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ABSTRACT. We consider the long time behavior of solutions to the magnetohydrodynamics equations in two and three
spatial dimensions. It is shown that in the absence of magnetic diffusion, if strong bounded solutions were to exist
their energy cannot present any asymptotic oscillatory behavior, the diffusivity of the velocity is enough to prevent
such oscillations. When magnetic diffusion is present and the data is only in L2, it is shown that the solutions decay
to zero without a rate, and this nonuniform decay is optimal.

1. INTRODUCTION

We consider the Magnetohydrodynamics equations (MHD) in two and three dimensions. We deal with
questions regarding long time behavior of solutions to the MHD with and without magnetic diffusion. The
MHD equations model the interactions between a magnetic field and a viscous incompressible fluid of moving
electrically charged particles.

In non-dimensional form the equations can be expressed by

∂

∂t
u+ (u ·∇)u−S(B ·∇)B+∇(P + S

2
|B|2)= 1

Re
∆u,

∂

∂t
B+ (u ·∇)B− (B ·∇)u = δ∆B,

∇·u = 0, ∇·B = 0,

u(x,0)= u0(x), B(x,0)= B0(x),

(1.1)

where u = u(x, t) = (u1(x, t),u2(x, t), . . . ,un(x, t)),B = B(x, t) and P = P(x, t) denote the unknown velocity, the
magnetic field and pressure of the fluid at a point (x, t) ∈Rn ×R+, respectively. The term |B|2

2 denotes magnetic
pressure. The positive constants appearing in the equations are Re, the Reynolds number, Rm, the magnetic
Reynolds number, and S = M2/(ReRm), where M is the Hartman number. For the sake of notational simplicity,
and with minor loss of generality, we set all these constants equal to one. After rescaling u and B, let
p = P + 1

2 S |B|2 denote the total pressure, Equation (1.1) can be rewritten as

∂

∂t
u+ (u ·∇)u− (B ·∇)B+∇p =∆u, (1.2)

∂

∂t
B+ (u ·∇)B− (B ·∇)u = δ∆B, (1.3)

∇·u = 0, ∇·B = 0, (1.4)

u(x,0)= u0(x), B(x,0)= B0(x). (1.5)

The initial data (u0(x),B0(x)) will be chosen below in appropriate spaces. Derivations of these equations can be
found in [Cha81, Cow76, LLP84].

Many authors have studied MHD equations from the point of view of existence and long time behavior.
Without making a complete list of all authors we would like to mention some of the relevant literature. In
particular important results on existence were obtained, among others, in [Koz87, HX05b, HX05a, Wu02]. In
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the direction of decay interesting results can be found in the papers [MS89, Kim02, SSS96]. The methods used
for decay in [MS89] were based on Fourier Splitting [Sch85]. The paper [Kim02] uses Gevrey regularity and it
is based on ideas developed by Foias and Temam. Similar methods were used for the Navier-Stokes equations
and can be found in [OT00].

Several questions will be addressed regarding the long time behavior of the solutions. In this regard, in the
absence of magnetic diffusion, we are going to analyze the following problem.

Is the diffusion introduced by the velocity alone sufficient to prevent compensatory oscillations? Specifically,
simple calculations shows that the following energy inequality holds when δ= 0,

d
dt

(‖u(t)‖2
2 +‖B(t)‖2

2
)≤−2‖∇u(s)‖2

2 .

This shows that the combined energy decays, but allows the possibility of separate oscillations in ‖u‖2 and
‖B‖2 that could compensate each other. In this paper we show that in the case that there were to exist strong
solutions which are bounded such oscillations can never occur. Specifically it is shown that

Theorem 1. Let n = 3. Suppose that there exists (u,B) a strong bounded solution to the MHD equations with
δ= 0, magnetic field bounded in L∞, and data (u0,B0) ∈ (L1 ∩L2 ×L2 ∩L∞). Then

‖u(t)‖2 → 0, and ‖B(t)‖2 → M,

as t →∞, where M is some positive constant.

The previous theorem shows that the diffusion in the velocity is sufficient to prevent compensate oscillations
between the two energies.

The next question we addressed is in regards to decay of solutions to MHD equations with diffusion both in
the velocity and the magnetic field. Here it is supposed that the data is only in L2 space. In this case it is shown
that the energies of the velocity and the magnetic field decay to zero without a rate. Moreover, it is shown that
this is optimal, that is, that cannot be a uniform rate for the energy of the solutions with data exclusively in L2.
We show that

Theorem 2. Let n = 2,3. If (u,B) is a weak solution to the MHD equations with δ > 0 and data (u0,B0) ∈(
L2(Rn)

)2, then
lim
t→∞

(‖u(t)‖2
2 +‖B(t)‖2

2
)= 0.

The proof of this theorem is given first formally. To make the result rigorous we apply the method to smooth
approximations and then pass to the limit.

With regard to the optimality of this last result we show that

Theorem 3. There exist no functions G(t,β) and H(t,γ) with the following two properties. If (u,B) is a solution
to equations (1.2)-(1.5) with δ> 0 and data (u0,B0) ∈ (L2(Rn))2, n = 2,3, then

i) ‖u(t)‖2 ≤G(t,‖u0‖2),
ii) limt→0 G(t,β)= 0, for all β> 0.

The last part of the paper focuses on extending Kato’s pioneering work on Lp decay for Navier-Stokes equa-
tions [Kat84] to the MHD equations with magnetic diffusion. In particular we note that a simple modification
of Kato’s work [Kat84] yields equivalent results for the MHD equations, then combined with our result on
non-uniform decay in L2 gives a slight improvement of the decay rates.

Corollary 4. There is λ> 0 such that for ‖u0‖2 ≤λ the global solution of the equation (6.1) for q ≥ m, and for
2≤ r ≤ q

lim
t→∞ t

r−2
2r ‖(u,B)‖r = 0
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2. NOTATION

We denote

C∞
0,σ = C∞

0,σ(Rn) : space of infinitely differentiable functions with compact

support and divergence free,

L2
σ = L2

σ(Rn) : completion of C∞
0,σ in the L2-norm ‖·‖2 ,

Ḣ1
σ = Ḣ1

σ(Rn) : completion of C∞
0,σ in the homogeneous H1-norm ‖∇·‖2 .

The Fourier transform of ϕ will be denoted by F {ϕ} = ϕ̂ = ∫
Rn e−iξxϕ(x)dx and its inverse transform by

F−1{ϕ}= ϕ̌= 1
2πn

∫
eixξϕ̂(ξ)dξ. Also,

Lp(a,b;Lq)=
{

f : (a,b)×Rn →Rn : ‖ f ‖Lp(a,b;Lq) =
(∫ b

a
‖ f (τ)‖p

q dτ
)1/p

<∞
}

.

The notation ‖·‖Lp,q will be used for the norm of Lp(0,∞;Lq), and 〈 f , g〉 = ∫
f g dx for the inner product in L2.

