Note also that by the definition of φ̌ it follows that φ̌ ∈ L2. Combining the last
two bounds yields when n = 2

(5.4) II ≤ C

∫ t

s

‖∇u‖2
2.

Case: n ≥ 3 Since div b = 0 the derivative can be passed onto u after an
integration by parts. Using Hölder and Haussdorf-Young inequalities it follows
that

(5.5) II ≤ C

∫ t

s

‖b‖∞‖φ̌2 ∗ u|u|q−1‖2‖∇u‖2 ds ≤ C

∫ t

s

‖φ̌2‖ 4
3
‖uq‖ 4

3
‖∇u‖2 dτ

To bound the last integral use

(5.6) ‖u(q−1)+1‖ 4
3
≤ (‖u‖

4
3 (q−1)

(q−1)n‖u‖ 2n
n−2

≤ C‖∇u‖2

Here we used that (q − 1)n ≥ 1 by hypothesis. and that all the Lp norms of u
are bounded, combining (5.5) and (5.6), yields for n ≥ 3,

(5.7) II ≤ C

∫ t

s

‖∇u‖2
2 dτ.

To bound III we proceed as follows
(5.8)

III = 2
∫ t

s

| 〈 f, e2∆(t−τ)φ̌2∗u 〉 |dτ ≤ C

∫ t

s

| 〈 f, u 〉
∫

Rn

e2∆(t−τ)φ̌2 dy ≤ C

∫ t

s

〈 |f |, |u| 〉 dτ

Hence by (5.1), (5.4), (5.7), (5.8) and Lemma 7.1 ,

(5.9) ‖φû(t)‖2
2 ≤ ‖e−|ξ|

2(t−s)φû(s)‖2
2 + C

∫ t

s

‖∇u‖2
2dτ + C

(∫ t

s

‖∇u‖2
2dτ
)1/θ

.

where θ was defined in Assumption A.1. Since limt→∞ ‖e−|ξ|2(t−s)φû(s)‖2
2 = 0, we

have by letting t→∞ in (5.9), that

(5.10) lim
t→∞

‖φû(t)‖2
2 ≤ C

∫ ∞

s

‖∇u‖2
2dτ + C

(∫ ∞

s

‖∇u‖2
2dτ
)1/θ

.

By Proposition (7.4) in the Appendix the right hand side of (5.10) converges 0 as
s→∞.

Remark 5.2. Dealing with the solutions constructed in Remark (7.7), then in the
inequality (5.10) the last integral would be replaced by∫ ∞

s

‖f‖2dτ,

which also converges to zero as sto∞.
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High Frequency decay

To estimate the high frequency part of the energy, Fourier splitting techniques
will be used, [12, 13, 15, 17, 18]. From Proposition (4.4) in the Section on Pre-
liminaries, we need inequality (4.6), we record this inequality to make it easier to
follow the arguments below

(5.11)

E(t)‖(1− φ)û(t)‖2
2

≤ E(s)‖(1− φ)û(s)‖2
2 + +

∫ t

s

E′(τ)
∫

χ(t)

|(1− φ)û(τ)|2dξ dτ

+
∫ t

s

(E′(τ)− 2E(t)G2(t))
∫

χ(t)c

|(1− φ)û(τ)|2dξdτ

+C
∫ t

s

E(τ)‖∇u‖2
2dτ +

∫ t

s

E(τ)| 〈 f, {(1− φ)2}∨ ∗ u(τ) 〉 |dτ.

Let χ(t) = {ξ ∈ Rn; |ξ| ≤ G(t)} Choose E(t) = (1 + t)α with α > 0, G2(t) =
α

2(1+t) in (5.11). Since E′(t) = 2E(t)G2(t), it follows from inequality (5.11) dividing
by E(t)
(5.12)
‖(1− φ)û(t)‖2

2

≤
(1 + s

1 + t

)α‖(1− φ)û(s)‖2
2

+
α

(1 + t)α

∫ t

s

(1 + τ)α−1

∫
χ(τ)

|(1− φ)û|2dξdτ

+C(φ)
1

(1 + t)α

∫ t

s

(1 + τ)α‖∇u‖2
2dτ + C

∫ t

s

(1 + τ

1 + t

)α| 〈 f, {(1− φ)2}∨ ∗ u 〉 |dτ.

