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Abstract. We study the existence and decay of solutions to kinetic models of incompressible

polymeric flow. We consider dumbbell type models in the case when the drag term is co-rotational

and weak solutions are constructed via a Leray-type approximation. We analyze the decay when

the space of elongations is bounded, and the spatial domain of the polymer is either a bounded

domain Ω ⊂ Rn, n = 2, 3 or it is the whole space R3. The decay is first established for the L2

norm of the probability density function ψ and then this decay is used to obtain L2-decay of the

velocity field u. Consideration is also given to solutions where the probability density function is

radial in the admissible elongation vectors q. In this case, the velocity field u becomes a solution

to the incompressible Navier–Stokes equations, and thus decay follows from known results for

the Navier–Stokes equations.

1. Introduction and statement of results

This paper is concerned with questions related to the existence and decay of solutions to a system
of nonlinear partial differential equations which arises from the kinetic theory of dilute polymer
solutions. The fluid under consideration is viscous, incompressible, isothermal and Newtonian. It
will be supposed that the fluid is either inside a bounded open set Ω ⊂ Rd, d = 2 or 3, with solid
boundary ∂Ω, or that the flow domain Ω = R3; in the first case it will be assumed that the velocity
field u satisfies the no-slip boundary condition u = 0 on ∂Ω. The polymer chains are suspended
in the solvent and are assumed not to interact with each other. The set of admissible elongation
vectors is assumed to be bounded. We recall that a polymer is a substance composed of molecules
with large molecular mass consisting of repeated structural units, or monomers, connected by
covalent chemical bonds; the bonds are due to the sharing of electrons between atoms. The
attraction-repulsion stability that is caused by the common electron is what characterizes the
covalent bonding. The idea of covalent bonding between long chains of atoms was introduced in
a ground-breaking and controversial paper by Hermann Staudinger in 1920 (Nobel Laureate in
Chemistry, 1953).

The simplest model to account for non-interacting polymer chains is the so-called dumbbell
model [1]. A dumbbell consists of two beads connected by an elastic spring. One can imagine that
in this model the dumbbells represent the atoms, while the elastic spring gives the covalent bond.
For descriptions of this model we refer the reader to [1, 3], for example.

In its original form, the model to be considered consists of the coupling of the incompressible
Navier–Stokes equations, with a source term representing the divergence of the elastic extra stress
tensor τ (i.e. the polymeric part of the Cauchy stress tensor), to a set of stochastic ordinary
differential equations. This model is then restated as a fully deterministic set of equations, by
replacing the stochastic ordinary differential equations with the associated Kolmogorov equation
that describes the evolution of the associated probability density function. This leads to a coupled
Navier–Stokes–Fokker–Planck system: the conservation of momentum and mass equations for the
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solvent have the form of the incompressible Navier–Stokes equations in which the elastic extra-
stress tensor appears as a source term. The extra stress tensor, in turn, depends on the probability
density function, which satisfies a Fokker–Planck equation as will be described below.

Thus we consider the following initial-boundary-value problem:

∂

∂t
u+ (u · ∇x)u− ν∆xu+∇xp = ∇x · τ, in Ω× (0, T ] ,(1.1)

divu = 0, in Ω× (0, T ](1.2)
∂

∂t
ψ + (u · ∇)ψ −∇q · (σ(u)qψ) =

1
2λ
∇q · (∇qψ + U ′qψ) + µo∆ψ,(1.3)

in Ω×D × (0, T ]

∇xψ · n = 0, in ∂Ω×D × (0, T ], ψ = 0, in Ω× ∂D × (0, T ](1.4)

ψ(x, q, t) = ψo(x, q, 0) ∀ (x, q) in Ω×D .(1.5)

where u is the velocity field, p is the pressure of the fluid, and ν ∈ R+ is the viscosity coefficient.
The probability density ψ(x, q, t) represents the probability at time t of finding a dumbbell located
‘between’ x and x+dx having elongation ‘between’ q and q+dq. The probability density ψ satisfies
the Fokker–Planck equation, together with suitable boundary and initial conditions. For details
we refer the reader to [3].

For an explanation of the appearance of derivation of the diffusive term in the ”Fokker -Planck”
equation we refer the reader to [2]. In particular in [2] in their derivation they show that there is a
” x-dissipative centre-of-mass diffusion term µ0 ∆xψ on the right-hand side of the Fokker–Planck
equation (1.3). In standard derivations of bead-spring models the centre-of-mass diffusion term
is routinely omitted, on the grounds that it is several orders of magnitude smaller than the other
terms in the equation.” ( [2], page 7).

In our paper the term µo∆ψ yields the necessary regularity to be able to pass to the limit in
our approximating solutions in order to construct our solutions .

The symmetric extra-stress tensor, τ(ψ) : (x, t) ∈ Rd+1 7→ τ(ψ)(x, t) ∈ Rd×d is dependent on a
probability density function ψ : (x, q, t) ∈ R2d+1 7→ ψ(x, q, t) ∈ R, defined as

(1.6) τ(ψ) = k µ (C(ψ)− ρ(ψ) I).

Here k, µ ∈ R+ are, respectively, the Boltzmann constant and the absolute temperature, I is the
unit d× d tensor, and

(1.7) C(ψ)(x, t) =
∫
D

ψ(x, q, t)U ′( 1
2 |q|

2) q q> dq and ρ(ψ)(x, t) =
∫
D

ψ(x, q, t) dq.

In addition, the real-valued, continuous, nonnegative and strictly monotonic increasing function
U , defined on a relatively open subset of [0,∞), is an elastic potential which gives the elastic force
F : D → Rd on the springs defined by

(1.8) F(q) = U ′( 1
2 |q|

2) q.

We will only consider the co-rotational case. It is well known that the co-rotational case is not
justified physically. However it is used in the mathematical litereature, see [10]That is we suppose
that the drag term is skew-symmetric:

(1.9) σ(u) = −σ(u)⊥

We shall assume that there are no body forces present: If there were, we would need to impose
decay conditions on the forces. The extra stress tensor τ is defined as the second moment of ψ,
the probability density function of the (random) conformation vector of the polymer molecules.
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The Kolmogorov equation satisfied by ψ is a Fokker–Planck type second-order parabolic equation
whose transport coefficients depend on the velocity field u.

On introducing the (normalized) Maxwellian

M(q) =
e−U( 1

2 |q|
2)∫

D

e−U dq

,

we have

(1.10) M ∇qM−1 = −M−1∇qM = U ′ q.

In addition, the following identities hold:

(1.11) ∇qU = U ′ q, ∇qU ′ = U ′′ q and ∆qU = U ′′ |q|2 + U ′ d.

Thus, the Fokker-Planck equation (1.2) can be rewritten as

∂

∂t
ψ + (u · ∇)ψ −∇q · (σ(u)qψ) =

1
2λ
∇q · (M∇q

(
ψ

M

)
+ µo∆ψ,(1.12)

in Ω×D × (0, T ]

∇xψ · n = 0, in ∂Ω×D × (0, T ], ψ = 0, in Ω× ∂D × (0, T ]

ψ(x, q, 0) = ψo(x, q) ∀ (x, q)in Ω×D

In the sequel, as in [3], we will suppose that the potential U satisfies

Assumption: A1

(1.13) M =
∫
D

M [U ′]2|q|4dq <∞

We now recall two well known examples

1.1. Two Examples. 1. FENE-type models. A widely used model is the FENE (Finitely
Extensible Nonlinear Elastic) model, where

D = B(0, b
1
2 ), and U(s) = − b

2
ln
(

1− 2 s
b

)
,(1.14)

and hence e−U( 1
2 |q|

2) =
(

1− |q|
2

b

) b
2

.(1.15)

Here B(0, s) is the bounded open ball of radius s > 0 in Rd centred at the origin, and b > 0 is an
input parameter. Hence the elongation |q| cannot exceed b

1
2 .