Various constants are simply denoted by C.

3. PRELIMINARY RESULTS

In this section auxiliary results which will be needed in the sequel are obtained. We consider the MHD
equations with no magnetic diffusion (δ= 0). Some of the results presented are standard and their proofs are
included in the appendix for completeness. The results below follow ideas of [ORS97].

We start with an estimate for the Fourier transform of the velocity.

Proposition 1. Let (u,B) be a mild solution to the MHD equations (1.2)-(1.5). Assume the initial data u0,B0 is
in L1(R3)∩L2(R3). Then

|û(t)| ≤ C
(
1+ 1

|ξ|
)
,

where C is a constant.

Proof. See Appendix, Proposition 3. ä
The proofs in this section are formal. To make them rigorous is suffices to apply them to approximations

using retarded mollifications such as the ones constructed by [CKN82, Ler34], and [HX05b] for the MHD
equations and then pass to the limit. For details regarding our proofs see [ORS97] were the procedure has been
done for the solutions to the Navier-Stokes equations. The extension to MHD is straightforward.

We first recall a standard energy inequality

‖u(t)‖2
2 +‖B(t)‖2

2 +2
∫ t

0
‖∇u(s)‖2

2 ds = ‖u0‖2
2 +‖B0‖2

2 .

This follows easily by multiplying (1.2) by u, (1.3) by B, adding the equations, and then integrating in space
and time.

The next proposition gives a generalized energy inequality.
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Proposition 2. Assume (u,B) is a weak solution of Equations (1.2)-(1.5). For E(t) ∈ C1(R;R+) with E(t) ≥ 0
and ψ ∈ C1(R;C1 ∩L2), the weak solution satisfies

E(t)
∥∥ψ∗u(t)

∥∥2
2 = E(s)

∥∥ψ∗u(s)
∥∥2

2 +
∫ t

s
E′(τ)

∥∥ψ∗u(τ)
∥∥2

2 dτ

+2
∫ t

s
E(τ)

(
〈ψ′∗u(τ),ψ∗u(τ)〉−∥∥∇ψ∗u(τ)

∥∥2
2

)
dτ

−2
∫ t

s
E(τ)

(〈u ·∇u(τ),ψ∗ψ∗u(τ)〉

+〈B ·∇B(τ),ψ∗ψ∗u(τ)〉) dτ

(3.1)

Proof. Multiply Equation (1.2) by E(t)ψ∗ψ∗u(t) and integrate by parts to get

d
dt

(
E(t)

∥∥ψ∗u(t)
∥∥2

2
)= E′(t)

∥∥ψ∗u(t)
∥∥2 +2E(t)

{〈ψ′∗u(t),ψ∗u(t)〉−∥∥∇ψ∗u(t)
∥∥2

2
}

−2E(t)
{〈u ·∇u,ψ∗ψ∗u(t)〉−〈B ·∇B,ψ∗ψ∗u(t)〉}

Integrating the preceding equation in the interval (s, t) yields Equation (3.1). ä
Corollaries 5 and 6 follow as an easy consequence.

Corollary 5. Let (u,B) be a weak solution of (1.2)-(1.5). Let ϕ ∈ L2(R3), then

∥∥ϕ̌∗u(t)
∥∥2

2 ≤
∥∥∥e∆(t−s)ϕ̌∗u(s)

∥∥∥2

2
+2

∫ t

s

(∣∣〈u ·∇u, e2∆(t−τ)ϕ̌2 ∗u(τ)〉∣∣
+ ∣∣〈B ·∇B, e2∆(t−τ)ϕ̌2 ∗u(τ)〉∣∣) dτ. (3.2)

Proof. Choose E(t)= 1 and ψ(τ) as

ψ(τ)=F−1{
e−|ξ|

2(t+η−τ)ϕ(−ξ)}, η> 0

in Eq. (3.1). Then ψ(τ)∗u(τ)= e∆(t+η−τ)ϕ̌∗u(τ)= ∫
e∆(t+η−τ+δ)ϕ̌(x)u(δ) dδ, and

〈ψ′(τ)∗u(τ),ψ(τ)∗u(τ)〉−∥∥∇ψ(τ)∗u(τ)
∥∥2

2

=−〈
∆

(
e∆(t+η−τ)ϕ̌

)∗u(τ), e∆(t+η−τ)ϕ̌∗u(τ)
〉−∥∥∥∇(

e∆(t+η−τ)ϕ̌
)∗u(τ)

∥∥∥2

2

= 0.

Hence we have from (3.1)

∥∥e∆ηϕ̌∗u(t)
∥∥2

2 ≤
∥∥∥e∆(t+η−s)ϕ̌∗u(s)

∥∥∥2

2

+2
∫ t

s

(∣∣∣〈u ·∇u, e2∆(t+η−τ)ϕ̌2 ∗u(τ)〉
∣∣∣

+
∣∣∣〈B ·∇B, e2∆(t+η−τ)ϕ̌2 ∗u(τ)〉

∣∣∣) dτ

Let η→ 0 in the preceding equation to obtain (3.2). ä
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Corollary 6. Let E(t) ∈ C1(R+;R) and ψ̃ ∈ C1(0,∞;L∞∩L2). Then a weak solution of Equations (1.2)-(1.5)
satisfies

E(t)
∥∥ψ̃(t)û(t)

∥∥2
2 ≤ E(s)

∥∥ψ̃(s)û(s)
∥∥2

2 +
∫ t

s
E′(τ)

∥∥ψ̃(τ)û(τ)
∥∥2

2 dτ

+2
∫ t

s
E(τ)

(
〈ψ̃′(τ)û(τ),ψ̃(τ)û(τ)〉−∥∥ξψ̃(τ)û(τ)

∥∥2
2

)
dτ

−2
∫ t

s
E(τ)

(
〈F {u ·∇u(τ)},ψ̃2û(τ)〉

+〈F {B ·∇B(τ)},ψ̃2û(τ)〉
)

dτ,

(3.3)

for almost all s ≥ 0 and all t ≥ s.

Proof. Apply Plancherel’s theorem to (3.1). ä

4. NON-UNIFORM DECAY OF SOLUTIONS TO THE MHD EQUATIONS WITH NO MAGNETIC DIFFUSION

In this section it is shown that if there were to exist strong bounded solutions in 3D, they can not have
"compensatory" oscillations. We analyze separately the energy of the high and low frequencies of the solutions.
The main tool for the analysis of the high frequency is Fourier Splitting, see [Sch85].

We first establish Theorem 1 of the introduction, which we recall for completeness.

Theorem 1. Let n = 3. Suppose that there exists (u,B) a strong bounded solution to the MHD equations with
δ= 0, magnetic field bounded in L∞, and data (u0,B0) ∈ (L1 ∩L2 ×L2 ∩L∞). Then

‖u(t)‖2 → 0, and ‖B(t)‖2 → M,

as t →∞, where M is some positive constant.

