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1 Introduction.

Many interesting problems arise from the study of the behavior of uids. From a theoretical
point of view Fluid Dynamics works with a well de�ned set of equations for which it is
expected to get a clear description of the solutions. Unfortunately, in general this is not
easy even if the many experiments performed in the �eld seem to indicate which path to
follow. Some of the basic questions are still either partially or widely open. For example
we would like to have a better understanding on :

1. Questions for both bounded and unbounded domains on regularity, uniqueness, long
time behavior of the solutions.

2. How well do solutions to the uid equations �t to the real ow.

Depending on the type of data most of the answers to these questions are knonw, when
we work in two dimensions. For solutions in three dimensions, in general, we have only
partial answers.

In this set of notes we will discuss questions on existence, regularity and long time be-
havior. The notes will be based on several of my papers [S1], [S2], [S3], [S4], [SS], [SW],
[MNPS], and complemented with material from the work of [L], [CKN], [Se], [Pl], [W], [K].
For general theory we will also use results from [La], [S], [M], [P], [C].

We start with some historical background.See [La] for a more detailed discussion. For
many years most of the work was done on the so called potential, ideal, incompressible
ows. We recall that:

Potential Flow : inviscid, irrotational ow.

Ideal Fluid : uids such that the stress across its surface is given by p(x; t) � ~n , where
p(x; t) is a function called pressure and ~n is the normal vector with respect to the
surface.

Incompressible Fluid : the volume of any subregion of the ow is constant in time.
Incompressibility can be shown to be equivalent to the condition that divergence of
velocity is zero. Briey, a ow is incompressible if

0 =
d

dt

Z
Wt

dV =
d

dt

Z
W

J dV =

Z
W

@

@t
J dV =

Z
W

div u J dV =

Z
Wt

div u dV

for any moving subregions Wt , where W0 = W . Note that we used d
dt
J(t) =

J(x; t) , where u is the velocity of the ow and J(x; t) is the Jacobian of the ow
map �t = �(x; t) = trajectory followed by a particle which is at point x at time
t = 0 .
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Working with potential, incompressible, ideal ows had some problems. One such problems
was due to the Euler-D'Alembert paradox:

"Total force acting on an object located on a potential ow was zero".

To resolve this paradox a new set of viscous equations was introduced: The Navier-Stokes
equations

ut + (u � r)u+rp = ��u+ f
div u = 0
u(x; 0) = g(x) 2 X

The equations above are given in Rn . The space X will be speci�ed below. If we work
on bounded domains or exterior domains a boundary condition needs to be added. We
note that the Navier-Stokes equations also have problems.

Example1 : Poisselle ow ( Paradox 1 ).

x

r

0
c = radius of pipe

Figure 1: In�nitely long pipe, symmetric with respect to its axis.

This ow has solution for all R � Reynolds number. Note that if v = v(x; r; �) in
cylindrical coordinates, such that

�
vx = (c2 � r2)a
vr = v� = 0

is a solution, where a is an arbitrary constant.
On the other hand in a real model the Poisselle ow has the following behavior:
There exists R0 such that

1. For R � R0 nice ow is observed.

2. For R � R0 there is turbulence.
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Example2 : Coriolis ow.

Theoretically solutions to the Coriolis ow exist for all Reynolds numbes R . On the other
hand in real ow solution is only observed for small R . For large R the ow is no longer
symmetric. The Coriolis ow is described by �gure 2.

Figure 2: Flow between two rotating coaxial cylinders, which is invariant with respect to rotations

along axis and translations along it.

One way in which the above paradox could be solved is to accept that the solutions to
Navier-Stokes eqautions are not necessarly unique.
In this series of lectures we will focus on solutions to Navier-Stokes equations in the whole
space Rn; n � 2 . We will address questions on existence, regularity and long time
behavior of the solutions. The plan of the course is the following :

1. Solutions to the Navier-Stokes u 2 C([0; T ];W 1;2(R3)) are regular.

2. Existence and regularity for solutions in 2 and 3 dimensions: What is known in each
case.

3. We show by Fourier methods that a solution u 2 H1 of Navier-Stokes equations
with data u0 2 L1 \H1 belongs to L1. Regularity follows easily.

4. Some regularity results : Ca�arelli-Kohn and Nirenberg, Serrin and Kato.
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5. Ca�arelli - Kohn and Nirenberg :Cconstruction of weak solution.