2. Hookean dumbbells. Letting b → ∞ in (1.15) leads to the so-called Hookean dumbbell
model where

(1.16) D = Rd and U(s) = s, and therefore e−U( 1
2 |q|

2) = e−
1
2 |q|

2
.

Remark 1.1. We note that

• Assumption A1 holds for the Fene models described below. For details see [3].
• Assuming A1 allows for potentials which are more general then the ones used in [9], since

these are specific FENE models.
• As remarked before the diffusive term in the probability equation does appear in derivations

of the FENE models and in papers such as [10], [11] is omitted, due to its small size
compared to other terms in the equation. For details of the derivation please see [2].
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The paper is organized as follows. After the introduction, section two describes notation and
some weighted Poincaré inequalities, essential for the decay estimates. Section three deals with the
construction of a weak solution, via a Leray aproximation. It is known that there in the literatute
there are several existence theorems corresponding to solutions to similar systems. ( See [3], [2],
[8], [10]). The reason for obtaining a new existence theorem is that we need to be able to derive our
decay estimates on approximating solutions which are sufficiently regular. This allows us to work
formally and then pass to the limit. Section four deals with decay of the probability. We show that
in the co-rotational case: If D is a bounded domain in Rn and, Ω is either a bounded domain or
the whole space Rn then the energy of the probability density has exponential decay. This decay
follows by using a weighted Poincaré inequality. In section five we obtain estimates for the velocity,
using the decay estimates obtained in section three. Section six in the co-rotational case we show
that: If D and Ω are bounded domains in Rn, then the energy of the velocity has exponential decay.
In section six we establish that the decay of energy of the velocity is algebraic in the co-rotational
case for the bounded Domain D of elongations , and unbounded spatial domain Ω . The decay
follows by by Fourier splitting analysis. Section seven studies the existence of probabilities when
the data separates into a radial function in the elongations times a function that depends on space
and time. This is done by reducing the problem to solving a Sturm-Liouville problem. In the next
section we show that if the probability density is radial in the elongations the velocity satisfies a
Navier-Stokes equation. We believe that such solutions will only exists in the co-rotational case,
since we expect that nonco-rotational drag will not allow radial elongations to be sustained. We
note that the co-rotational solutions constructed in section seven satisfy the radial condition.

Remark 1.2. Final introductory remarks

As pointed out above, all the work will be done in the co-rotational case. We recognize that this
case is not well justified physically. However it is used in many mathematical works, to mention a
few [10], [3].
There are many existence results for systems of the type described in this paper. In the stochastic
direction, let us mention, Jourdain,Lelièvre and Le Bris, [8]. In two dimensions, for coupled Navier-
Stokes with Fokker-Planck: Constantin, Fefferman and Zarnescu [5]. For FENE models we would
like to mention the fundamental work of Lions and Masmoudi [10] and Masmoudi, [11]. Existence
results can also be found in the papers of Barret, Suli and Schwab [3] and [2]. For well posedness
we refer the reader to [7], and for local results to [15].
In this paper we have included an existence result for several reasons:

• It allows for potentials more general than FENE potentials.
• The proof is straightforward, using standart Galerkin methods.

The potentials we use, were first considered in [3], that is they satisfy Assumption A.1. For
general FENE potentials U = −k

2 log[1− |R|
2

R0|2 ], k > 0, the decay proof in this paper can be applied
to the approximations constructed by Lions-Masmoudi, [10]. We note that the approximating
solutions constructed in [3], are discrete time approximations and we could not use them for our
decay proof.

In the course of this paper we will work formally. To make our arguments rigourous we can
apply the formal arguments to the approximations constructed and pass to the limit.

2. Preliminaries: Notation and weighted Poincaré inequalities

2.1. Notation. The following notation will be used
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• The Fourier transform of v ∈ S(Rn) is defined by

v̂(ξ) = (2π)−n
∫

Rn

e−ix·ξv(x) dx,

extended as usual to S ′.

• For a function v : Rn → C and a multi-index γ = (γ1, γ2, ..., gn),

Dγv =
∂γ1 ....∂γnv

∂xγ11 ....∂x
γn
n

.
• If v depends also on time Dj

t v = ∂jv
∂tj .

• For s ∈ R, Hs(Ω) = {f ∈ S ′, 3 (1 + |ξ|2)s/2f̂(ξ) ∈ L2}.
• W k,p(Ω), k = 1, 2.., p = 1, 2... = {u : generalized derivatives up to order k ∈ LP (Ω).
• W k,2(Ω) = Hk(Ω).
• H1

o (Ω) = closure of C∞o (Ω) in the norm ||∇u||2.
• H−1(Ω) = the dual space of H1

o (Ω).
• V = C∞o (Ω) ∩ {u : ∇ · u = 0}.
• H = closure of V ∈ L2(Ω).
• V = closure of V ∈ H1

o (Ω).
• K(Ω×D) = K :=

{
ϕ :
∫

Ω×D

[
|ϕ|2
M

]
dq dx <∞

}
.

We define

• Pi(Ω) = { projection of Ω onto hyperplane xi = 0}.
• AC(Ω) = { absolutely continuous functions}.
• Di = Di(Ω) = diameter of Ω in the direction of the xi axis.
• W (Ω) = {w : set of function that are measurable, positive and finite a.e in Ω}.

2.2. Weighted Poincaré inequalities. We will need the following weighted Poincaré inequality
[12], which works for weights depending on n−1 variables, where n is the dimension of the domain.

Theorem 2.1. [12] Let 1 ≤ p < ∞. Let Ω, Q be domains in Rn, w, vj ∈ W (Ω), j = 1, ...n. Let
F be a regular one-to-one mapping from Q onto Ω with Jacobian DF (y). Let Di = Di(Q) < ∞
for some i ∈ {1, ..., n} and let w[F (y)] be independent of yi. Suppose there exist positive constants
c, C,Cj , j = 1, ..., n, and a measurable function dF : Pi(Q)→ R+ 3 for y = (y′i, yi) ∈ Q,

cdF (y′i) ≤ |DF (y)| ≤ CdF (y′i)(2.17)

w[F (y)]
∣∣∣∣∂Fj(y)
∂yi

∣∣∣∣p ≤ Cjvj |F (y)|p(2.18)

Then the inequality

(2.19)
∫

Ω

|u(x)|pw(x)dx ≤ Cp0
n∑
j=1

∫
Ω

∣∣∣∣∂u(x)
∂xj

∣∣∣∣p vj(x)dx

holds for every function u = u(x) on Ω 3 u(F (y)) ∈ C1
0 (Q) with the constant

Cp0 =
[Di(Q)]p

p
Np−1C

c
max{j=1,..n}Cj

.
Proof See [12] �
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The above theorem can be streamlined so that the function u needs only to be AC. We now
apply the last Theorem in the following case

Proposition 2.2. Let 1 ≤ p <∞. Let D = BR(0), D ⊂ Rn, n = 2, 3. Suppose w(x) = w(|x|) is
measurable, positive and finite. Then

(2.20)
∫
D

|u(y)|pw(y)dy ≤ Cp(R)
n∑
j=1

∫
D

∣∣∣∣ ∂u∂qj
∣∣∣∣p w(y)dy.

where the function u is absolutely continuous and vanishes on the boundary.

Proof Let w(x) = w(|x|)be given.
1. Three dimensions

• Let Q = (0, R)× (0, π)× (0, 2π), and, D = BR(0)
• q ∈ Q→ q = (r, φ, θ)
• Define F : Q→ D as the map F (q) = (r cos θ sinφ, r sin θ sinφ, r cosφ), then |DF (r, π, θ)| =
|r2 sinφ|.