Proof. Split the velocity of the solution into low and high frequency parts

‖u(t)‖2 = ‖û(t)‖2 ≤
∥∥ϕû

∥∥
2 +

∥∥(1−ϕ)û
∥∥

2 ,

where ϕ is a function in Fourier space to be chosen appropriately, to emphasize the low and high frequency of u.
Low frequency Decay. Set ϕ(ξ)= e−|ξ|

2 t, using the result of Corollary 5 and Plancherel theorem,∥∥ϕû(t)
∥∥2 ≤

∥∥∥e−|ξ|
2(t−s)ϕû(s)

∥∥∥2 +2
∫ t

s

∣∣∣〈u ·∇u, e2∆(t−τ)ϕ̌2 ∗u〉
∣∣∣ dτ

+2
∫ t

s

∣∣∣〈B ·∇B, e2∆(t−τ)ϕ̌2 ∗u〉
∣∣∣ dτ

≤
∥∥∥e−|ξ|

2(t−s)ϕû(s)
∥∥∥2

2
+2

∫ t

s

∣∣∣〈ϕ̌2 ∗u ·∇u, e2∆(t−τ)u〉
∣∣∣ dτ

+2
∫ t

s

∣∣∣〈ϕ̌2 ∗B ·∇B, e2∆(t−τ)u〉
∣∣∣ dτ

Clearly the first term on the right hand side satisfies

limsup
t→∞

∥∥e−|ξ|
2(t−s)ϕû(s)

∥∥2
2 = 0. (4.1)

To bound the third term note first that∥∥ϕ̌2 ∗B ·∇B
∥∥2

2 =
∑

j

∫ ∣∣∣ϕ̌2 ∗ (B ·∇)B j
∣∣∣2 dx ≤ C

∑
j

(∑
i

∥∥∥∂iϕ̌
2 ∗BiB j

∥∥∥
2

)2

≤ C‖B‖2
2

(∑
i

∥∥∂iϕ̌
2∥∥

2

)2

,

where C is a positive constant.
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Thus ∣∣∣〈ϕ̌2 ∗B ·∇B, e2∆(t−τ)u〉
∣∣∣≤ C‖B(τ)‖2

2 ‖u(τ)‖2

(∑
i

∥∥∂iϕ̌
2∥∥

2

)
Since ϕ̌2 = (4πt)−3e−|x|2/2t, it follows that

∥∥∂iϕ̌
2∥∥2

2 ≤ C
∫
R3

(
t−4 |x| e−|x|2/2t

)2
dx ≤ Ct−11/2

∫
R3

e−|x|2/2t

t3/2 dx = Ct−11/2. (4.2)

Hence, ∣∣∣〈ϕ̌2 ∗B ·∇B, e2∆(t−τ)u〉
∣∣∣≤ C‖B(τ)‖2 ‖u(τ)‖2 t−11/2 ≤ Ct−11/2,

since the L2-norm of u and B are bounded by the initial data.
Similarly,

∣∣〈ϕ̌2 ∗u ·∇u, e2∆(t−τ)u〉∣∣≤ Ct−11/2. Hence by (4.1), (4.2), and the last two inequalities∥∥ϕǔ(t)
∥∥2

2 → 0 as t →∞.

High frequency Decay. We will show that

lim
t→∞

∥∥(1−ϕ)u
∥∥

2 ≤ ε0 (4.3)

for all ε0 > 0. The Fourier splitting method will be used. Let χ(ε)= {ξ : |ξ| ≤G(ε)}, a neighborhood of the origin,
were G will be specified below. Set ψ̃= 1−ϕ, where ϕ is given above. Then ψ̃′ = |ξ|2ϕ, and Corollary (6) yields

E(t)
∥∥(1−ϕ)û(t)

∥∥2
2 ≤ E(s)

∥∥(1−ϕ)û(s)
∥∥2

2 +
∫ t

s
E′(τ)

∫
χ(ε)

∣∣(1−ϕ)û(τ)
∣∣2 dξdτ

+
∫ t

s
E′(τ)

∫
R3\χ(ε)

∣∣(1−ϕ)û(τ)
∣∣2 dξdτ

−2
∫ t

s
E(τ)

∥∥ξ(1−ϕ)û(τ)
∥∥2

2 dτ

+2
∫ t

s
E(τ)〈|ξ|2ϕ(τ)û(τ), (1−ϕ(τ))û(τ)〉 dτ

+2
∫ t

s
E(τ)

∣∣〈�u ·∇u, (1−ϕ)2û(τ)〉∣∣dτ

+2
∫ t

s
E(τ)

∣∣∣〈àB ·∇B, (1−ϕ)2û(τ)〉
∣∣∣dτ.

(4.4)

The terms in the second and third row are bounded by∫ t

s

(
E′(τ)−2E(τ)G2(ε)

)∫
R3\χ(ε)

∣∣(1−ϕ)û(τ)
∣∣2 dξdτ.

Choose E(t)= eεt and G(ε)=p
ε/2 hence E′(t)−2E(t)G2(ε)= 0, thus the above integral vanishes.

Divide Equation (4.4) by E(t),∥∥(1−ϕ)û(t)
∥∥2

2 ≤
E(s)
E(t)

∥∥(1−ϕ)û(s)
∥∥2

2 +
1

E(t)

∫ t

s
E′(τ)

∫
χ(ε)

∣∣(1−ϕ)û(τ)
∣∣2 dξdτ

+ 2
E(t)

∫ t

s
E(τ)〈|ξ|2ϕ(τ)û(τ), (1−ϕ(τ))û(τ)〉 dτ

+ 2
E(t)

∫ t

s
E(τ)

∣∣〈�u ·∇u, (1−ϕ)2û(τ)〉∣∣dτ+ 2
E(t)

∫ t

s
E(τ)

∣∣∣〈àB ·∇B, (1−ϕ)2û(τ)〉
∣∣∣dτ

= I(t)+ I I(t)+ I I I(t)+ IV (t)+V (t).

(4.5)

ESTIMATE FOR I(t):

I(t)= E(s)
E(t)

∥∥(1−ϕ)û(s)
∥∥2

2 ≤ eε(s−t) ‖û(s)‖2
2 ≤

(
‖u0‖2

2 +‖B0‖2
2

)
eε(s−t) ≤ Ceε(s−t).
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Hence

lim
t→∞ I(t)= lim

t→∞
E(s)
E(t)

∥∥(1−ϕ)û(s)
∥∥2

2 = 0.

ESTIMATE FOR I I(t): By Proposition 1∫
χ(ε)

|û|2 dξ≤ C
∫
χ(ε)

(
1+ 1

|ξ|
)2

dξ≤ C
∫
χ(ε)

(
1+ 1

|ξ|2
)
dξ≤ C

(
ε3/2 +ε1/2)

.