6. Decay of solution in several Sobolev norms.

a. L2 decay ( Leray' s conjecture ).

b. Hm decay.

c. Lp decay.

d. Decay of time derivatives in above norms.

e. Moment decay.

f. Pointwise decay.

7. Self-similar solutions. Leray' s conjecture. Non existence results. Cannone' s solution
in Besov spaces.

The following notation will be used

Lp =
n
f : (

Z
Rn

j f jp dx)
1=p

<1
o

Hk = W k;2 =
n
f : Dsf 2 L2; s � k

o

Dkf =
X
j�j=k

@�f

@�1x1 � � � @�nxn ; � = (�1; � � � ; �n); � > 0; j � j=
nX
i=1

�i

In particular

H0 = L2

@i =
@

@xi
= Di = ri

2 First Estimates.

We recall �rst that a function u 2 L1((0; T ); L2)\L2((0; T ); V ) with @u
@t
2 L4=3((0; T ); V �)

is a weak solution to Navier-Stokes if

<
@u

@t
; ' >

V �;V
+

Z
R3

uk(t)
@u

@xk
(t)' dx+ �(ru(t);r') = 0 (1)

for all ' 2 D(R3) , satisfying div ' = 0 a.e. (0; T ) .
Here

V =
n
u : u 2 W 1;2; div u = 0

o
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V � =
n
F : F : V ! R are bounded linear functionals

o
Note if u 2 C[t1; t2];W 1;2(R3) for t2 < T , @u

@t
2 L2((t1; T ); V �) and hence (1) is valid

for all ' 2 V and we can use u as a test function in (1).

We �rst show that:

Lemma 2.1 Assume u is a solution to Navier-Stokes and

u 2 C([t1; t2];W 1;2) (2)

Then

u 2 L2([0; T ];W 1;2) ;
@u

@t
2 L2([0; T ]; L2) ; rp 2 L2([0; T ]; L2) (3)

Proof :

Let I = (0; T ) . Denote ( for z(t) 2 W 1;2(R3) )

�h
rz(t) �

z(t; x+ her)� z(t; x)

h
; r = 1; 2; 3; (4)

where er are the unit vectors (1; 0; 0); (0; 1; 0); (0; 0; 1) . From the weak formulation (1)
we get

<
@

@t
�h

ru(t); ' >
V �;V

+ �(�h
rru(t);r')+

+
1

h

Z
R3

�
(uk

@ui
@xk

)(t; x+ her)� (uk
@ui
@xk

)(t; x)
�
'i(x) dx = 0 (5)

Taking �h
ru(t) in (5) instead of ' , we obtain ( for simplicity we write �h

ru instead of
�h

ru(t) )

1

2

d

dt
k�h

ruk22 + �k�h
rruk22 = �

Z
R3

�h
ruk

@ui(t; x+ her)

@xk
�h

rui dx � Y;

where we used the fact thatZ
R3

uk
@(�h

rui)

@xk
�h

rui dx =
1

2

Z
R3

uk
@k�h

ruik2
@xk

dx = 0;

which can be checked after integration by parts since u satis�es (4) and C(I;D(R3)) is
dense in C(I;W 1;2(R3)) .
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Further, using the interpolation inequality kzk4 � kzk1=42 kzk3=46 , the continuous embedding
of W 1;2(R3) into L6(R3) , and the Young inequality, we obtain

jY j � k�h
ruk24kruk2 � k�h

ruk1=22 kruk2k�h
ruk3=26 �

� kr�h
ruk3=22 k�h

ruk1=22 kruk2 � �
2 k�h

rruk22 + ckruk42k�h
ruk22 :

Hence

d

dt
k�h

ruk22 + �k�h
rruk22 � ckruk42k�h

ruk22 :

Since kruk42 2 L1(I) due to the hypothesis, we obtain by the Gronwall inequality

u 2 L2(I;L2(R3)) : (6)

Analogously, applying the di�erence quotient method with respect to t , we get from (1)

(formally by testing by @u
@t

)

@u

@t
2 L2(I;L2(R3)) : (7)

Hence, using Navier-Stokes, (6), and (7) we have

rp 2 L2(I;L2(R3)) : (8)

Hiking up the regularity of the solution can be done formally. We show later on that
weak solutions to Navier-Stokes can be constructed as limits of linearization. That is let
u = uk; v = uk+1 and consider

vt + (u � r)v + pk+1 = ��v

div v = 0 :