• Note that |F (q)| = r and w(F (q)) = w(|F (q)|) = w(r).
• Define dF (r, φ) = |r2 sinφ|.
• Choose C = c = 1, Cj = Rp, j = 1, ..., n.
• Let vj(x) = w(x).

Using the above information it is easy to see that the inequalities (2.17) and (2.18) hold and
hence we obtain (2.20).

Remark 2.3. The two dimensional case is similar only that one uses polar coordinates instead of
spherical coordinates.

�

3. Approximating solutions and existence

In what follows we will suppose that the Maxwellian M is less or equal to one. If not so we would
have to have a constant floating around. In this section we construct a sequence of approximating
solutions to the polymeric equations. The construction is done in several steps

• Regularize equations via a Leray type regularization: The approximation equations are
linear equations with C∞ coefficients.

• Use Galerkin method to obtain a solution of the probability density approximation equa-
tion.

• Obtain exponential decay for the L2 norm of the probability density approximation, inde-
pendent of the approximation.

• Show that ∇ · (τ) ∈ L2((0, T ), L2(Ω)), with τ corresponding to the probability approxima-
tion.

• Use Galerkin method to obtain a solution of the velocity approximation equation.
• Obtain uniform estimates in L2 in space and H1 in space -time.
• Pass to the limit: obtain weak solutions to the polymer equations.
• The uniform estimates yield the L2 decay of the solution to the polymer equations.
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3.1. The approximating equations. Without loss of generality let 0 ∈ Ω. Let α be so that
B0(α) ⊂ Ω, define the mollifier φ by

φ ∈ C∞0 (Ω), suppφ ⊂ B0(α)(3.21) ∫
Ω

φdx = 1, φδ(u(x)) = δ−3φ(
x

δ
) ? u(3.22)

The idea is to construct an approximation of both the velocity and the probability equations.
We first obtain the solution to the approximating equations for the probability. Then we use this
probability in the tensor on the right hand side of the Navier-Stokes equations. We show that
this stress tensor is in L2(0, T );V ′). Hence well known techniques for Navier-Stokes yield the
existence of a weak solution to the corresponding approximation for the Navier-Stokes equation.
This process will be applied alternatively to obtain approximations to the polymer equations in
in Ω×D × (0, T ]

∂

∂t
uN + (uN · ∇x)uN − ν∆xuN +∇xpN = ∇ · τ(ψN ), x ∈ Ω, t > 0(3.23)

div uN = 0, x ∈ Ω, t > 0(3.24)

∂

∂t
ψN + (φδ(uN−1) · ∇x)ψN −∇q · (σ(φδ(uN−1)qψN )(3.25)

=
1

2λ
∇q · (∇qψN + U ′(

1
2
|q|2)qψN ) + µo∆ψN , (x, q, t) ∈ Ω×D, t > 0

ψN = 0 on Ω× ∂D × (0, T ], n · ∇xψN = 0 on ∂Ω×D × (0, T ](3.26)

ψN (x, q, 0) = ψo(x, q) ∀ (x, q) in Ω×D.(3.27)

uN (x, t) = 0 on ∂Ω× (0, T ], uN (x, 0) = uo(x) ∀ x in Ω.(3.28)

where n is the outward normal and δ = 1
N . If Ω = R3 we replace the boundary conditions by

lim
|x|→∞

u = 0, lim
|x|→∞

ψ = 0,

Let N = 1, 2, 3.... When N = 1 to avoid confusion with the initial data, denote uN−1 = U0 and
suppose that U0 = 0. In the sequel we assume

Using the approximations above the following global existence theorem for weak solutions can
be established.

Theorem 3.1. Let n = 2, 3, D = BR(0) ⊂ Rn, and Ω ⊂ Rn a bounded set. Let uo ∈ H(Ω) and
ψo ∈ K(Ω×D). Suppose ((1.13)) holds

Then there exists a weak solution (u, p, ψ) of the co-rotational polymer equations with data
(3.26), (3.27) and, (3.28) satisfying

u ∈ L2(0, T ;V ) ∩ L∞(0, T : H), ψ ∈ L∞(K(Ω×D)), T > 0

This solution will satisfy that u(t) → uo weakly in H as t → 0. and ψ(t) → ψo in H as t → 0
for each q ∈ D.

If Ω = R3 replace the appropriate boundary conditions by

lim
|x|→∞

u = 0, lim
|x|→∞

ψ = 0,

and the conclusion of the theorem is the same.

The proof will follow by obtaining approximating solutions (un, ψn) that are bounded uniformly
in L∞((0, T );H) ∩ L2(0, T ;V )× L∞(K(Ω×D)). We first need the following auxiliary theorem:

First Step: The probability
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Theorem 3.2. Let D and Ω be as in Theorem 3.1, ψo ∈ K(Ω ×D). Let w ∈ C∞(Ω × R+), and
divxw = 0. Then there exists a weak solution ψ of

∂

∂t
ψ + ((w) · ∇x)ψ −∇q · (σ(w)qψ)(3.29)

=
1

2λ
∇q · (∇qψ + U ′(

1
2
|q|2)qψ) + µo∆ψ, (x, q, t) ∈ Ω×D, t > 0(3.30)

ψ = 0 on Ω× ∂D × (0, T ], n · ∇xψ = 0 on ∂Ω×D × (0, T ](3.31)

ψ(x, q, 0) = ψo(x, q) ∀ (x, q) in Ω×D.(3.32)

(3.33)

Proof we note that equation (3.29) is a linear second order evolution equation. The solution
can be obtained by standard Galerkin method, [6]. We outline the steps here details can be found
in the Appendix.
Step 1
By Galerkin method yields an approximation of the form: ψm =

∑n
j,k=1 d

k
m(t)Wk, We choose

{Wk}∞k=1 to be a basis of eigenvectors in H1, which are orthogonal in H1 and orthonormal in L2

and corresponding eigenvalues Λk, satisfying for (∆q +µ0∆x)Wk = ΛkWk. The Wk need to satisfy
the boundary conditions imposed on ψ. The construction is explained in the Appendix.
Step 2
We show that

• ψm in L∞((0, T ), L2(Ω×D))
• ∆xψm in L2((0, T ), L2(Ω×D))
• ∆qψm in L2((0, T ), L2(Ω×D))

and we obtain uniform bounds in m and time in the above spaces.

Step 3
The bounds above allow to extract a subsequence ψm that converges weakly to ψ which is a solution
to (3.30). This solution will satisfy the appropriate boundary and initial data conditions.

�
Second Step: The velocity

In order to obtain he existence of the velocity u we need to show that ∇ · τ(ψm) = ∇ · τN ∈
L2([0, T ), V ′). Then standart Navier-Stokes theory gives the existence. See [4, 14] We will show
that the estimate on τm is independent of m. We first give a decay estimate for the L2 norm of
ψ2

M where ψ is a solution to (3.30). This done by getting uniform bounds for the ψm

Theorem 3.3. Let D,Ω, ψ0 be as in Theorem 3.2. Let ψ, be the solution to (3.30) constructed in
Theorem 3.2, then for all t > 0

‖ψ(t)‖22 ≤
∥∥∥∥ψ(t)√

M

∥∥∥∥2

2

≤ C(R)
∥∥∥∥ ψ0√

M

∥∥∥∥2

2

exp[−Cot](3.34)

1
2λ

∫ t

0

∫
Ω×D

M

∣∣∣∣∇q( ψM )
∣∣∣∣2 dq dx ≤ 1

2λ

∥∥∥∥ ψ0√
M

∥∥∥∥2

2

, t > 0(3.35)

µ0

∫ t

0

∫
Ω×D

|∇xψ|2 dq dx ≤ µ0

∥∥∥∥ ψ0√
M

∥∥∥∥2

2

, t > 0(3.36)