Since (1−ϕ)2 ≤ 1,

I I(t)= 1
E(t)

∫ t

s
E′(τ)

∫
χ(ε)

∣∣(1−ϕ)û(τ)
∣∣2 dξdτ

≤ 1
E(t)

∫ t

s
E′(τ)

∫
χ(ε)

|û(τ)|2 dξdτ≤ Cε1/2 = ε0.

ESTIMATE FOR I I I(t): Observe that 0≤ϕ−ϕ2 ≤ 1, and E(τ)≤ E(t) for τ< t, hence

I I I(t)= 2
E(t)

∫ t

s
E(τ)

〈|ξ|2ϕ(τ)û(τ), (1−ϕ(τ))û(τ)
〉

dτ

≤ 2
E(t)

∫ t

s
E(t)

∫
R3

|ξ|2 (
ϕ−ϕ2) |û(τ)|2 dξdτ≤ C

∫ t

s
‖∇u(τ)‖2

2 dτ,

Since
∫ ∞

0 ‖∇u‖2
2 <∞ it follows that

lim
t→∞ I I I(t)≤ C lim

s→∞ lim
t→∞

∫ t

s
‖∇u(τ)‖2

2 dτ= 0

ESTIMATE FOR IV (t): Set ζ = F−1{
1− (1−ϕ)2}

. This function is essentially the heat kernel. Note that
〈u ·∇u,u〉 = 0, hence IV (t) can be estimated as follows

IV (t)= 2
E(t)

∫ t

s
E(τ) |〈u ·∇u,ζ∗u〉| dτ≤ C

∫ t

s
‖ζ‖6/5 ‖u ·∇u‖3/2 ‖u‖2 dτ

≤ C
∫ t

s
‖ζ‖6/5 ‖u‖6 ‖∇u‖2 dτ≤ C

∫ t

s
‖ζ‖6/5 ‖∇u‖2

2 dτ

≤ C
∫ t

s

‖∇u‖2
2

τ1/4 dτ≤ C
s1/4

∫ t

s
‖∇u‖2

2 dτ.

Thus

lim
t→∞ IV (t)≤ lim

s→∞ lim
t→∞

C
s1/4

∫ t

s
‖∇u‖2

2 dτ= 0.

ESTIMATE FOR V (t):

V (t)= 2
E(t)

∫ t

s
E(τ)

∣∣∣〈àB ·∇B, (1−ϕ)2û(τ)〉
∣∣∣dτ≤ C

E(t)

∫ t

s
E(τ)

(∑
j

∫ ∣∣�B ·B∣∣ ∣∣∣∇̂u j
∣∣∣dξ

)
dτ

≤ C
E(t)

∫ t

s
E(τ)

(∫
|B ·B|2 dξ

)1/2 (∫
|∇u(τ)|2 dξ

)1/2
dτ

≤ C
E(t)

∫ t

s
E(τ)

(∫
|B(τ)|4 dξ

)1/2
‖∇u(τ)‖2 dτ

≤ C
E(t)

∫ t

s
E(τ)‖B‖∞ ‖B(τ)‖2 ‖∇u(τ)‖2 dτ

≤ C
E(t)

∫ t

s
E(τ)‖∇u(τ)‖2 dτ,
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Here is the only place where we need that the magnetic field is bounded. Specifically we use that B ∈ L∞(R3×R+).
Since B ∈ L2 we get the above bound. Recall that E(t)= eεt, hence

V (t)≤ C
E(τ)

∫ t

s
E(t)‖∇u(τ)‖2 dτ≤ C

eεt

(
e2εt

2ε

)1/2 (∫ t

s
‖∇u(τ)‖2

2 dτ
)1/2

= Cp
2ε

(∫ t

s
‖∇u(τ)‖2

2 dτ
)1/2

,

which as before tends to zero as t and s goes to infinity.
Combining the estimates I(t)−V (t) yields In summary, we have showed that

lim
t→∞

∥∥(1−ϕ)û(t)
∥∥

2 ≤ ε0. (4.6)

Since ε0 is arbitrary and positive, combining (4.1) and (4.6) yields

lim
t→∞‖u(t)‖2 = 0.

To obtain the limit of ‖B‖2 proceed as follows. Set

φ(t)= ‖u(t)‖2
2 +‖B(t)‖2

2 .

Given that φ(t)≥ 0 and is decreasing, there exists a constant M such that φ(t)→ M as t →∞. Since ‖u(t)‖2 → 0,
it follows that

‖B(t)‖2 → M as t →∞.

This completes the proof. ä

5. MHD EQUATIONS WITH DIFFUSION

In this section it is shown that if the data is only in L2 then the solution decays without a rate. The ideas of
the proof are similar to Theorem 1 only that due to the added magnetic diffusion we need less information on
the data. The main result of this section is that this decay is optimal. Specifically it is shown that the decay can
not be uniform.

The proof we give below is formal. To make it rigorous, it can be applied to smooth approximations and
then pass to the limit. The approximations could be constructed by retarded mollification as was done for the
Navier-Stokes equations in [CKN82, Ler34]. This construction if modified for the MHD equations will give
suitable approximations which can be used to make our arguments rigorous. This arguments are standard
and as such will be omitted. To see the construction of these approximations in detail we refer the reader to
[HX05b].

5.1. Non-uniform decay.

Theorem 2. Let n = 2,3. If (u,B) is a weak solution to the MHD equations with δ > 0, and data (u0,B0) ∈(
L2(Rn)

)2, then

lim
t→∞

(‖u(t)‖2
2 +‖B(t)‖2

2
)= 0.

Proof. Without loss of generality suppose δ= 1. The proof is based on similar arguments given in [ORS97] for
solutions to the Navier-Stokes equations with a forcing term.

Let φ(ξ)= e−|ξ|
2
. As before split u into low and high frequency parts

‖u(t)‖2 = ‖û(t)‖2 ≤
∥∥ϕû

∥∥
2 +

∥∥(1−ϕ)û
∥∥

2 ,

‖B(t)‖2 =
∥∥B̂(t)

∥∥
2 ≤

∥∥ϕB̂
∥∥

2 +
∥∥(1−ϕ)B̂

∥∥
2 .
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Low frequency decay. We need to use Corollary (5) and Plancherel’s identity.∥∥ϕû(t)
∥∥2 ≤

∥∥∥e−|ξ|
2(t−s)ϕû(s)

∥∥∥2

2
+2

∫ t

s

∣∣∣〈ϕ̌2 ∗u ·∇u, e2∆(t−τ)u〉
∣∣∣ dτ

+2
∫ t

s

∣∣∣〈ϕ̌2 ∗B ·∇B, e2∆(t−τ)u〉
∣∣∣ dτ= I1 + I2 + I3,

(5.1)

and ∥∥ϕB̂(t)
∥∥2 ≤

∥∥∥e−|ξ|
2(t−s)ϕB̂(s)

∥∥∥2

2
+2

∫ t

s

∣∣∣〈ϕ̌2 ∗B ·∇B, e2∆(t−τ)u〉
∣∣∣ dτ

+2
∫ t

s

∣∣∣〈ϕ̌2 ∗u ·∇B, e2∆(t−τ)u〉
∣∣∣ dτ= J1 + J2 + J3.