Then if

kukkHm � C(m;data; T ) = C0

and u is the weak L2-limit of uk , then

kukHm � C0

Here is why if

kukkHm � C0

then there exists a subsequence of Dmuk such that
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Dmuk;j * y 2 L2 8 ' 2 C1
0 (convergence is weak in L2)

and thus ' 2 L2 :

< Dmuk;j; ' >�!< y;' >; < Dmuk;j; ' >�!< uk;j;D
m' >= weak m-derivative of u

Moreover, letting ' = y it follows that j < Dmuk;j; y > j � kDmuk;jk2kyk2 � C0kyk2 .
Taking the limits it follows that kyk22 � C0kyk2 and thus kyk2 � C0 . Hence the result
follows.

Moreover, notice that since Hs ,! Ck where s > k + 1=2 , i.e. in our case if we want
C2 we only need s > 1 + 1=2 , s = 4 su�ces.

Let u0 2 Hk; div u = 0 .

Lemma 2.2 Let u 2 C((0; T );W 1;2) be a solution to Navier-Stokes. Then u 2 W k;2 .

Proof :

The proof follows by �rst obtaining the result for approximating solutions and then passing
to the limit.

3 Higher Order Estimates, via Fourier Transform

Estimate of higher norms can be obtained easier by using the Fourier transform. For this
we �rst show the following auxiliary estimate.

Lemma 3.1 Let u be a solution to Navier -Stokes such that u 2 C([0;1);H1) . Then
if ûo 2 L1 ) û(t) 2 L1 for t � 0 .

Proof :
Remark if u0 2 H1 , then it is known that for t large enough u 2 C([T0;1);H1) so the
result is valid for t > T0 .
Step 1: Take the Fourier transform of the equation

d

dt
bu(�; t) +\u � ru+ crp = �j�j2bu:

Thus:

bu(�; t) = e�j�j
2t bu0(�) � Z t

0

e�j�j
2(t�s)(\u � ru� crp) (9)
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Note that taking the divergence of the Navier-Stokes equations yields

�p = �
X

@i@juiuj:

Thus the Fourier transform yields

�j�j2bp = �X �i�jduiuj
and thus

jdrkpj = j�kbpj � P �i�j�kduiuj
j�j2 � cju � ruj

Thus from (9) by integration and last inequality it follows thatZ
R3

jbujd� � Z
R3

je�j�j2t bu0j+ c

Z
R3

Z t

0

e�j�j
2tj\u � ruj ds

Applying H�older inequality to the integrals on the right hand side

kbukL1 � ku0k1 + c

Z t

0

�Z
R3

e�2j�j
2(t�s)

�1=2
k\u � ruk2 ds

Note that we changed the order of integration. By Young's inequality and properties of
the Fourier transform

k\u � ruk2 = kbu � cruk2 � kbukL1 krukL2
Thus

kbukL1 � k bu0kL1 + c

Z t

0

1

(t� s)3=4
kbuk1 kruk2 ds (10)

Here we used �Z
R3

e�2j�j
2(t�s) ds

�1=2
� c

(t� s)3=4
:

By (9), (10) and standard �xed point arguments it follows that kbukL1 is bounded at least
for small t . By an extension to Gronwall inequality we have

Lemma 3.2 Let �(t) satisfy �(t) � 0 and

�(t) � An +Bn

Z t

o

1

(t� s)n=4
�(s) ds t 2 [0; T0]

where n = 2 or 3 . Then �(t) � 2Anexp �
(1�n=4)T0 and �1�n=4Bn =

1
2(1� n=4) .
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For a proof see Estimates for the pressure and the Fourier Transform for solutions and
derivatives to the Navier-Stokes equations [S1].

In more general fashion we can get the

Lemma 3.3 If 2 � n � 5 and D2u 2 C0([T0 +
3�
4 ;1) L2(R2)) , then bu(t) 2 L1 for

t > T0 +
3�
4 .