Proof
We note first that the solutions of (3.30), where constructed for all T > 0. For the first part of

inequality (3.34) use that M(r) ≤ 1. For the second part we need the estimate of Lemma A.2 for
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the approximations ψm constructed via Galerkin

(3.37)
d

dt

∫
Ω×D

∣∣∣∣ ψm√M
∣∣∣∣2 dq dx = − 1

2λ

∫
Ω×D

M

∣∣∣∣∇q(ψmM )
∣∣∣∣2 dq dx− µ0

∫ t

0

∫
Ω×D

|∇xψ|2 dq dx

Next we will use the weighted Poincaré inequality (2.20) with p = 2 , u = ψm and inthe case that
M(r) = 0 on the boundary then weight w(r) = [φk(r)]

1
2 [M(r)]−

1
2 , where φk(q) = φk(r) ∈ C∞0 (D)

is positive and and

φk(r) = 1 for |q| ≤ R− 1
k
, φk(r) = 0 for R− 1

2k
≤ |q| < R, and φk ≤ 1

( Note that we multiply by the cut-off function since M = 0 on boundary of D). Hence If M 6= 0
we can use the weight to be w = M . We only work out the case when M is zero on the boundary
since the second case is easier and as such is omitted.∫

Ω×D
|ψm(x, q)|2φk(r)[M ]−1dxdq

∫
Ω

≤ C2(R)
3∑
j=1

∫
D

|∂ψm
∂qj
|2φk(r)[M ]−1dxdq.

Fatou’s Lemma, the last inequality, limk→∞ φk = φ, with φ(q) = 1 ∀q ∈ D, and φk ≤ 1 yield

∫
Ω×D

|ψm(x, q)|2[M ]−1dxdq ≤ lim inf
k→∞

∫
Ω×D

|ψm(x, q)|2φk(r)[M ]−1dxdq(3.38)

≤ lim inf
k→∞

[
C2(R)

∫
Ω

∫
D

|∇qψm|2[M ]−1dxdq

]
= C2(R)

∫
Ω

∫
D

|∇qψm|2[M ]−1dxdq.

Combining (3.38) and (3.37) yields

d

dt

∫
Ω×D

∣∣∣∣ ψm√M
∣∣∣∣2 dq dx ≤ −C2(R)

∫
Ω×D

|ψm(y)|2[
√
M ]−1|2dxdq

Hence it follows that

(3.39) ‖ψm(t)√
M
‖22 ≤ ‖

ψ0√
M
‖22 exp[−Cot]

From where (3.34) follows, since ψm and ψm√
M

converge in L2 weak to ψ and ψ√
M

respectively.
Inequalities (3.35) and (3.36) follow by (3.37) and passing to the limit. For details see Theorem

A.1 in the appendix. �

The next Proposition shows that (∇ · τ(ψ) ∈ L2([0, T ) : V ′) for all T > 0. This estimate will be
necessary for the existence of the velocity.

Proposition 3.4. Let ψ be the solution to (3.30), then ∇ · τ(ψ) ∈ L2([0, T ) : V ′)

Proof Let H = {v ∈ H1 : ‖v‖H1 = 1}. We need to show that

I =
∫ T

0

∣∣∣∣∣ sup
{v∈H}

∫
Ω

∇ · τv dx

∣∣∣∣∣
2

dt <∞

since ∣∣∣∣∫
Ω

∇(·τ(ψ))v dx
∣∣∣∣2 =

∣∣∣∣∫
Ω

τ(ψ)∇v dx
∣∣∣∣2 dt ≤(3.40) ∫

Ω

|τ(ψ)|2 dx
∫

Ω

|∇v|2 dx ≤
∫

Ω

|τ(ψ)|2 dx



10 MARIA E. SCHONBEK

Hence we only need to estimate

(3.41)
∫ T

0

∫
Ω

|τ(ψ)|2 dxdt =
∫ T

0

∫
Ω

|k µ (C(ψ)− ρ(ψ) I)|2dxdt

where we recall that

(3.42) C(ψ)(x, t) =
∫
D

ψ(x, q, t)U ′( 1
2 |q|

2) q q> dq and ρ(ψ)(x, t) =
∫
D

ψ(x, q, t) dq.

To bound (3.41) we proceed in the following two steps Step1

(3.43) J1 =
∫

Ω

|
∫
D

ψ(x, q, t)U ′( 1
2 |q|

2) q q> dq|2dx ≤
∫

Ω×D

|ψ|2

M
dx dq

∫
D

M |U ′|2|q|4dq ≤ C0 <∞

The last inequality follows by assumption A1 and by the estimates in Theorem 3.3. Step2

(3.44) J2 =
∫

Ω

|
∫
D

ψ(x, q, t)dq|2dx ≤
∫

Ω×D

|ψ|2

M
dx dq

∫
D

Mdq ≤ C1

∫
Ω×D

|ψ|2

M
dx dq.

The last inequality follows by the estimates in Theorem 3.3. Combining the estimates from J1

and J2 obtained in (3.43) and (3.44) and estimate and inequality (3.34 )yields

(3.45) I ≤ C
∫ T

0

∫
Ω×D

|ψ|2

M
dx dq dt ≤ C(R)

∫ T

0

‖ ψ0√
M
‖22 exp[−Cot] dt

Hence

(3.46) I ≤ C̃ <∞

Where C̃ is a constant depending on R and the bound in Assumption A1 only. Hence ∇·τ(ψ) ∈
L2(0, T, V ′). The proof of the Proposition is now complete. �

The next Theorem is auxiliary on how to find the solutions of approximations to the velocity
equations

Theorem 3.5. Let Ω be as in Theorem 3.1, ψo ∈ K(Ω×D). Let ψ be the solution constructed in
Theorem 3.2. Then for all T > 0 there exists a weak solution u ∈ L∞(0, T ;H) ∩ L([0, T ), V ) and
u is weakly continuous from [0, T ] into H1

∂

∂t
u+ (u · ∇x)u− ν∆xu+∇xp = ∇x · τ(ψ), x ∈ Ω, t > 0(3.47)

div u = 0, x ∈ Ω, t > 0,(3.48)

u(x, t) = 0 on ∂Ω× (0, T ], u(x, 0) = uo(x) ∀ x in Ω.(3.49)

Proof By Proposition 3.4 we have that our equation is a Navier-Stokes equation with a forcing
term f = (∇ · τ(ψ) ∈ L2([0, T ) : V ′) for all T > 0. Hence can apply Theorem 3.1 and the solution
to Problem 3.2 in Chapter 3 of [14], which gives the weak existence of a solution u as required in
the Theorem. �

Proposition 3.6. Under the same Hypothesis of Theorem 3.5 it follows that

(3.50) ‖u(T )‖2L2(Ω) + ‖∇u‖L2([0,T );L2(Ω) ≤ ‖u0‖L2 + C̃(R).
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Proof We will establish the above estimate formally. We note that the construction in [14] that
we used for the existence of a solution in Theorem 3.5, was done using a Galerkin approximation.
Hence to make our calculations rigorous, one has to apply them to the Galerkin approximation
and pass to the limit. Multiply the equation by u and integrate in space and time and integrate
by parts the forcing term and use Hölder inequality

‖u(t)‖2L2(Ω) + 2‖∇u‖L2([0,T );L2(Ω)) ≤ ‖u0‖L2 + C

∫ t

0

‖∇u‖L2(Ω)‖τ(ψ)‖L2(Ω)

Recall that by (3.46)
∫ t

0
‖τ(ψ)‖2L2(Ω) ≤ C̃.