(5.2)

It is immediate that the first terms I1 and J1 in (5.1), (5.2) tend to zero respectively as t goes to infinity. Hence
it will be only necessary to show that the two integrals on the right hand side of each of the above equations
tends to zero when t goes to infinity. Since all integrals can be estimated in a similar fashion we will only
analyze the integrals I2, and I3 corresponding to the velocity.

Since ϕ̌2 is a rapidly decreasing function, by the Hasdorff-Young, Hölder, and Sobolev inequalities we have
the following.

When n = 2 ∣∣∣〈ϕ̌2 ∗u ·∇u, e2∆(t−τ)u〉
∣∣∣≤ ∣∣∣〈u ·∇ϕ̌2 ∗ e2∆(t−τ)u,u〉

∣∣∣≤ ‖u‖2
4

∥∥∥ϕ̌2 ∗ e2∆(t−τ)∇u
∥∥∥

2

≤ ∥∥ϕ̌2∥∥∞ ‖u‖2
4 ‖∇u‖2 ≤ C‖u‖2 ‖∇u‖2

2

and ∣∣∣〈ϕ̌2 ∗B ·∇B, e2∆(t−τ)u〉
∣∣∣≤ ∣∣∣〈B ·∇ϕ̌2 ∗ e2∆(t−τ)B,u〉

∣∣∣≤ ‖B‖2
4

∥∥∥ϕ̌2 ∗ e2∆(t−τ)∇u
∥∥∥

2

≤ ∥∥ϕ̌2∥∥∞ ‖B‖2
4 ‖∇u‖2 ≤ C‖B‖2 ‖∇B‖2 ‖∇u‖2

≤ C
(‖∇B‖2

2 +‖∇u‖2
2
)
.

For n = 3 ∣∣∣〈ϕ̌2 ∗u ·∇u, e2∆(t−τ)u〉
∣∣∣≤ ∥∥ϕ̌2 ∗u ·∇u

∥∥
2 ‖u‖2 ≤ C

∥∥ϕ̌2∥∥
6/5 ‖u ·∇u‖3/2 ‖u‖2

≤ C‖u‖6 ‖∇u‖2 ≤ C‖u‖2 ‖∇u‖2
2 .

In the same fashion∣∣∣〈ϕ̌2 ∗B ·∇B, e2∆(t−τ)u〉
∣∣∣≤ ∥∥ϕ̌2 ∗B ·∇B

∥∥
2 ‖u‖2 ≤ C

∥∥ϕ̌2∥∥
6/5 ‖B ·∇B‖3/2 ‖u‖2

≤ C‖B‖6 ‖∇u‖2 ≤ C‖u‖2 ‖∇B‖2
2 .

Hence integrating over (s, t) yields

I2 + I3 ≤ C
∫ t

s
‖∇B‖2

2 +‖∇u‖2
2 dτ.

Thus

lim
t→∞ I2 + I3 ≤ lim

s→∞ lim
t→∞C

∫ t

s
‖∇B‖2

2 +‖∇u‖2
2 dτ= 0.

In the same manner it follows that the limt→∞ J2 + J3 = 0. Hence

lim
t→∞

∥∥ϕû
∥∥

2 = 0, lim
t→∞

∥∥ϕB̂
∥∥

2 = 0. (5.3)

High frequency decay. To estimate the high frequency part we will use Fourier Splitting [Sch85]. We now
use Corollary (6) and an equivalent version of this corollary for the magnetic field. Choose ψ̃= 1− e−|ξ|

2 = 1−ϕ



NON-UNIFORM DECAY OF MHD EQUATIONS 10

(note that in this case ψ̃ is independent of time). Let χ(t)= {ξ ∈Rn : |ξ| ≤G(t)}, then

E(t)
[∥∥(1−ϕ)û(t)

∥∥2
2 +

∥∥(1−ϕ)B̂(t)
∥∥2

2

]
≤ E(s)

(∥∥(1−ϕ)û(s)
∥∥2

2 +
∥∥(1−ϕ)B̂(s)

∥∥2
2

)
+

∫ t

s
E′(τ)

∫
χ(t)

∣∣(1−ϕ)û(τ)
∣∣2 dξdτ+

∫ t

s
E′(τ)

∫
χ(t)

∣∣(1−ϕ)B̂(τ)
∣∣2 dξdτ

+
∫ t

s
E′(τ)

∫
R3\χ(t)

∣∣(1−ϕ)û(τ)
∣∣2 dξdτ+

∫ t

s
E′(τ)

∫
R3\χ(t)

∣∣(1−ϕ)B̂(τ)
∣∣2 dξdτ

−2
∫ t

s
E(τ)

∥∥ξ(1−ϕ)û(τ)
∥∥2

2 dτ−2
∫ t

s
E(τ)

∥∥ξ(1−ϕ)B̂(τ)
∥∥2

2 dτ

−2
∫ t

s
E(τ)〈�u ·∇u, (1−ϕ)2û(τ)〉dτ+2

∫ t

s
E(τ)〈àB ·∇B, (1−ϕ)2û(τ)〉dτ

−2
∫ t

s
E(τ)〈�B ·∇u, (1−ϕ)2B̂(τ)〉dτ+2

∫ t

s
E(τ)〈�u ·∇B, (1−ϕ)2B̂(τ)〉dτ.

(5.4)

Suppose

E(t)= (1+ t)α, and G2(t)= α
2(1+t) , (5.5)

with α> 3. With this choice E′(t)−2E(t)G2(t)= 0, proceeding as in Theorem 1 will yield∫ t

s
E′(τ)

∫
R3\χ(t)

∣∣(1−ϕ)û(τ)
∣∣2 dξdτ−2

∫ t

s
E(τ)

∥∥ξ(1−ϕ)û(τ)
∥∥2

2 dτ

+
∫ t

s
E′(τ)

∫
R3\χ(t)

∣∣(1−ϕ)B̂(τ)
∣∣2 dξdτ−2

∫ t

s
E(τ)

∥∥ξ(1−ϕ)B̂(τ)
∥∥2

2 dτ≤ 0.
(5.6)

By (5.6), Equation (5.4) can be reduced to

E(t)
[∥∥(1−ϕ)û(t)

∥∥2
2 +

∥∥(1−ϕ)B̂(t)
∥∥2

2

]
≤ E(s)

(∥∥(1−ϕ)û(s)
∥∥2

2 +
∥∥(1−ϕ)B̂(s)

∥∥2
2

)
(5.7)

+
∫ t

s
E′(τ)

∫
χ(t)