Lemma 7.1 in the Appendix is used to bound the last integral on the RHS of
the last inequality, then it is easy to see that

(5.13)

‖(1− φ)û(t)‖2
2

≤
(1 + s

1 + t

)α‖(1− φ)û(s)‖2
2 +

α

(1 + t)α

∫ t

s

(1 + τ)α−1

∫
χ(τ)

|(1− φ)û|2dξdτ

+C
∫ t

s

‖∇u‖2
2dτ + C(

∫ t

s

‖∇u‖2
2dτ)

1/θ

= I + II + III + IV,

where θ is defined in assumption A.1. Here C = C(φ, u0).

Remark 5.3. If we would have used the solution constructed in Remark (7.7), the
the last integral in inequality (5.13) would be replaced by

∫∞
s
‖f‖2dτ and this term

tends to zero if we let first t→∞ and then s→∞.

It is immediate that the first term tends to zero as time goes to infinity in (5.13).
Just as with the Low Frequency the last two terms are of the form

∫ t

s
‖∇u‖2

2 dτ

and hence tend to zero as we let first t→∞ and then s→∞.
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To bound term II, observe that |1− φ| ≤ C|ξ|2. Hence

(5.14)
∫

χ(τ)

|(1− φ)û|2dξ ≤ CG(τ)4
∫

χ(τ)

|û|2dξ ≤ C(1 + τ)−2‖u‖2.

Thus

(5.15) II ≤ C

(1 + t)α

∫ t

s

(1 + τ)α−3 dτ.

It is clear that lims→∞[limt→∞II] = 0. Hence all terms on the RHS of (5.13)
tend to zero, thus ‖û(1 − φ)‖2 → 0 as t → ∞ Since both the low frequency part
and the high frequency part decay to zero the L2 norm tends to zero. That is

lim
t to∞

‖u(t)‖2 ≤ lim
t→infty

‖φû(t)‖2 + lim
t→∞

‖(1− φ)û(t)‖2 = 0.

This establishes L2- norm decay in Theorem (5.1).

We proceed now with the proof for Lp. We consider three subcases

• Decay in Lp, p ∈ (1, 2), n ≥ 2. Follows by interpolation between L1 and
L2.

• Decay in Lp, p ∈ (2,∞), n ≥ 2. Follows by interpolation between L2 and
Lp+1.

• Decay in L∞, n = 2. Follows by interpolation between L2 and H1.

This concludes the proof of Theorem (5.1) . �

Corollary 5.4. Under the hypothesis of Theorem (5.1). The solutions decay in H1

lim
t→∞

‖∇u(t)‖2 = 0.

Proof. Follows by interpolating between L2 and W 2,2.
�

Corollary 5.5. Suppose that f satisfies the same conditions as in Theorem (5.1).
Let u be a regular solutions constructed in Theorem (2.1) or in Remark (7.7). Then,

(5.16)
1
t

∫ t

0

‖u(τ)‖pdτ → 0 as t→∞.

Proof. For any ε > 0, we can choose s sufficiently large so that

‖u(t)‖p ≤ ε for t ≥ s.

Then

(5.17)

1
t

∫ t

0

‖u(τ)‖pdτ =
1
t

∫ s

0

‖u(τ)‖pdτ +
1
t

∫ t

s

‖u(τ)‖pdτ

≤ 1
t

∫ s

0

‖u(τ)‖pdτ + ε
t− s

t
→ ε as t→∞.

�
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6. Uniform decay

In this section several uniform rates of decay for regular solutions of (1.1) are
established. The main tool will be Fourier Splitting. Since the decay of the forcing
function is slow the solutions will also only have slow decay. The main results of the
section are comprised in Theorems 6.1 and 6.2. As before C denotes constants that
might depend on f, u0, b, q, and, n. We note here that the main estimate needed
for Theorem 6.1 is contained in inequality (4.2), hence there are no restrictions on
the size of q other than that q ≥ 1. For Theorem 6.2, besides of estimates from
the preliminary section we need some Sobolev estimates that will put stronger
restrictions on the lower bound of the size of q for the part on algebraic rate.

Theorem 6.1. Let u be a regular solution constructed in Theorem (2.1) (or in
Remark (7.7) for L2 norm decay) . Let q ≥ 1. Then

1)

‖u(t)‖2 ≤ C(1 + t)−α,

where

α =


min (

n

2
, ε
θ + 2
θ

), if n ≥ 2, fsatisfies A.2,A.3i,

min (1,
n− 2

2
, ε
θ + 2
θ

) if n ≥ 3, fsatisfies A.2,A.3ii.

2) If r ∈ (1, 2) then ‖u(t)‖r ≤ C(1 + t)−2α(1−1/r).

3) If r ≥ 2 then ‖u(t)‖r ≤ C(1 + t)−α 2
r +δ, δ > 0.