Hence the RHS can be estimated by∫ t

0

‖∇u‖L2(Ω)‖τ(ψ)‖L2(Ω) ≤
∫ t

0

∇u‖2L2(Ω) + C2C(R)

The proposition follows by letting C̃(R) = C̃C2C(R). �

Remark 3.7. The above Corollary is also valid in the case that Ω = Rn,

Third Step: Proof of Theorem 3.1
Now we can proof Theorem 3.1
Proof The plan is to construct a sequence of solutions (uN , pN , ψN ). We proceed inductively,

starting with U0 = 0, (recall that, to avoid confusions with the notation for the initial data we
renamed uN−1 when N = 1 by U0). We, now construct a solution to (3.25), with N = 1. This
equation is linear, and the solution can be constructed using Theorem 3.2. This yields ψ0. Now
Proposition pr:vprima is used to yield u1, a solution to (3.23). This process is repeated to obtain
alternatively {psiN and then uN , ∂N . That is we proceed inductively using Galerkin, starting with
the probability equation using for the drag w = wN = φδ(uN−1) .

Wlog we can suppose M ≤ 1, (otherwise the bounds will include a bound for M). This con-
struction combined with (3.34), and (3.50) yields

‖ψN (t)‖22 ≤
∥∥∥∥ψN (t)√

M

∥∥∥∥2

2

≤ C(R)
∥∥∥∥ ψ0√

M

∥∥∥∥2

2

exp[−Cot](3.51)

1
2λ

∫ t

0

∫
Ω×D

M

∣∣∣∣∇q(ψNM )
∣∣∣∣2 dq dx ≤

∥∥∥∥ ψ0√
M

∥∥∥∥2

2

, t > 0(3.52)

µ0

∫ t

0

∫
Ω×D

|∇xψN |2 dq dx ≤
∥∥∥∥ ψ0√

M

∥∥∥∥2

2

, t > 0(3.53)

and

(3.54) ‖uN (t)‖L2(Ω) + ν‖∇uN‖L2([0,T );L2(Ω) ≤ ‖u0‖L2 + C̃(R)

Hence we can extract subsequences which will converge as follows (as N →∞)

(3.55) ∇xψN → ∇ψ, weak ∈ L2([0, T );L2(Ω×D))

(3.56) ψN → ψ, strong ∈ L2([0, T );L2(Ω×D))

(3.57)
ψN
M
→ ψ

M
, weak ∈ L∞([0, T );L2(Ω×D))
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(3.58)
√
M∇q

(
ψm
M

)
→
√
M∇q

(
ψ

M

)
, weak ∈ L2([0, T );L2(Ω×D))

(3.59) uN → u strong ∈ L2([0, T );L2(Ω))

(3.60) ∇xuN → ∇xu weak ∈ L2([0, T );L2(Ω))

(3.61) φ 1
N

(u)→ u strong ∈ L∞([0, T );L2(Ω))

We have chosen δ = 1
N for our mollifier. Hence the limiting (u, ψ) will be a weak solution. Notice

that since we constructed uN to be solutions to the Navier-Stokes equations with forcing terms
∇ · τ(ψN ) this created a sequence of pressures pN . It is easy to find a uniform bound in N for
pN ∈ L2((0, T );L2(Ω)). This bound might depend on T , but since it is independent of N, it will
allow to extract a subsequence that converges in

(3.62) pN → p weak ∈ L2([0, T );L2(Ω))

This limit (u, p, ψ) is a solution to the polymer equations, and by construction satisfies the
initial and boundary conditions since each of the approximating solutions did.

Remark 3.8. We note that all the same procedure can be applied to obtain weak solutions to the
polymer equations, when Ω = Rn, n = 2, 3, see Remark 3.1 and 3.5 in [14], provided the boundary
conditions are changes as mentioned in the hypothesis of the Theorem.

�

4. Decay of the probability density in the co-rotational case

In this section we investigate the decay of a weigthed Sobolev norm for the probability density,
in the case when the elongations vectors are in a bounded domain. More precisely we will require
that the domain is a Ball centered at the origin. We also require the drag to be co-rotational.

Theorem 4.1. Let D = Bb(0) be an open ball in Rn, n = 2, 3 and Ω bounded in Rn, n = 2, 3. Let
(u.ψ), be a weak solution of of equations (1.1) , (1.2) , (1.3) satisfying the boundary and initial
conditions of conditions of Theorem 3.1 and co-rotational drag. Then there exist constants Co so
that

(4.63)
∫

Ω×D
M

∣∣∣∣ψ(t)
M

∣∣∣∣2 dq dx ≤ C(R) exp[−Cot]

where Co = Co(ψo, R)

Proof By (3.34) it follows that for all the approximating probability densities

(4.64)
∥∥∥∥ψN (t)√

M

∥∥∥∥2

2

≤ C(R)
∥∥∥∥ ψ0√

M

∥∥∥∥2

2

exp[−Cot]

Since ψN (t)√
M
→ ψ(t)√

M
weakly in L2, it follows that the limit will satisfy (4.63). �

Corollary 4.2. Let D = Bb(0) be an open ball in Rn, n = 2, 3 and Ω = Rn Let (u.ψ), be a weak
solution of of equations (1.1) , (1.2) , (1.3) satisfying the conditions for unbounded solutions of
Theorem 3.1and co-rotational drag. Then there exist constants Co so that

(4.65)
∫

Ω×D
M

∣∣∣∣ψ(t)
M

∣∣∣∣2 dq dx ≤ C(R) exp[−Cot]
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where Co = Co(ψo, R)

Proof Works the same as in the bounded case. �

5. Bounds and decay for the energy of the velocity: co-rotational case

The next theorems establishes the decay of the energy of the velocities. We have two cases. If
Ω is bounded the decay follows by the Poincaré inequality. If Ω = Rn the method is based on
Fourier splitting [13]

Bounded domain Ω

Theorem 5.1. Let D be bounded M a radial Maxwelian as before, and the drag be co-rotational.
Assume U ∈ C1. Let Ω a bounded open set with Lipshitz-continuous boundary ∂Ω. Let u be the
solutions of (1.1), (1.2) with data u(x, 0) = u0, with boundary described by (1.4) and 1.5 . Where
the initial data u0 ∈ H1 then

‖u(t)‖L2(Ω) ≤ C exp[−Cot]
Where the constants depend on the data and on the size of the domains and the viscosity coef-

ficient of the velocity.

Proof. We have the following inequality, for the approximating solutions. We do the computations
formally, when applied to the approximations the result are rigorous. Multiply the velocity equation
by u and integrate.

(5.66)
d

dt

[∫
Ω

|u|2 dx
]

+ ≤ −2ν
∫

Ω

|∇u|2 dx+ 2
∫

Ω

u∇ · τ(ψ) dx.

The RHS of (5.66) can be estimated by

2
∫

Ω

u∇ · τ(ψ) dx ≤ ν
∫

Ω

|∇u|2 dx+
C

ν

∫
Ω

|τ(ψ)|2 dx(5.67)

≤ ν
∫

Ω

|∇u|2 dx+ C(R) exp[−C0t]
∫

Ω×D

∣∣∣∣ ψ0√
M

∣∣∣∣2 dx dq.

Combining the last two inequalities yields Where we used the estimates from (3.42), (3.43),
(3.44). Applying for the approximations estimates (3.37) with(3.34), passing to the limit yields

(5.68)
d

dt

[∫
Ω

|u|2 dx
]

+ ≤ −ν
∫

Ω

|∇u|2 dx+ C(R) exp[−C0t]
∫

Ω×D

∣∣∣∣ ψ0√
M

∣∣∣∣2 dx dq.

(5.69)
1
2
d

dt

[∫
Ω×D

|ψ|2

M
dqdx

]
≤ − 1

2λ

∫
Rn×D

|ψ|2

M
dq dx.