Proof :

Let tm = T0 + "(1 � 2�m) . We may represent the solution with the help of the Fourier
transformation by

bui(t+ tm) = (�ij � �i�j j�j�2)
�
e�tj�j

2 buj(tm)� Z t

0

e�(t�s)j�j
2
i�kdujuk(s+ tm) ds

�
: (11)

As

k(1 + j�j2)(dujuk)k2 = k(I +�)ujukk2 � C(kuk2 + kr2uk2) kuk1 � C"(t) for t � t2

we get

kbu(t+ t2)k1 � Ct�n=2 + c

Z t

0

�Z 1

0

e�2(t�s)r
2
rn+1

(1 + r2)
2 dr

�
ds

� Ct�n=2 + c

Z t

0

(t� s)�(n�2)=4 ds <1

for t > 0 due to n � 5 .

From where we get

Lemma 3.4 If 2 � n � 5 , under the hypothesis of the last lemma D�u;D�ut 2 L2(R2)
for all multi-indices � , provided t > T0 .

Proof :

The plan is to estimate (by induction) k�mbu k2 = kDmuk2 .
First note j�jqj(dujuk)(�)j � 2cq(j�jqjbu(�)j � jbu(�)j) due to j�jq � (j� � �jq + j�jq) . Hence
the estimate for convolutions implies

k j�jqdujuk k2 � 2cqkbuk1 k j�jqbu k2
11



Assuming by induction that k j�jm�1=2jbu(t+ tm)k2 � C(s;m� 1=2) <1 for s � tm , we
may multiply (11) by j�jm to get the bound

k j�jmbu(s)k2 � 2cm t�1=2 + cm

Z t

0

(t� s)�3=4 ds � C(t;m) <1

for t > 0 .

Thus k j�jmbu(t+ tm)k2 is �nite for all m and t > 0 . The same reasoning applies after
di�erentiating (11) with respect to t , which proves the claim.

From the above results we see that if u 2 C([0;1);W 1;2) we have a simple proof of
regularity ( ie. u(x; t) 2 W k;2 ) if
u 2 C([0;1[;W 1;2), ûo 2 L1 and uo 2 H1(Rn); n � 5

In the next section we will discuss under which conditions the solution will be bounded in
H1 =W 1;2 and L1 (Note kuk1 � kbukL1 ).
4 Regularity.

It is well known that solutions of the Navier-Stokes equations are regular for a short period
of time if we start with su�ciently smooth data. The time period for n � 3 will depend
on the norms of the data. For n = 2 there is global regularity.

Based on the results of the last section we want to show that u 2 C([0; T );H1) , for some
T = T (data) for n dimensional solutions n � 3 , and T =1 if n = 2 . More precisely
the plan now is to show

1. Regularity for all time if n = 2 .

2. Regularity for n = 3 for t < T0 where

Z
R3

ju0j2
Z t

0

Z
R3

jruj2 < 1 if t < T0 .

For completeness we recall a result of Leray [L]

De�nition 4.1 u is a regular solution in the sense of Leray in (0; T ) if u; ut; uxi; uxixj
are continuous with respect to (x1; x2; x3; t) and ku(t)kL2; krukL2 are bounded by
continuous functions of t .

Theorem 4.1 (Leray)
If ui(x; t) is a regular solution to the Navier-Stokes equations for 0 < t < T , then all
its partial derivatives exist and are uniformly bounded functions in (0; T ) .

12



Proof :

By induction.

Remark 4.1 (Main remark)
Solution can be expressed as

u(x; t) = K � uo � @

@xi

Z t

t0

Z
Rn

Tij(x� y; t� s) ui uj dy ds (12)

where K(x; t) = 1
(4�t)3=2

exp
��jxj2

4s

�
is the heat kernel and T is a sum of the heat

kernel and the Riesz operators (these will be de�ned later).

The proof consists in obtaining from (12) a representation of the derivatives. Using bounds
of the heat kernel and Riesz transform the L1 and L2 bounds of derivatives will follow.

Theorem 4.2 Let u0 2 H1(R3) div u = 0 . Let u(x; t) be a solution to the Navier-Stokes
equations with data u0 . Then

1. If n = 2; u(x; t) 2 H1 for all t > 0 .

2. If n = 3; u(x; t) 2 H1 for t < T0; T0 = T0(ju0jL1; jru0jL1) .
Proof :

We use Prodi's inequality

d

dt

Z
Rn

jruj2 dx �
�Z

Rn

jruj2 dx
�n

To obtain this result one can use energy estimates. These results of ( 2.1) give essentially

the result for n = 3 . With Prodi's inequality in hand let ' =

Z
Rn

jruj2 dx . Thus for

n = 2 we obtain for d
dt
' � '2 . Thus

d'
' � ' dt which yields after integration

ln '(t)� ln '0 �
Z t

0

' dt =

Z t

0

Z
R2

jruj2 dx ds � C0:

Thus Z
R2

jruj2 �
Z
R2

jru0j2 expC0 (13)
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When we work in dimensions hugher than 2 we work with Leray-Hopf solutions i.e. solu-
tions which satisfy the energy inequalityZ

Rn

juj2 +
Z t

0

Z
Rn

jruj2 �
Z
Rn

ju0j2 (14)

Here n � 2. Such solutions can be found by the constructions of [CKN] or Faedo-Galerkin
methods [T].