Proof. Case 1. Assume f satisfies assumptions A.2 and A.3 (i).
Let f = Dg, g ∈ L∞((0,∞);L1). We first establish the decay in L2. For easier
understanding of the argument we record here inequality (4.2) from the section on
Preliminaries.

(6.1)

E(t)‖u(t)‖2
2

≤ E(s)‖u(s)‖2
2 +

∫ t

s

E′(τ)‖u(τ)‖2
2dτ − 2

∫ t

s

E(τ)‖∇u(τ)‖2
2dτ

+2
∫ t

s

E(τ)| 〈 f(τ), u(τ) 〉 |dτ.

As before let χ(t) = {ξ ∈ Rn; |ξ| < G(t)}. By Parseval the second and third
terms on the right hand side of (4.2) can be treated in Fourier space. The integral
over Rn in frequency domain can be split into Rn = χ ∪ χc. Let E(t), G(t) be
functions of t alone and satisfy

(6.2) E′(t) = 2G2(t)E(t).

Note that the part of the L2 norm of the gradient integrated on χ(t)c is negative
and hence can be dropped. With the above choice of E(t) and G(t) we have∫

χc

[
E′(τ)|u(τ)|2 − 2|∇u(τ)|2E(t)

]
dτ ≤

∫
χc

[E′(τ)− 2G2(τ)E(τ)]|u(τ)|2 dτ = 0,



VISCOUS CONSERVATION LAWS WITH SLOWLY VARYING EXTERNAL FORCES 19

thus inequality (6.1) yields

(6.3)

E(t)‖u(t)‖2
2 ≤ E(0)‖u0‖2

2 + 2
∫ t

0

E′(τ)
∫

χ(τ)

|û|2dξdτ

+2
∫ t

0

E(τ)| 〈 f(τ), u(τ) 〉 |dτ

= I + II + III.

To bound the second term on the RHS of (6.3) we need to estimate the Fourier
Transform of the solution. Taking the Fourier Transform of equation (1.1) and
solving in frequency space yields

(6.4)
|Fu(τ)| ≤ |e−|ξ|

2τ û0|+ C

∫ τ

0

e−|ξ|
2(τ−σ)[|ξ||F(b · u|u|q−1)|+ |ĝ|]dσ

≤ |e−|ξ|
2τ û0|+ C|ξ|

∫ τ

0

e−|ξ|
2(τ−σ)dσ.

Here we used that the Lq norm of the solution can be bounded and b ∈ L∞ and
ĝ = ξf̂ . By Jensen’s inequality, and since |ξ| ≤ G(t) in the ball χ(t), the second
term of the right hand side of (6.3), can be bounded by

(6.5) || ≤ C

∫ t

0

E′(τ)
[
‖e∆τu0‖2

2 + τG(τ)n+2
]
dτ.

Combining this last estimate with (6.3) yields

(6.6)

E(t)‖û(t)‖2
2

≤ E(0)‖u0‖2
2 + 2

∫ t

0

E′(τ)‖e∆τu0‖2
2dτ

+C(‖u0‖1, ‖g‖∞,1)
∫ t

0

τE′(τ)G(τ)n+2dτ + 2
∫ t

0

E(τ)| 〈 f(τ), u(τ) 〉 |dτ.

Let E(t) = (1 + t)α. Then by equation (6.2) G2(t) = α
2 (t + 1)−1. Hence the

integrand of the third term on the RHS of the last inequality, since ξ ∈ χ, can be
bounded by

τE′(τ)G(τ)n|ξ|2 ≤ τE′(τ)G(τ)n+2 ≤ C(1 + τ)1+α−1−( n
2 +1).

Recall that standard L2−L1 estimates, [11], [5], for the Heat operator, if u0 ∈ L1,
give

(6.7) ‖et∆u0‖2 ≤ C1t
−n

4 ,
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where C1 = C1(‖u0‖1). The assumptions on the initial data combined with the
estimate (6.7),(6.3) and (6.6) yield

(6.8)

(1 + t)α‖û(t)‖2
2 ≤ C(‖u0‖2

2 +
∫ t

0

(1 + τ)α−1−n/2dτ

+
∫ t

0

(1 + τ)α−n/2−1dτ +
∫ t

0

(1 + τ)α| 〈 f(τ), u(τ) 〉 |dτ)

≡ I1 + I2 + I3 + I4.

Note that I2 and I3 are the same, and an easy calculation shows that I2 and I3 are
bounded under the choice α < n

2 . To estimate I4 Hypothesis A.2 and Lemma (7.3)
are needed. Let h(t+1) = (1+ t)α, with α < β− 1

θ′ = ε θ+2
θ . Then (α−β)θ′ < −1,

hence the hypothesis of Lemma (7.1) are satisfied

(6.9) I4 ≤ C.