Summing (5.68) and (5.69), (where we bound the RHS of (5.68) , by (5.67) ) and use the
weighted Poincaré inequality and Poincaré inequality yields

1
2
d

dt

[∫
Ω

|u|2 +
∫

Ω×D

|ψ|2

M
dqdx

]
≤ −ν

2

∫
Ω

|u|2 dx(5.70)

− 1
2λ

∫
Rn×D

|ψ|2

M
dq dx+ C(R) exp[−C0t].

The last inequality yields
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(5.71)
d

dt

[
exp(C1t)

(
1
2

∫
Ω

|u|2 +
∫

Ω×D

|ψ|2

M
dqdx

)]
≤ C(R) exp(C1t) exp[−C0t]

Now integrate in time and the decay follows for the approximating solutions. Since the approx-
imations converge in L2 the decay follows for the solutions.

�

Unbounded case: Ω = R3

Theorem 5.2. Suppose the conditions of Theorem(5.1) i with Ω = R3. Suppose the boundary
conditions: |u| → 0 and |ψ| → 0 as |x| → ∞. If in addition ψ0 ∈ L1(R3 × D) and u0 ∈ L1(R3)
then

‖u(t)‖2L2(R3) ≤ C(t+ 1)−
1
2

Remark 5.3.

Proof. The computations are formal. They are rigorous for the approximations. Passing to the
limit will give the result for the solution. The formal computations can be done for any n ≥ 3.
We show formally that in n-dimensions

‖u(t)‖2L2(Rn) ≤ C(t+ 1)−
n
2−1

For the unbounded case we will have (5.68), (5.67) and (5.69) on the approximations. Estimating
the RHS of (5.68) by (5.67) and summing to (5.69) yields formally

1
2
d

dt

[∫
Ω

|u|2 +
∫

Ω×D

|ψ|2

M
dqdx

]
≤ −ν

2

∫
Ω

|∇u|2 dx(5.72)

− 1
2λ

∫
Rn×D

|ψ|2

M
dq dx+ C(R) exp[−C0t]

We rewrite this equation by taking the Fourier Transform in the x variable. Using Plancherel
Theorem yields

1
2
d

dt

[∫
Rn

|û|2ds+
∫

Rn×D

|ψ̂|2

M
dqdx

]
≤ −ν

2

∫
Rn

|ξ|2|û|2 dx(5.73)

− C
2λ

∫
Rn×D

|ψ̂|2

M
dq dx+ C(R) exp[−C0t]

Let

S(t) =

{
ξ : |ξ| ≤

(
2n

ν(t+ 1)

) 1
2
}

and Sc the complement of S in Rn. We split the domain of the integral of the diffusive term of
the velocity to get

−ν
2

∫
Rn

|ξ|2|û|2 dx ≤ − n

t+ 1

∫
Sc

|û|2 dx = − n

t+ 1

∫
Rn

|û|2 dx+
n

t+ 1

∫
S

|û|2 dx

Using this last inequality in (5.73) yields
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d

dt

[
(t+ 1)n

(∫
Ω

|û|2dx+
∫

Rn×D

|ψ̂|2

M

)]
≤ (t+ 1)n−1

∫
S(t)

|û|2 dx

−(t+ 1)n
C

2λ

∫
Ω×D

|ψ̂|2

M
dqdx+ n(t+ 1)n−1

∫
Ω×D

|ψ̂|2

M
dqdx+Ko exp[−K1t] = J.

Where Ko =
∫

Ω×D
|cψ0|2
M dqdx. From Corollary 4.2 that the RHS of the last inequality can be

bounded by

J ≤ (t+ 1)n−1

∫
S(t)

|û|2 dx+ [(t+ 1)n + n(t+ 1)n−1 + 1]Ko exp[−K1t]

Hence we have

d

dt

[
(t+ 1)n

(∫
Ω

|û|2dx+
∫

Rn×D

|ψ̂|2

M

)]
≤ (t+ 1)n−1

∫
S(t)

|û|2 dx

+[(t+ 1)n + n(t+ 1)n−1 + 1]Ko exp[−K1t](5.74)

We now proceed to estimate the first term of the RHS of the last inequality. For this a bound
for |û| is necessary

ESTIMATES FOR |û|
Take the Fourier Transform of equation (1.1)

∂

∂t
û+ ̂(u · ∇x)u+ ν|ξ|2û+ ∇̂xp = ∇̂ · τ ,

Hence û can be expressed as

(5.75) ûj = exp (−|ξ|2t)û0
j −

∫ t

0

exp (−|ξ|2(t− s))

[
̂(u · ∇x)uj −

n∑
k=0

iξk τ̂i + ∂̂xj
p

]
ds

Now we need the following bounds :

Bound for pressure term
For this take the div of the equation, then in Fourier space we have

(5.76) |ξ|2p̂ = −
3∑

i,j=1

|ξiiξj ûiuj |+ |ξ|2
∫
D

ψ̂U ′′qqT dq

We recall that by Remark(3.7) ‖u(t)‖2 ≤ C(R, u0, ψ0, and an easy computation (see [3] ) shows
that ‖ψ(t)‖L1(R3×D) ≤ ‖ψ0‖L1(R3×D). Hence it follows that

|ξk||p̂| ≤ |ξ|
3∑

i,j=1

|ûiuj |+ C

∫
D

|ψ̂||ξ| dq(5.77)

≤ Co(‖u0‖L2(R3) +
Ko

K1
)|ξ|+ ‖ψ‖L1(R3×D)|ξ|) ≤ Co|ξ|

Bound for convective term

(5.78) | ̂(u · ∇x)u| ≤ |ξ|
3∑
i

|ûiuj | ≤ Co(‖u(t)‖L2(R3)|ξ|)+ ≤ Co|ξ|
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Bound for tensor term τ

(5.79) τ̂ =
∫
D

ψ̂dq +
∫
D

ψ̂(ξ, |q|, t)U ′(1
2
|q|2)qqT dq ≤ C‖ψ0‖L1(R3×D) ≤ C

Combining inequalities (5.75) with (3.24) and (3.25) and (5.79) yields

(5.80) |û| ≤ |û0| exp (−t|ξ|2) + Co|ξ|−1

Hence near zero and in particular for ξ ∈ S(t) we have

|û| ≤ Co
|ξ|

Remark 5.4. For this last inequality we need that uo ∈ L1 so that ûo ∈ l∞

In R3 it follows that (the computation works for all n ≥ 3)

(5.81)
∫
S(t)

|û(t)|2dξ ≤ C
∫
S(t)

1
|ξ|2

dξ = C(t+ 1)−
n
2 +1

From the last estimate it follows that

(5.82) (t+ 1)n−1

∫
S(t)

|û|2 dx ≤ C(t+ 1)
n
2

Since [(t+ 1)n + n(t+ 1)n−1 + 1]Ko exp[−K1t] ≤ K exp[−K1t], combining (5.74 )with the last
inequality yields

(5.83)
d

dt

[
(t+ 1)n

(∫
Ω

|û|2dx+
∫

Rn×D

|ψ̂|2

M

)]
≤ C(t+ 1)

n
2 +K exp[−K1t].

Let Co = ‖u0‖L2(Rn) + ‖ |ψ)|2

M ‖L2(Rn×D). Integrating in time in the interval [0, t] gives using
Plancherel

(5.84) [(t+ 1)n
(∫

Ω

|u|2dx+
∫

Rn×D

|ψ|2

M

)
≤ Co + C(t+ 1)

n
2 +1 +K[

1− exp[−K1t]
K1

].

Dividing by (t+ 1)n, yields

‖u(t)‖2L2(Ω) ≤ C(t+ 1)−
n
2 +1

This concludes the formal part of the theorem. Applying it to the Galerkin approximations
yields the estimate in the limit.