Remark 4.2 The computations for bounds of the H1 norm in 2 dimensions will give

regularity in 3 dimensionsprovided that

Z t

0

�Z
R3

jruj2
�2

ds < 1 . This was already

remarked in Leray 1934 paper [L].

The above derivation applied to 3 dimensions will yield only local regularity. In this case
we have

d

dt
' � '3 (15)

Thus we have

1

'2d' � ' dt

Thus

1

'0
� 1

'
�
Z t

0

' ds =

Z t

0

Z
R3

jruj2 dx ds

'(t) �
� 1

'0
�
Z t

o

Z
R3

jruj2
��1

=
'0

1�
Z t

o

Z
R3

jruj2dxdt
Z
R3

jru0j2
dx:

Thus we have that

Z
R3

jruj2dx is bounded provided that

Z
R3

jru0j2dx
Z t

0

Z
R3

jruj2 dx ds <

1 , i.e. provided t < T0 where

Z
R3

jru0j2dx
Z T0

0

Z
R3

jruj2 dx ds = 1 .

Corollary 4.1 Suppose u0 is such that

Z
R3

ju0j2dx
Z
R3

jru0j2dx < 1 . Then u 2
C([0;1);H1) .
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Proof :

Follows by last lemma noting thatZ t

0

Z
R3

jru0j2 dx ds �
Z
R3

ju0j2dx

from the energy estimate (14).

5 Serrin's Result.

In this section we just recall some regularity results due to Serrin and Kato.
We �rst recall the de�nition of weak solutions to the Navier-Stkes eqaution

De�nition 5.1 u is a weak solution if for all � 2 C1
0 (Rn � [0; t]) , div � = 0Z

Rn

(u; �t) ds+

Z
Rn

(u;��) ds+

Z
Rn

(u; u � r�) ds = 0

Next we describe Serrin's results [Se]

Theorem 5.1 (Serrin)
If u is a weak solution to the Navier-Stokes equations in an open region (space-time),

with u 2 L2;1 , ! = curl u 2 Ls;s0 where n
s +

2
s0
< 1 , then u 2 C1 and all derivatives

are bounded in compact regions.

Proof :
Here

Lp;q(Rn) =
n
u :
�Z t

0

�Z
Rn

jujp dx
�q=p

dt
�1=q

<1
o

For a proof see [Se]

The above theorem was extended by Takahashi to n
s + 2

s0
= 1 .

In Serrin theorem it is essential that the data in H1 . Otherwise it is possibel to construct
a solution which is not in H1 .

Serrin's " Non H1 Example"

1. Let a(t) be an integrable function.

2. Let  be harmonic, i.e. � = 0 .
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3. De�ne u = (u1; u2; u3) by uj(x; t) = a(t)@j .

Then u does not belong to H1 and is a weak solution to Navier-Stokes. To see that we
compute

I =

Z t

0

X
j

Z
Rn

a(t) @j �j
t =

Z t

0

XZ
Rn

a(t)  div �t = 0

II =

Z t

0

Z
Rn

a(t)@j 
X
i

@ii�j =

Z t

0

a(t)

Z
Rn

@j� �j = 0

III =

Z t

0

Z
Rn

a(t)@j 
X
i

a(t) @i @i�j =

�
Z t

0

a(t)2
Z
Rn

X
i

@i@j @i �j �
Z t

0

a(t)2
Z
Rn

@j 
X
i

@ii �j =

Z t

0

a(t)2
Z
Rn

X
i

@j

h@i 
2

i2
�j =

Z t

0

a(t)2
Z
Rn

X
i

h@i 
2

i2
@j�j = 0

Since we sum over j , we get
P
@j�j = div � = 0 . Summing

I + II + III = 0

yields that a(t) @j is a weak solution. Note that this solution can actually be in C1

solution.