Let now

α < min
{
n

2
, ε(

θ + 2
θ

)
}
.

Then (6.8) yields

(6.10) (1 + t)α‖u(t)‖2
2 ≤ C.

This concludes the first part of the theorem in the norm L2. The decay in the norm
Lr follows by a straightforward interpolation between L1 − L2 if r ∈ (1, 2) and an
interpolation between L2 − Lmr when r > 2, with any m > 1, this yields with the
decay in L2.

‖u(t)‖r ≤ C(t+ 1)−2 m−1
mr−2 .

Now let m → ∞, yielding the decay ‖u(t)‖r ≤ C(t + 1)−
2
r +δ for any δ > 0,

provided m is chosen sufficiently large.

Case 2. Here we have A.2, A.3.(ii), and n ≥ 3. Hence f ∈ L2(0,∞;L1). We
first analyze the decay in L2. The starting point is inequality (6.1). The second
term on the right-hand side of (6.1) can be bounded splitting it into high and low
frequencies via appropriate functions φ,

(6.11)

∫ t

0

E′(τ)
∫

Rn

|û(ξ)|2dξdτ ≤
∫ t

0

E′(τ)
∫

Rn

|φ(ξ)û(ξ)|2dξdτ

+
∫ t

0

E′(τ)
∫

Rn

|(1− φ2(ξ))1/2û(ξ)|2dξdτ.

We let φ(ξ) = e−h(t)|ξ|2 , where h(t) will be determined below. Note that provided
h(t) ≥ 0 it follows that w(r) = 1 − e−h(t)r2 − 2h(t)r2 ≤ 0. Thus choosing E(t) so
that

(6.12) h(τ)E′(τ) ≤ E(τ),

yields

(6.13)
∫ t

0

E′(τ)
∫

Rn

|(1− φ2(ξ))1/2û(ξ)|2dξdτ − 2
∫ t

s

E(τ)‖∇u(τ)‖2
2dτ ≤ 0.
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Using estimates (6.11) and (6.13) in (6.1) gives

(6.14)
E(t)‖u(t)‖2

2 ≤ E(0)‖u0‖2
2 +

∫ t

0

E′(τ)
∫

Rn

|φ(ξ)û(τ)|2dξdτ

+2
∫ t

0

E(τ)| 〈 f(τ), u(τ) 〉 |dτ.

To estimate the second term of right hand side in (6.14), write the solution to
equation (1.1) in frequency space and use Jensen inequality (2.5), hence

(6.15)

∫
Rn

|φ(ξ)Fu(τ)|2dξ

≤
∫

Rn

φ(ξ)2e−2τ |ξ|2 |û0|2dξ

+
∫

Rn

∣∣∫ τ

0

φ(ξ)2e−|ξ|
2(τ−σ)F(b · ∇(u|u|q−1) + f)dσ

∣∣2dξ
≤ C

(∫
Rn

φ(ξ)2|e−|ξ|
2τ û0|2dξ + τ

∫ τ

0

∫
Rn

φ(ξ)2e−2(τ−σ)|ξ|2 |ξ|2‖u‖2q
q |dξdσ

+τ
∫ τ

0

∫
Rn

φ(ξ)2e−2(τ−σ)|ξ|2 |f̂ |2dσdξ
)
≡ I1 + I2 + I3.

One has

(6.16) I1 ≤ C

∫
Rn

e−2(τ+h(τ))|ξ|2 |û0|2dξ ≤ C(τ + h(τ))−
n
2 ‖u0‖2

1,

(6.17)
I2 ≤ Cτ

∫ τ

0

∫
Rn

e−2(τ−σ+h(τ))|ξ|2 |ξ|2‖u‖2q
q dξ dσ

≤ Cτ sup
τ
‖u‖2q

q

∫ τ

0

(h(τ) + τ − σ)−
n
2−1dσ,

and

(6.18)
I3 ≤ Cτ

∫ τ

0

∫
Rn

e−2(τ−σ+h(τ))|ξ|2 |f̂ |2dξdσ

≤ Cτ

∫ τ

0

(τ − σ + h(τ))−
n
2 ‖f(σ)‖2

1dσ.

Choose h(τ) = (1 + τ) and E(τ) = (1 + τ)α, due to condition (6.12) on the
function h, it is necessary to suppose α ≤ 1. Then from the bounds for Ii, i = 1, 2, 3
it follows that

(6.19)

I1 + I2 + I3 ≤ C(1 + 2τ)−
n
2 ‖u0‖2

1 + Cτ(1 + τ)−
n
2 sup

τ
‖u‖2q

q

+Cτ(1 + τ)−
n
2

∫ τ

0

‖f(σ)‖2
1dσ ≤ C(1 + τ)−

n
2 +1.