∣∣(1−ϕ)û(τ)
∣∣2 dξdτ+

∫ t

s
E′(τ)

∫
χ(t)

∣∣(1−ϕ)B̂(τ)
∣∣2 dξdτ (5.8)

−2
∫ t

s
E(τ)〈�u ·∇u, (1−ϕ)2û(τ)〉dτ+2

∫ t

s
E(τ)〈àB ·∇B, (1−ϕ)2û(τ)〉dτ (5.9)

−2
∫ t

s
E(τ)〈�B ·∇u, (1−ϕ)2B̂(τ)〉dτ+2

∫ t

s
E(τ)〈�u ·∇B, (1−ϕ)2B̂(τ)〉dτ. (5.10)

We now will bound the terms in (5.8). Observing that
∣∣1−ϕ∣∣≤ |ξ|2 if |ξ| < 1, we have∫

χ(τ)

∣∣(1−ϕ)
∣∣2 (

|û|2 + ∣∣B̂∣∣2)
dξ≤ CG(τ)4

∫
χ(τ)

(
|û|2 + ∣∣B̂∣∣2)

dξ

≤ C
(‖u0‖2

2 +‖B0‖2
2
)
(1+τ)−2

(5.11)

We now analyze (5.9), (5.10) together. For this note first that (1−ϕ)2 = 1+θ, where θ =−2ϕ+ϕ2, hence by
the definition of ϕ, the function θ is a rapidly decreasing function.

Since 〈u ·∇u,u〉 = 〈u ·∇B,B〉 = 0, and 〈àB ·∇B, û〉−〈�u ·∇B, B̂〉 = 0, it follows that the four last terms of the right
hand side of (5.4) can be expressed as

−2
∫ t

s
E(τ)〈�u ·∇u,θû(τ)〉dτ+2

∫ t

s
E(τ)〈àB ·∇B,θû(τ)〉dτ

−2
∫ t

s
E(τ)〈�B ·∇u,θB̂(τ)〉dτ+2

∫ t

s
E(τ)〈�u ·∇B,θB̂(τ)〉dτ= K1 +K2 +K3 +K4.

The estimates of K i ’s are all very similar. Hence we only estimate K1 and state estimates are for K i for i = 2,3,4.
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For n = 2

K1 =
∫ t

s
E(τ)

∣∣u ·∇u, θ̌∗u(τ)
∣∣dτ=

∫ t

s
E(τ)

∣∣〈u · θ̌∗∇u(τ),u(τ)〉∣∣dτ

=
∫ t

s
E(τ)

∥∥θ̌∥∥
1 ‖u‖2

4 ‖∇u‖2 dτ≤ C
∫ t

s
E(τ)‖u‖2 ‖∇u‖2

2 dτ

≤ C
(‖u0‖2

2 +‖B0‖2
2
)∫ t

s
E(τ)‖∇u‖2

2 dτ,

Same type of computations yields that

K i ≤ C
∫ t

s
E(τ)

(‖∇u‖2
2 +‖∇B‖2

2
)
dτ, i = 2,3,4.

For n = 3 we also only estimate K1∫ t

s
E(τ)

∣∣〈u ·∇u, θ̌∗u(τ)〉∣∣dτ≤
∫ t

s
E(τ)

∥∥θ̌∥∥
6/5 ‖u ·∇u‖3 ‖u‖2 dτ

≤ C
∫ t

s
E(τ)‖u‖6 ‖∇u‖2 dτ≤ C

∫ t

s
E(τ)‖∇u‖2

2 dτ.

The same estimates yield

K i ≤ C
∫ t

s
E(τ)

(‖∇u‖2
2 +‖∇B‖2

2
)
dτ, i = 2,3,4.

Combining the estimates (5.7)–(5.10), and the estimates for the K i ’s yields after division by E(t)∥∥(1−ϕ)û(t)
∥∥2

2 +
∥∥(1−ϕ)B̂(t)

∥∥2
2 ≤

E(s)
E(t)

∥∥(1−ϕ)û(s)
∥∥2

2

+ 1
E(t)

∫ t

s
E′(τ)

∫
χ(τ)

∣∣1−ϕ∣∣2 (
|û|2 + ∣∣B̂∣∣2)

dξdτ

+ C
E(t)

∫ t

s
E(τ)

(‖∇u(τ)‖2
2 +‖∇B(τ)‖2

2
)
dτ.

Since 1−ϕ≤ 1, combining the last equation with (5.11), recalling the definition of E(t) and G(t) in (5.5), and
since α> 3 we have

lim
t→∞

(∥∥(1−ϕ)û(t)
∥∥2

2 +
∥∥(1−ϕ)B̂(t)

∥∥2
2

)
≤ lim

t→∞

(
1+ s
1+ t

)α (‖u0‖2
2 +‖B0‖2

2
)

+C
(‖u0‖2

2 +‖B0‖2
2
)

lim
t→∞

(
1

(1+ t)α

∫ t

s
(1+ t)α−3

)
dτ

+ lim
t→∞

C
E(t)

∫ t

s
E(τ)

(‖∇u‖2
2 +‖∇B‖2

2
)
dτ

= C
∫ ∞

s

(‖∇u‖2
2 +‖∇B‖2

2
)
dτ

Letting s →∞ on the right hand side yields

lim
t→∞

(∥∥(1−ϕ)û(t)
∥∥2

2 +
∥∥(1−ϕ)B̂(t)

∥∥2
2

)
= 0

Combining (5.3) with the last limit gives

lim
t→∞

(‖u‖2
2 +‖B‖2

2
)= 0.

As stated in the beginning to make this proof rigorous, the formal proof has to be applied to the approximating
solutions described at the beginning of the section, and then pass to the limit. This procedure is standard and
as such is omitted. This completes the proof of the theorem. ä
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5.2. Lack of uniformity. In this subsection it is shown that solutions with data (u0,B0) in
(
L2(Rn)

)2 cannot
be expected to decay at a uniform rate, in the sense that for each sphere in L2(Rn) of radius β, there is a point
on the sphere so that the solution with such data will decay arbitrarily slow. In other words, given a time T > 0,
and ε> 0, there exists data u0 with ‖u0‖2 =β so that

‖u(T)‖2

‖u0‖2
≥ 1−ε. (5.12)

Similarly for B given a time T > 0, and ε> 0, there exists data B0 with ‖B0‖2 = γ such that

‖B(T)‖2

‖B0‖2
≥ 1−ε. (5.13)

Theorem 3. There exist no functions G(t,β) and H(t,γ) with the following two properties. If (u,B) is a solution
to equations (1.2)-(1.5) with δ> 0 and data (u0,B0) ∈ (L2(Rn))2, n = 2,3, then

i) ‖u(t)‖2 ≤G(t,‖u0‖2), and ‖B(t)‖2 ≤ H(t,‖B0‖2),
ii) limt→0 G(t,β)= 0, for all β> 0, and limt→0 H(t,γ)= 0, for all γ> 0.