�

Remark 5.5. We believe that the correct decay rate should be (t+ 1)−
n
2 . But since we have have

no decay for the ‖ψ‖1 norm we cannot use a bootstrap of the type used for Navier-Stokes. In this
case the above theorem would give also decay in the two dimensional case.
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6. co-rotational case: with data that separates

In this section we analyze the probability density in the co-rotational case for data that separates.
We will suppose that the elongations are restricted to the ball D = Db1/2(0) ⊂ Rn. We look for
solutions to the Fokker-Panck equations for the probability density of the form ψ = N(r)f(x, t),
whereN(r) = N(|q|2), with initial data of the form ψ(x, |q|, 0) = N(r)f(x, 0). An easy computation
yields that the Fokker-Planck equations can be expressed as

(6.85) N(r)ft +N(r)u · ∇f = G(r)N(r)f

Where

(6.86) G(r) =
1

2λ
∇q ·

(
M∇q(

N(r)
M(r)

)
)
N−1,

This follows since σ(u) is co-rotational and hence the drag term ∇q(σ(u)qN(|q|2))f = 0
Note that if N(r) = αM(r) ⇒ G(r) = 0. This is a case already considered in [3]. Hence we

will suppose that N(r) 6= M(r), then (6.85) yields

(6.87) ft + u · ∇f − fG(r) = 0 and G(r) = [ft + u · ∇f ] f−1.

Hence G(r) = C. Define v = f exp[−G(r)t] = f exp[−Ct]. Then v satisfies

vt + u · ∇v = 0

Hence

‖v(t)‖2 ≤ ‖v(o)‖2
Since f = v exp [Ct] it follows that

(6.88) ‖f(t)‖2 ≤ ‖v(0)‖2 exp(Ct)

Thus if there exist N satisfying (6.85), then the solution ψ will have exponential decay if C < 0,
no decay if C = 0 and increases exponentially if C > 0. For appropriate M below we will rule out
the possibility of exponential growth. The next step will be to show that there exist N which are
solutions to (6.85).

Theorem 6.1. There ∃ N(r) = N(|q|2) such that if

ψo(x, t) = ψ(x, |q|, 0) = N(r)f(x, 0) ⇒ ψ = N(r)f(x, t)

is a solution to the Fokker Planck equation in the form given by (6.85).

Proof. We note that from (6.86) we have since G(R) = C

(6.89) CN =
1

2λ
∇q ·

(
M∇q(

N(r)
M(r)

)
)
,

Let K(r) = N
M then the equation (6.89) becomes

(6.90) K ′′ +K ′[
M ′

M
+

3
r
− 1] = CK, r ∈ (0, b1/2)

The problem will be to find K for appropriate C, satisfying (refeq:K). For such K define N =
KM , then N will be a a solution to (6.85)

To solve equation (6.90) proceed as follows.
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First add the boundary data

(6.91) K ′(0) = 0, K ′(b1/2) = 0

Now define

v(r) =
M ′

M
+

3
r
− 1 = −U ′r +

3
r
− 1

The second term follows by the definition of the Maxwelian.
Hence (6.90) can be rewritten as a Sturm-Liouville problem

− d

dr

[
exp

∫ r

a

(v(r)) dr
d

dr
K

]
+ λ(exp

∫ r

a

(v(r)) dr)K = 0(6.92)

K ′(0) = 0, K ′(b1/2) = 0(6.93)

where we choose any fixed a ∈ (0, b1/2).
By standart Sturm-Liouville theory, since

∫ r
a
exp(v(r)) > 0 and v(r) is continuous and differen-

tiable in (0, b1/2), there exist a countable set of real eigenvalues

λ1 < λ2 < ....λn < ... <∞.

and corresponding to each eigenvalue there is a unique eigenfunction Kn(r) with n − 1 zeros in
(0, b1/2).

Hence there exist the solutions (Kk(r), λk), k = 1, 2, 3.....
�

Remark 6.2. Choosing C = −λk for any positive eigenvalue, will yield a solution of (6.90), were
C < 0.

In summary we have constructed the following solutions

Theorem 6.3. Let ψ0 = N(r)f(x, 0) and N(r) = N(|q|2) 6= M(r). Let K be an eigen-solution of
the Sturm-Liouville problem (6.92 ) with data (6.93). Let f satisfy

ft + u · ∇f + fλ = 0

with λ and eigenvalue of the Sturm-Liouville problem (6.92 ). Let N = KM , then

ψ = N(r)f(x, t)

is a solution to the co-rotational Fokker-Plank equation with data ψ = N(r)f(x, 0).

Proof. Since K satisfies (6.92 ) , hence K satisfies (6.90 ) and equivalently it follows that for
N(r) = K(r)M(r)

1
2λ
∇q ·

(
M∇q(

N(r)
M(r)

)
)
N−1 = −λk,

and hence ψ = N(r)f(x, t) satisfies (6.85), That is it satisfies the co-rotational Fokker-Plank
equation with data ψ0 = N(r)f(x, 0).

�

Corollary 6.4. Under the conditions of the above theorem it follows that

‖ψλ(t)‖2 ≤ Co exp(−λt)
where ψλ = Nλ(r)f, Nλ = KλM and Kλ is the solution to the Sturm-Liouville problemom

corresponding to the eigenvalue λ. Here Co depends on the norms of Kλ and M

Proof. Follows immediately from inequality (6.88 )when we take C = −λ with λ a positive eigen-
value of the Sturm-Liouville problem (6.92). �
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7. Reduction to Navier-Stokes on bounded balls

In this section we show that equation (1.1) reduces to a Navier-Stokes equation provided the
elongations of the probability density are radial. As we have shown in the last section in the
co-rotational case there are such type of solutions.

Theorem 7.1. Suppose that the solution to the Fokker-Plank equation is radial in the elongations,
that is ψ(x, q, t) = ψ(x, |q|, t), then the corresponding velocity satisfies a Navier-Stokes equation.

Proof. To show that equation (1.1) converts into Navier-Stokes we compute the matrix C̃ and
show that it is a diagonal matrix. Hence the matrix τ̃ becomes diagonal and ∇xτ̃ = ∇xP . Thus
if we replace in equation (1.1) the pressure p by the new pressure p− P we have a Navier-Stokes
equation.

Let D = B(0, R) We only have to calculate the value of

J =
∫
D

ψ(x, |q|, t)U ′(1
2
|q|2)qqT dq

Passing to spherical coordinates with |q| = r. the last integral reduces to∫ π

0

∫ 2π

0

∫ R

0

H(r)F (r, θ, φ)r2 sinφ dr dφ dθ

where we have

H(r) = ψ(x, |q|, t)U ′(1
2
|q|2) and F (r, θ, φ) = (Fi,j)i,j

where Fi,j = qiqj , where in spherical coordinates we have as usual

q1 = r cos θ sinφ

q2 = r sin θ sinφ

q3 = r cosφ

Hence the integral J ”reduces” to nine integrals of the form

Ji.j =
∫ R

0

H(r)r4

∫ π

0

∫ 2π

0

q̃iq̃j sinφ dφ dθ dr =∫ R

0

H(r)r4dr

∫ π

0

∫ 2π

0

Ni,j dφ dθ

with Ni,j =
∫ π

0

∫ 2π

0
q̃iq̃j sinφ dφ dθ where

q̃1 = cos θ sinφ

q̃2 = sin θ sinφ

q̃3 = cosφ

An easy computation shows that

N1,1 =
∫ π

0

∫ 2π

0

(cos θ)2(sinφ)3 dφ dθ =∫ π

0

∫ 2π

0

1 + cos(2θ)
2

[1− (cosφ)2] sinφ dφ dθ =

π(
∫ π

0

sinφ− (cosφ)2 dφ) = 2π − 2/3π = 4/3π

A similar simple computation shows that N22 = 4/3π. The computation of N3,3 is even simpler
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N3,3 =
∫ π

0

∫ 2π

0

(cosφ)2 sinφ dφ dθ =

−2π
∫ 1

−1

u2du = 4/3π

Because of symmetry we have Ji.j = Jj,i, i, j = 1, 2, 3. Again straightforward computation give

N1,2 = N2,1 =
∫ π

0

∫ 2π

0

(cos θ) sin θ(sinφ)3 dφ dθ = 0

since
∫ 2π

0
(cos θ) sin θdθ = 0 The other two integrals follow similarly

N1,3 = N3,1 =
∫ π

0

∫ 2π

0

(cos θ) cosφ(sinφ)2 dφ dθ = 0

The above is zero since
∫ 2π

0
(cos θ) dθ = 0.