We recall that from Lemma (7.3), if α < β − 1
θ′ = ε θ+2

θ , then∫ t

0

(1 + τ)α| 〈 f(τ), u(τ) 〉 |dτ ≤ C.
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By our choice of E(t) it follows by (6.14) and ((6.19) that

(6.20)

(1 + t)α‖u(t)‖2
2 ≤ ‖u0‖2

2 +
∫ t

0

(1 + τ)α| 〈 f(τ), u(τ) 〉 |dτ

+C
∫ t

0

(1 + τ)α−1
[
(1 + τ)−

n
2 +1
]
dτ

≤ ‖u0‖2
2 + C

(∫ t

0

(1 + τ)α−n
2 dτ + 1

)
.

Here C depends only on the data f , n, u0 and q. This last bound follows provided
α < min(1, n

2 − 1, ε θ+2
θ ). Recall that we only consider the case n ≥ 3. The desired

rate of decay in L2 follows. As in case 1, the Lp decay rates result by appropriate
interpolation. �

The following theorem considers the case when n = 2 and f satisfies A.2, A.3ii.

Theorem 6.2. Let u be a regular solution constructed in Theorem (2.1) (or in
Remark (7.7) for the L2 norm decay). Let n = 2, q ≥ 1.
Suppose f satisfies A.2, A.3ii. Then

1) ‖u(t)‖2 ≤ C[ln(e+ t)]−1, for any α < 1.
2) If r ∈ (1, 2) then ‖u(t)‖r ≤ [ln(e+ t)]−2(1−1/r).
3) If r > 2 then ‖u(t)‖r ≤ C [ln(e+ t)]−

2
r +δ, δ > 0.

4) If in addition q ≥ 1 + 1/n = 1 + 1/2, f ∈ L1((0,∞);L1) and u0 ∈ L∞, then
‖u(t)‖2 ≤ C(t+ e)−2ε,

‖u(t)‖r ≤ C(t+ e)−2ε(1−1/r), if r ∈ (1, 2),

‖u(t)‖r ≤ C(t+ e)−
4ε
r , if r ∈ (2,∞),

where ε was defined in A.2.

Proof.
The starting point is inequality (6.1). As before let φ = exp (−|ξ|2h(t)),where

now h(τ) = (e + τ)(ln(e + τ)) and E(τ) = ln(e + τ). Since h(t)E′(t) − E(t) = 0,
as in the proof of Theorem (6.1) inequality (6.1) reduces to inequality (6.14). Thus
the second term in (6.1) can be bounded again by integrals I, II, III where the
old h is replaced by the new function h given above. This analysis yields

(6.21)

∫
Rn

|φ(ξ)Fu(τ)|2dξ ≤ C(τ + (τ + e) ln(e+ τ))−1‖u0‖2
1

+Cτ(τ + (τ + e) ln(e+ τ))−1 sup ‖u‖2q
q

+Cτ(τ + (τ + e) ln(e+ τ))−1‖f‖2
1,2.
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Since f ∈ L2(0,∞;L1) and ‖u‖2q
q are bounded by hypothesis, combining (6.14) and

(6.21) yields

(6.22)
(ln(e+ τ))‖u(t)‖2

2 ≤ ‖u0‖2
2 + C

∫ t

0

(ln(e+ τ))−1(e+ τ)−2 dτ

+
∫ t

0

(ln(e+ τ))| 〈 f(τ), u(τ) 〉 |dτ = I + II.

Integral I can be estimated by straightforward integration∫ t

0

(e+ τ)−1(ln(e+ τ))−1dτ =
∫ ln(e+t)

1

dω

ωeω
≤
∫ ln(e+t)

1

dω

eω
≤ C.

To estimate first integral II we use Lemma (7.3) with

h(t) = ln(e+ t), where
∫ ∞

0

( ln(e+ τ)
(e+ τ)β

)θ′

dτ ≤ C,

since βθ′ = 1 + ε τ+2
τ > 1. Hence by Lemma (7.3) it follows that

(6.23) II =
∫ t

0

(ln(e+ τ))| 〈 f(τ), u(τ) 〉 |dτ ≤ C.

Hence the RHS of inequality (6.22) is bounded by a constant C. Thus,

(6.24) ‖u(t)‖2 ≤ C(ln(e+ t))−1.