Proof. As pointed in [Sch86] this lack of uniformity is already present at the level of the heat equation.
The proof of Proposition 2.1 in [Sch86] has a gap that will be taken care of in our present work.
Notice that it suffices to show that (5.12) and (5.13) hold. The plan is to choose as initial data a family

{uα0 ,Bα
0 } which satisfy ∥∥uα0

∥∥
2 = ‖u0‖2 and

∥∥Bα
0
∥∥

2 = ‖B0‖2 . (5.14)

Write the solutions in integral form

uα(x, t)= K ∗uα0 −
∫ t

0
K(x− y, t− s)∗ (uα∇uα−Bα∇Bα+∇pα)ds,

Bα(x, t)= K ∗Bα
0 −

∫ t

0
K(x− y, t− s)∗ (uα∇Bα−Bα∇uα)ds,

then ∥∥uα(x, t)
∥∥

2 ≥
∥∥K ∗uα0

∥∥
2 −

∫ t

0

∥∥K(x− y, t− s)∗ (uα∇uα−Bα∇Bα+∇pα)
∥∥

2 ds,

∥∥Bα(x, t)
∥∥

2 ≥
∥∥K ∗Bα

0
∥∥

2 −
∫ t

0

∥∥K(x− y, t− s)∗ (uα∇Bα−Bα∇uα)
∥∥

2 ds.
(5.15)

The choice of (uα0 ,Bα
0 ) will be the following

uα0 (x)=αn/2u0(x), Bα
0 (x)=αn/2B0(x), for n = 2,3.

Then it is easy to see that uα0 ,Bα
0 are invariant under α in L2 (i.e., Equation (5.14) is satisfied). Hence it is only

necessary to show ∥∥K ∗uα0
∥∥

‖u0‖
≥ 1−ε, and

∥∥K ∗Bα
0

∥∥
‖B0‖

≥,

and ∫ t

0

∥∥K(x− y, t− s)∗ (uα∇uα−Bα∇Bα+∇pα)
∥∥

2 ds < ε̃,∫ t

0

∥∥K(x− y, t− s)∗ (uα∇Bα−Bα∇uα)
∥∥

2 ds < ε̃,

for ε̃ sufficiently small.
We also note that the data (uα0 ,Bα

0 ) will yield for the linear part a self-similar solution, that is

K ∗uα0 (x, t)=αn/2ũ(αx,α2t),

K ∗Bα
0 (x, t)=αn/2B̃(αx,α2t),

(5.16)
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Equalities (5.16) follow by uniqueness of the heat equation and since αn/2ũ(αx,α2t) and K∗uα0 (x, t) are solutions
to the heat equation uα0 . In the same way αn/2B̃(αx,α2t) and K ∗Bα

0 (x, t) are solutions of the heat equation with
data Bα

0 . We only will show the proof for the energy of the velocity since the proof for the energy of the magnetic
field is almost identical.

We show first that Equation (5.12) holds for the data uα0 .∫
Rn

∣∣ũα∣∣2 dx =αn
∫
Rn

∣∣ũ(αx,α2t)
∣∣2 dx =

∫
Rn

∣∣ũ(y,α2t)
∣∣2 d y

=
∫
Rn

∣∣ ˆ̃u(ξ,α2t)
∣∣2 dξ=

∫
Rn

e−2|ξ|2α2 t |û0(ξ)|2 dξ

Next, by Lebesgue Dominated Convergence theorem it follows that for each fixed t,

lim
α→0

∫
Rn

e−2|ξ|2α2 t |û0(ξ)|2 dξ=
∫
Rn

|û0|2 dξ.

Hence

lim
α→0

‖ũα(·, t)‖2
2

‖u0(·)‖2
2

= 1, (5.17)

Now it is necessary to show

lim
α→0

∫ t

0

∥∥K(x− y, t− s)∗ (
uα∇uα−Bα∇Bα+∇pα

)∥∥
2 ds = 0, (5.18)

We have
Hence we analyze∫ T

0
‖K(x− y, t− s) ∗(

uα∇uα−Bα∇Bα+∇pα
)∥∥

2 ds

≤
∫ T

0
‖∇K(t− s)‖2

(∥∥uαuα
∥∥

2 +
∥∥BαBα

∥∥
2 +

∥∥pα
∥∥

2

)
ds

≤ C
∫ T

0

1
(t− s)1/2

(∥∥uαuα
∥∥

2 +
∥∥BαBα

∥∥
2

)
ds.

(5.19)

Here we used that ∥∥pα
∥∥

2 ≤ C
(∥∥uαuα

∥∥
2 +

∥∥BαBα
∥∥

2

)
.

We can suppose then that we have chosen u0 and B0 to be in H1. Now observe that for n = 3∥∥uαuα
∥∥

2 ≤ C
∥∥∇uα

∥∥3/2
2 ,

∥∥BαBα
∥∥≤ C

∥∥∇Bα
∥∥3/2

2

and for n = 2 ∥∥uαuα
∥∥

2 ≤ C
∥∥∇uα

∥∥
2 ,

∥∥BαBα
∥∥

2 ≤ C
∥∥∇Bα

∥∥
2 .

Also

‖∇u‖2 +‖∇B‖2 ≤ C
(‖∇u‖2

2 +‖∇B‖2
2
)1/2 and

‖∇u‖3/2
2 +‖∇B‖3/2

2 ≤ C
(‖∇u‖2

2 +‖∇B‖2
2
)3/4.

Thus to bound the right hand side of (5.19) we need to estimate

ϕ(t)= ∥∥∇uα
∥∥2

2 +
∥∥∇Bα

∥∥2
2 .
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Note first that if we choose (u0,B0) ∈ H1 ×H1 will yield that ‖∇uα0‖2, ‖∇Bα0‖2 are arbitrarily small if α¿ 1.
This follows since

ϕ(0)=ϕ0 =
∫ ∣∣∇uα0

∣∣2 dx+
∫ ∣∣∇Bα

0
∣∣2 dx

=
∫
α4 |∇u0(αx)|2 dx+

∫
α4 |∇B0(αx)|2 dx

=α2
(∫

|∇u0(x)|2 dx+
∫

|∇B0(x)|2 dx
)

= Cα2.

In order to estimate ‖∇uα‖2 and ‖∇Bα‖2 we use Prodi’s inequality. We consider two cases:

Case 1: (n = 2). By Prodi,

dϕ
dt

≤ Cϕ2 ⇒ dϕ
ϕ

≤ Cϕdt ⇒ ln
(
ϕ(t)
ϕα0

)
≤ C

∫ t

0
ϕ(s) ds,

which implies

ϕ(t)≤ϕα0 eC
∫ t

0 ϕ(s) ds ≤ϕα0 eC(‖u0‖2
2+‖B0‖2

2) ≤ϕα0

≤ Cα2.