Finally

N2,3 = N3,2 =
∫ π

0

∫ 2π

0

sin θ(sinφ)2 dφ dθ = 0

since
∫ 2π

0
sin θ dθ = 0

Hence it follows that the matrix C̃ is diagonal, and since the second term in τ̃ also was diagonal,
the right hand of (1.1) is a gradient and consequently (1.1) reduce to a Navier-Stokes system.

�

Remark 7.2. In this case the decay of the velocity is well known since we can use all the decay
results of solutions to the Navier-Stokes equations.
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Appendix A. Existence

We now give the details for the existence Theorems. The first theorem we will establish is
Theorem 3.2. For completeness we will state it again

Theorem A.1. Let D and Ω be as in Theorem 3.1, ψo ∈ K(Ω×D). Let w ∈ C∞(Ω× R+), and
divxw = 0. Then there exists a weak solution ψ of

∂

∂t
ψ + ((w) · ∇x)ψ −∇q · (σ((w)qψ)(A.94)

=
1

2λ
∇q · (∇qψ + U ′(

1
2
|q|2)qψ) + µo∆ψ, (x, q, t) ∈ Ω×D, t > 0

ψ = 0 on Ω× ∂D × (0, T ], n · ∇xψ = 0 on ∂Ω×D × (0, T ](A.95)

ψ(x, q, 0) = ψo(x, q) ∀ (x, q) in Ω×D.(A.96)

Proof Let wj be the a basis of eigenfunctions (with eigenvalues λj), corresponding to ∆qΦ1(q) =
λjΦ(q) with zero Dirichlet boundary conditions. The wj can be taken orthonormal in H1

0 (D) and
orthogonal in L2(D). Let vj be the a basis of eigenfunctions (with eigenvalues γj) corresponding
µ0∆xΦ2(x) = γjΦ2(x) with zero Neuman boundary conditions. The vj can be taken orthonormal
in H1(Ω) and orthogonal in L2(Ω). That is we can take as basis of eigenvectors {Φj,k = wjvk}k,j
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for the system corresponding to (∆q + µ0∆x)Φ1Φ2 = ΛΦ1Φ2 with eigenvalues Λ = Λj,k = λj + γk,
We are looking for solutions via a Galerkin method, that is we approximate the solutions by

ψm =
n∑

j,k=1

dk,lm (t)wk(q)vj(x)

We can reorder eigen-functions and rename them as {Wk}, with eigenvalues Λk, hence

ψm =
n∑

j,k=1

dkm(t)Wk

We can set the problem to be solved in a weak formulation. Let

B[ψ, φ; t] =
∫

Ω

3∑
i=1

1
2λ
ψqiφqi +

3∑
i=1

µ0ψxiφxi(A.97)

+
3∑
i=1

ai(·, t)ψφqi
+

3∑
i=1

bi(·, t)ψφxi

Letting

a = σ((w)q +
1

2λ
U ′(

1
2
|q|2)q, b = w.

Hence the weak formulation of (A.94) is

(ψ′m,Wk) +B[ψm,Wk; t] = 0, for 0 ≤ t ≤ T, k = 1, ...m

The last equation can be solved in straightforward fashion, and as such we omit the details.([6]).
To obtain a weak solution we need some energy estimates for ψm. This will be done in the next

Lemma and Corollary.

Lemma A.2. Let ψm be defined as in the Theorem A.1 then

(A.98)
d

dt

∫
Ω×D

∣∣∣∣ ψm√M
∣∣∣∣2 dq dx = −

∫
Ω×D

M

∣∣∣∣∇q(ψmM )
∣∣∣∣2 dq dx− µ0

∫
Ω×D

∣∣∣∣∇x( ψm√
M

)∣∣∣∣2 dx dq

and ∫
Ω×D

∣∣∣∣ψm(t)√
M

∣∣∣∣2 + µ0

∫ t

0

∫
Ω×D

∣∣∣∣∇x( ψm√
M

)∣∣∣∣2 dx dq ds(A.99)

+
∫ t

0

∫
Ω×D

∣∣∣∣√M∇q (ψmM
)∣∣∣∣2 dxdq ≤

∫
Ω×D

∣∣∣∣ψm(0)√
M

∣∣∣∣2
Proof Inequality (A.98) follows by writing the probability equation in Maxwelian form (1.12),

using the weak formulation and multiply the equation by dkm, sum over k = 1, 2..m and integrate
over Ω×D For details see [6], Chapter 7.

We note here that because the drag term is co-rotational after multiplying by dkm, summing
over k = 1, 2..m and integrating over Ω×D, the term vanishes. This is a simple application of te
divergence theorem. For details see [3]

Inequality (A.99) follows integrating inequality (A.98) in tine over [0, t]
�

Remark A.3. Note that the bound obtained for the LHS of inequality (A.99) is uniform in time
and m.
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Corollary A.4. Under the hypothesis of the Theorem, it follows that for all T > 0

(A.100) µ0

∫
Ω×D

|ψm(t)|2 +
∫ t

0

∫
Ω×D

|∇xψm|2 dx dq ≤
∫

Ω×D

∣∣∣∣ψm(0)√
M

∣∣∣∣2 dx dq

Proof Follows by inequality (A.99) , since M ≤ 1.
�

We proceed with the last part of the Theorem, by the Lemma A.2 and Corollary A.4 it follows
that we can extract a subsequence, which we call again {ψm} such that for allT > 0 which converges
in the following sense

(A.101) ∇xψm → ∇ψ, weak ∈ L2([0, T );L2(Ω×D))

(A.102) ψm → ψ, strong ∈ L∞([0, T );L2(Ω×D))

(A.103)
ψm
M
→ ψ

M
, weak ∈ L∞([0, T );L2(Ω×D))

(A.104)
√
M∇q

(
ψm
M

)
→ Φ, weak ∈ L2([0, T );L2(Ω×D))

By (A.103) and (A.104) it follows that Φ =
√
M∇q

(
ψ
M

)
We recall that ∇qM = −MU ′q, hence

√
M∇q

(
ψm
M

)
=

1√
M

[∇qψm + U ′qψm]

Combining the last equality with (A.100) yields, since M ≤ 1

(A.105)
∫

Ω×D
|∇qψm + U ′qψm|

2
dxdq ≤

∫
Ω×D

∣∣∣∣ψm(0)√
M

∣∣∣∣2 dx dq

Hence we have that

(A.106)
√
M∇q

(
ψm
M

)
→ Γ ∈ L2([0, T );L2(Ω×D))

Combining (A.102) and (A.106) yields that Γ =
√
M∇q

(
ψ
M

)
Hence combining (A.102) and

(A.106) yields

(A.107) ∇qψm → ∇qψ ∈ L2([0, T );L2(Ω×D))

By (A.101) and (A.102) and (A.107) it follows that we can pas to the limit of the subsequence
ψm and the limit will satisfy equation (??). Due to the construction it follows that the limit will
have the right boundary conditions. The initial data is obtained as usual by being able to select
the dkm(0) =

∫
Ω×D ψ0(x, q),Wkdxdq.

This concludes the proof of the Theorem.
�
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