The Lp estimates follow by standard interpolation between L1 and L2 for part 2,
and between L2 and Lmr for part 3 and then choosing m as large as necessary.

To prove the last part of the theorem, we start by inequality (6.3) and use a
modification of Fourier Splitting combined with an appropriate Gronwall inequality
as was done in ([18]). To bound the terms in this inequality it is necessary to
estimate the square of Fourier Transform of the solution integrated over χ(t) = {ξ :
|ξ| ≤ G(t)}, with G defined below. We express equation (1.1) in Fourier form and
write the solution in its integral form. Since the function b(x) is in L∞, we simply
bound it by a constant. Thus taking the square of û and integrating over χ(τ) yield
(6.25)∫

χ(τ)

|Fu(τ)|2 dξ

≤ 2
∫

χ(τ)

|e−|ξ|
2τ û0|2dξ + 2

∫
χ(τ)

{∫ τ

0

e−|ξ|
2(τ−σ)C(|ξ|‖u‖q

q + ‖f̂‖∞)dτ
}2
dξ

≤ C|G(τ)2|
{
‖u0‖2

1 + (
∫ τ

0

‖f(σ)‖1dσ)2
}

+ Cτ

∫
χ(τ)

|ξ|2(
∫ τ

0

‖u(σ)‖2q
q dσ) dξ.

We are going to consider two separate cases:

Case: q ≥ 2

Using the logarithmic decay established in first part of the Theorem we have

(6.26) ‖u(t)‖2q
q ≤ C‖u‖4

2‖u‖2q−4
∞ ≤ C‖u‖2

2 ln(t+ e)−1.
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Here the constant C depends on ‖u0‖∞. Now set E(t) = (e+ t)2 and G2(t) = 2
e+t

and use the last estimate in inequality (6.25) combined with (6.3), yielding

(6.27)

(e+ t)2‖u(t)‖2
2

≤ ‖u0‖2
1 + C

∫ t

0

(e+ τ)(e+ τ)−1
{
‖u0‖2

1 + (
∫ τ

0

‖f(σ)‖1dσ)2
}
dτ

+2C
∫ t

0

τ(e+ τ)−2

∫ τ

0

‖u(σ)‖2
2(ln(e+ σ))−1dσdτ

+2
∫ t

0

(e+ τ)2| 〈 f(τ), u(τ) 〉 |dτ.

To bound the last integral on the RHS of (6.27), we use Lemma (7.3). Note that
ε < ε θ+2

θ = β − 1
θ′ . Define h(t+ e) = (t+ e)ε. Since (ε− β)θ′ < −1, the hypothesis

of Lemma (7.3) hold, thus we have the bound

(6.28)

∫ t

0

(e+ τ)2| 〈 f(τ), u(τ) 〉 |dτ

≤ (e+ t)2−ε

∫ t

0

(e+ τ)ε| 〈 f(τ), u(τ) 〉 |dτ ≤ C(e+ t)2−ε.

Hence using this last estimate in (6.27) yields, after dividing by (e + t), one
concludes that

(6.29)
(e+ t)‖u(t)‖2

2

≤ C

(
1

e+ t
+ 1 +

∫ t

0

‖u(σ)‖2
2(ln(e+ σ))−1dσ + (e+ t)1−ε

)
.

We use the following version of Gronwall inequality, [4], (page 36).

(6.30) φ(t) ≤ µ(t) +
∫ t

a

ν(s)φ(s)ds,

then, provided µ > 0, it follows that

(6.31) φ ≤ µ(t) +
∫ t

a

ν(s)µ(s) exp
∫ s

a

ν(r)drds.

Now put

(6.32)
φ(t) = (e+ t)‖u(t)‖2

2, µ(t) = C(1 +
1

e+ t
+ (e+ t)1−ε),

ν(t) = C
[
ln(e+ t)(e+ t)

]−1
.

Then

(6.33) exp
∫ t

0

ν(r)dr = ln(t+ e),
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and

(6.34)

∫ t

0

ν(s)µ(s) exp
R s
0 ν(r)dr ds = C

∫ t

0

1 + 1
e+s + (e+ s)1−ε

ln(e+ s)(e+ s)
ln(e+ s)ds

= C

∫ t

s

1
e+ s

+
1

(e+ s)2
+ (e+ s)−εds

= C
(
ln(e+ t) + 1− 1

e+ t
+ (e+ t)1−ε

)
.

Now apply Gronwall to (6.29), with φ, µ and ν defined in (6.32) and use the
computations of (6.34). It follows that

(6.35) (e+ t)‖u(t)‖2
2 ≤ C

(
1 + (e+ t)1−ε + ln(e+ t) + (e+ t)1−ε

)
.