Hence, ∫ t

0

∥∥K(x− y, t− s)∗ (
uα∇uα−Bα∇Bα+∇pα

)∥∥
2 ds ≤ CT1/2α2, (5.20)

and thus (5.18) follows when n = 2.
By 5.18 and (5.17) the theorem follows for the velocity in two dimensions.

Case 2: (n = 3). By Prodi,
dϕ
dt

≤ Cϕ3 ⇒ dϕ
ϕ2 ≤ Cϕdt.

Integrating,

1
ϕ0

− 1
ϕ(t)

≤ C
∫ t

0
ϕ(s) ds

≤ C
(‖u0‖2

2 +‖B0‖2
2
)= C.

Solving for ϕ(t) we get

ϕ(t)≤ ϕ0

1−C0ϕ0
= Cα2

1− C̃α2
≤ 2Cα2,

where we have chosen α very small, say C̃α2 ≤ 1
2 , to make the last inequality true. Hence, for the case

n = 3, the expression (5.18) is negligible too. Combining (5.18) and (5.17) yields the conclusion of the
theorem for the velocity in three dimensions.

The estimate for the magnetic field in 2 and 3 dimensions follows in an analogous fashion. This
completes the proof of the theorem.

ä

6. KATO’S ESTIMATES

In this section we show that by some simple modification Kato’s pioneering work on Lp decay for Navier-
Stokes equations [Kat84] holds for the MHD equations with magnetic diffusion. The main difference is that
his approximating solutions will be replaced by the corresponding ones from MHD. Thus, rewrite the MHD
equations as follows

∂tv+ Av+F(v)= 0,
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where A = (A1, A2)=−P(∆,δ∆), v = (u,B), F(v)= F(v,v)= (F1(v,v),F2(v,v)), and

F1(u,w,B,D)= P(u∇w)−P(B∇D)

F2(u,w,B,D)= P(u∇B)−P(B∇u).

Here P is the orthogonal projection of L2 onto the subspace PL2, which denotes the collection of divergence-free
elements of L2.

Following Kato

un+1 = u0(t)+G1(un,Bn),

Bn+1 = B0(t)+G2(un,Bn),

where

G i(u,B)=−
∫ t

0
e−(t−s)A i Fi

(
u(s),B(s)

)
ds

and
(u0(·, t),B0(·, t))=

(
e−tA1 u0(x), e−tA2 B0(x)

)
.

Using these expressions appropriately in theorems 1,2, and 3 in Kato’s paper [Kat84] will yield the same results
for the MHD equations.

We want to show how these results can be used to extend the decay results for the MHD equations in two
dimensions when combined with our L2 results. We recall, for easy reference, Kato’s first two theorems. In this
case u stands for the solution to the Navier-Stokes equations

ut +u ·∇u+∇p =∆u, divu = 0.

Theorem (Kato 1). Let the initial data a ∈ PLm. Then there is T > 0 and a unique solution u such that

t(1−m/q)/2u ∈ BC([0,T);PLq) for m ≤ q ≤∞, (1.1)

t1−m/2q∇u ∈ BC([0,T);PLq) for m ≤ q <∞, (1.1’)

both with values zero at t = 0 except for q = m in (1.1), in which u(0)= a. Moreover, u has the additional property

u ∈ Lr((0,T1);PLq) with 1/r = (1−m/q)/2, m < q < m2/(m−2), (1.2)

with some 0< T1 ≤ T.

Theorem (Kato 2). There is λ> 0 such that if ‖a‖m ≤λ, then the solution u in Theorem (1) is global, i.e. we may
take T = T1 =∞. In particular, ‖u(t)‖q decays like t−(1−m/q)/2 as t →∞, including q =∞, and ‖∇u(t)‖q decays
like t−(1−m/2q), including q = m.

As stated before usingg (un+1,Bn+1) as defined above and following Kato’s proof with straightforward
modifications yields

Theorem 4. Let n = 2,3. Suppose (u0,B0) ∈ (PLp ∩PLn(Rn))2, where 1< p < n. There exists λ1 > 0 such that if
‖u0‖n ≤λ1 and ‖B0‖n ≤λ1, then the solution to the MHD equations with δ> 0 is global and for any finite q ≥ p

t(n/p−n/q)/2(u,B) and t(n/p−n/q+1)/2(∇u,∇B) ∈ BC
(
[1,∞];PLq)2. (6.1)

Combining the results of Theorems 1 and 4 in the two dimensional case yields the following improved decay
for the solutions to the MHD equations with δ> 0.

Corollary 5. There is λ> 0 such that for ‖u0‖2 ≤λ the global solution of the equation (6.1) for q ≥ m, and for
2≤ r ≤ q

lim
t→∞ t

r−2
2r ‖(u,B)‖r = 0

Proof. It follows by interpolating Lr between L2 and Lq and using the decay rates of the solutions corresponding
to those Sobolev spaces. ä
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7. APPENDIX

Proposition 3. Let (u,B) be a solution to the MHD equations (1.2)-(1.5). Assume the initial data u0,B0 is in
L1(R3)∩L2(R3). Then

|û(t)| ≤ C
(
1+ 1

|ξ|
)
,

where C is a constant.

Proof. We start by taking the Fourier transform of Equation (1.2)

ût + �u ·∇u−àB ·∇B+∇̂p =−|ξ|2 û.

Let us define
H(ξ, t)= �u ·∇u−àB ·∇B+∇̂p.

Then ût +|ξ|2 û =−H(ξ, t), and this equation can be integrated using the method of integrating factor to get

û(t)= û(0)e−|ξ|
2 t −

∫ t

0
H(ξ, s)e−|ξ|

2(t−s) ds.

Then,

|û(t)| ≤ |û0|+
∫ t

0
|H(ξ, s)| e−|ξ|2(t−s) ds.

To bound |H(ξ, s)|, let us first bound |∇̂p|. For this, let us take the divergence operator in Equation (1.2) which
yields

∆p =∑
k, j

∂2

∂xk∂x j (B jBk −u juk).

It follows that

|∇̂p| = |ξ| |p̂| ≤∑
k, j

∣∣ξkξ j∣∣
|ξ|

(|�B jBk|+ |�u juk|)
≤ |ξ|∑

k, j

(|�B jBk|+ |�u juk|)
Hence

|H(ξ, s)| ≤ C |ξ|∑
j,k

(|�u juk|+ |�B jBk|)
≤ C |ξ|(‖u0‖2

2 +‖B0‖2
2
)≤ C |ξ| .

Since |û0| ≤ ‖u0‖1 = C, it follows that

|û| ≤ |û0|+C |ξ|
∫ t

0
e−|ξ|

2(t−s)ds ≤ C+ C
|ξ|

(
1− e−|ξ|

2 t
)

≤ C+ C
|ξ| = C

(
1+ 1

|ξ|
)
,

which finishes the proof. ä
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