Hence it follows that

‖u(t)‖2
2 ≤ C(e+ t)−ε.

The decay of the Lp norms follows by a straightforward interpolation. The proof
of the theorem is now complete. �

Case: 1 + 1/2 < q < 2
In this case we replace inequality (6.26) by the interpolation inequality

‖u‖2q
q ≤ ‖u‖4−2q

1 ‖u‖4(q−1)
2

For the range of q for this case we have 4(q − 1) = 2 + ε for some ε > 0. The
logarithmic decay in this case will be of order (ln(e+ t))−ε. The arguments of the
last case can be used with obvious straightforward modifications.

This concludes the proof of the theorem.
�

7. Appendix

The proof of the first Lemma can be found in [10].

Lemma 7.1. [10]. Let 0 ≤ γ ≤ 1 and 2 ≤ p ≤ 2n
n−2+2γ . If n = 2 and γ = 0

then p < ∞. Let f satisfy A.1. Then for u ∈ L∞(0, T ;L2) ∩ L2(0, T ; Ḣ1) and
0 ≤ s < t <∞, we have∫ t

s

< |f |, |u| > dτ ≤ CE(t)µ(
∫ t

s

‖∇u(τ)‖2
2dτ)

1
θ ‖ρ(|x− x0|)γf‖Lθ′,p′ ,

where x0 ∈ Rn, E(t) = supτ<t ‖u(τ)‖2
2 and µ = n[ 12 −

1
p ]. The weight function ρ

and θ are the same as the one defined in assumption A.1.

Remark 7.2. Note that for our solutions E(t) < ∞ provided f satisfies the appro-
priate hypothesis in Theorem (2.1).

The following auxiliary estimate is an extension of Lemma (7.1) in [10].
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Lemma 7.3. Let 0 ≤ γ ≤ 1 and 2 ≤ p ≤ 2n
n−2+2γ . If n = 2 and γ = 0 then p <∞.

Let f satisfy A.2. Let h(τ) be a function that satisfies

(7.1)
∫ ∞

0

∣∣∣h(τ + b)
(τ + b)β

∣∣∣θ′ dt <∞.

Then for u ∈ L∞((0, T );L2)∩L2((0, T ); Ḣ1) and 0 ≤ s < t <∞, we have for b > 0

(7.2)
∫ t

s

|h(τ + b)| 〈 |f |, |u| 〉 dτ ≤ C
(∫ t

s

‖∇u(τ)‖2
2dτ
) 1

θ

Proof. The proof follows a modified version of Lemma (7.1 ) [10]. Let r =
|x− x0|. Recall that

ρ = ρx0(r) =

{
r(1 + | ln r|) (n = 2),

r (n = 3, 4).

Case 1: 0 ≤ γ < 1 Hölder inequality yields,

(7.3)
∫ t

s

|h(τ + b)|| 〈 f, u 〉 |dτ ≤
∫ t

s

|h(τ + b)|‖ργf‖p′‖
u

ργ
‖pdτ.

Let p = α+ β, α = p(1− γ), β = pγ. Note that γp ≤ 2, hence choose m such that
γp
2 + 1

m = 1.
By Hölder inequality it follows that

(7.4) ‖ u
ργ
‖p ≤ ‖u

ρ
‖γ
2‖u‖(1−γ)

αm .

where αm = 2p(1−γ)
2−γp . To bound the RHS of (7.4) we use Gagliardo-Nirenberg

inequality which yields

(7.5) ‖u‖(1−γ)
αm ≤ ‖u‖µ

2‖∇u‖
(1−γ)(λ)
2 .

where λ = n
1−γ ( 1

2 −
1
p ) and µ = (1 − γ)(1 − λ). Because of the bounds of γ and p

in the hypothesis it follows that λ ≤ 1.
Next we use the Sobolev-Hardy inequality [1] we have ‖u

ρ‖
γ
2 ≤ C‖∇u‖γ

2 . Com-
bining inequalities (7.3), (7.4), (7.5), with Hardy’s inequality yields

(7.6)

∫ t

s

h(τ + b)|| 〈 |f |, |u| 〉 dτ

≤
∫ t

s

|h(τ + b)|
(τ + b)β

((τ + b)β)‖ργf‖p′‖u‖µ
2‖∇u‖

(1−γ)λ+γ
2 dτ = I.

By hypothesis we have

sup
{0<t<∞}

(τ + b)β‖ργf‖p′‖u‖µ
2 ≤ C.

Hence it follows by Hölder’s inequality that

(7.7) I ≤ C(
∫ t

s

‖∇u(τ)‖2
2dτ)

1
θ (
∫ t

s

∣∣∣ |h(τ + b)|
(τ + b)β

∣∣∣θ′ dτ) 1
θ′ .

Here we used that θ(λ(1 − γ) + γ) = 2. This completes the lemma in the case
γ ∈ [0, 1).
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Case 2 : γ = 1 Note that when γ = 1 then p = 2 and θ = 2. Combining
inequalities (7.4), (7.5), (7.6) and a Hölder inequality yields

(7.8)

∫ t

s

|h(τ + b)|
(τ + b)β

(t+ b)β‖ρf‖2‖
u

ρ
‖2dτ ≤ C

∫ t

s

‖∇u(τ)‖2δτ
∣∣∣ |h(τ + b)|

(τ + b)β

∣∣∣
≤
(∫ t

s
|∇u‖2

2dτ
∫ t

s

∣∣∣ |h(τ+b)|
(τ+b)β

∣∣∣2 δτ) 1
2
.

Which completes the proof of the Lemma �

Next we derive some straightforward Sobolev estimates on the solution. The
new estimate from this proposition is that ∇u ∈ L2(0,∞;L2).

Proposition 7.4. Let u(x, t) be a solution constructed in Theorem (2.1) in part
•2b or •3, let 0 ≤ s ≤ t. Then

1) The u satisfies the energy inequality:

(7.9) ‖u(t)‖2
2 + 2

∫ t

s

‖∇u(τ)‖2
2dτ ≤ ‖u(s)‖2

2 +
∫ t

s

| 〈 f(τ), u(τ) 〉 |dτ.

2) Suppose that f satisfies assumption A.1. Then for s = 0 and for almost all
s > 0 and all t ≥ s the following a-priori estimate on u holds:

E(t) = sup
0≤τ≤t

‖u(τ)‖2 ≤ C1,(7.10)

∫ t

s

‖∇u(τ)‖2
2dτ ≤ C1.(7.11)

3) Interpolating (7.10) and (7.11), for 2 ≤ q ≤ 2n/(n−2) and n
q + 2

σ = n
2 , yields

‖u‖Lσ,q ≤ C1,

where C1 is a constant only depends on ‖u0‖2 and ‖ργf‖Lθ′,p′ .

Proof. To obtain (7.9) multiply the convection diffusion (1.1) by u and integrate
over Rn×[s, t]. Note that the convection term integrates to zero since b is divergence
free. Equalities (7.10) and (7.11) are an immediate consequence now of Lemma (7.1)
and the hypothesis on the function f . �

Remark 7.5. Since from the hypothesis in Theorem 2.1 in part •3, we substitute the
hypothesis on f by f ∈ L1([0,∞);L2 ∩ L1). Hence the following a priori estimate
on the L2((0,∞) : L2) norm of the gradient is straightforward as is shown in the
following Lemma.

Lemma 7.6. Let u0 ∈ L1 ∩ L2, f ∈ L1([0,∞);L2 ∩ L1). Let u be a solution to
equation (1.1) with data u0, then for s ∈ [0, t]

(7.12) ‖u(t)‖2
2 + 2

∫ t

s

‖∇u(τ)‖2
2dτ ≤ ‖u(s)‖2

2 + C‖f‖2,1,

where the constant C depends on u0.
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Proof. By fixed point arguments we can get a local solution, the method is the
same as for part •2 of Theorem (2.1). Hence we only need an a priori estimate to
extend the solution globally. For this multiply the convection diffusion (1.1) by u
and integrating over Rn it follows that

(7.13)
d

dt
‖u(t)‖2

2 + 2‖∇u(t)‖2
2 ≤ 2‖f‖2‖u‖2.

Hence

(7.14)
d

dt
‖u(t)‖2 ≤ 2‖f‖2

and hence

‖u‖2 ≤ ‖u0‖2 + ‖f‖2,1.

With this estimate in hand repeat the previous steps to get by multiplying equa-
tion (1.1) by u and integrate in space. Now using the estimate on the L2 norm that
we just obtained it follows that

(7.15) ‖u(t)‖2
2 + 2

∫ t

s

‖∇u(τ)‖2
2dτ ≤ ‖u(s)‖2

2 + C

∫ t

s

| 〈 f(τ), u(τ) 〉 |dτ

≤ ‖u(s)‖2
2 + C‖f‖2,1.

�

Remark 7.7. If in addition to the hypothesis in the last lemma we suppose that f ∈
W 2,2 the the solution obtained will belong to C((0,∞);L1∩W 2,2)∩C1((0,∞);L2).
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