We now recall Kato's result. We state here Cannone's [C] version Kato's famous result.

Theorem 5.2 Let q be �xed, 3 < q � 6 and jalpha = 1 � 3
q
. There exists an absolute

constant � > 0 such that for all initial data vO 2 L3(R3)with kvOk3 < � and r � vo = 0
then there exist an unique global "mild" solution ( ie solution to corresponding integral
equation) v(x.t) of the Navier-Stokes equations such that

v(x; t) 2 C([0;1);L3(R3) (16)

t�=2v(x; t) 2 C([0;1);Lq(R3) (17)

limt!0t
�=2kv(x; t)kq = 0 (18)

Proof: See Kato [K] , [C].
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6 Singular Set : Hausdor� and Parabolic Hausdor� Measures

As we have seen in previous sections it is still an open question if solutions to the Navier-
Stokes equations in more than two spatial dimensions are regular. For this reason the
question arose on how to estimate the measure of the possible singular set [Sc], [CKN].

De�nition 6.1 The singular set S is de�ned as

S =
n
(x; t) : u is a solution to Navier-Stokes; u =2 L1loc in any neighbourhood of (x; t)

o
De�nition 6.2 The regular points for Navier-Stokes equations are the elements of Sc .

The measures in which the singular set S was estimated were Hausdor� measures or
parabolic measures [CKN].

In the next few pages we present a short introduction to Hausdor� measures. This part
of the notes is a summary of results presented in [M], [F]. We recall �rst some useful
de�nitions.

De�nition 6.3 (diameter of a set)
For all S � Rn we de�ne the diameter of S as

diam S = supfjx� yj : x; y 2 Sg

De�nition 6.4 Measure or outer measure in Rn :

i) nonnegative function � : P(Rn) �! R+ , where P(Rn) = fA : A subset of Rng ,
and values of R+ include in�nity.

ii) � is countably sub-additive, i.e.

�(A) �
X
i

�(Ai) for A =
[
i

Ai:

De�nition 6.5 Measurable sets:

M = fA : A � Rn; �(A \ E) + �(Ac \ E) = �(E); 8 E � Rng

De�nition 6.6 �-algebra:
Family of sets closed under complementation, countable unions and intersections.

De�nition 6.7 Borel set:
The smallest �-algebra containing all open sets.
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De�nition 6.8 Borel regular measure:
If all Borel sets are measurable and every subset of Rn is contained in a Borel set of the
same measure.

Remark 6.1 If A =
S

iAi , Ai \Aj = ; , i 6= j , then �(A) =
P

i �(Ai) .

Notation: �m the Lebesgue's measure of the m-dimensional closed unit ball.

De�nition 6.9 Lebesgue's measure:
Unique Borel regular translation invariant measure in Rn , such that �([0; 1]n) = 1 .

De�nition 6.10

Hm
� (A) = inf

A�
S
Sj

diam (Sj)��

X
�m

hdiam (Sj)

2

im
De�nition 6.11 m-dimensional Hausdor� measure:

Hm(A) = lim
�!0

Hm
�

De�nition 6.12 k-dimensional parabolic measure Pk :
De�ne

Pk(X) = lim
�!0+

Pk
� (X)

where

Pk
� (X) = inf

nX
� ki : X �

[
Q�i; �i � �

o
Q�i = f(y; � ) : jx� yj � �i; jt� � j � �i

2g
Example 1: (see [M])

Let I = [0; 1] � R1 . Show that H1(I) = 1 .

Covering by n intervals of length 1=n , show that H1(I) � 1 . Suppose H1(I) < 1 .
Then there is a covering fSjg of I withX

diam Sj < 1:

By slightly increasing each diam Sj if necessary, we may assume that the Sj are open
intervals (aj; bj) . Since I is compact, we may assume that none contains another.
Finally we may assume that a1 < a2 < � � � < an and hence bj > aj+1 . Now

nX
j=1

diam Sj =
nX

j=1

(bj � aj) �
n�1X
j=1

(aj+1 � aj) + (bn � an) = bn � a1 > 1;

the desired contradiction.
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De�nition 6.13 Hausdor� dimension:
Let A be a nonempty set.

dimH(A) = inffm � 0 : Hm(A) <1g = inffm � 0 : Hm(A) = 0g =
= supfm � 0 : Hm(A) > 0g = supfm � 0 : Hm(A) =1g:

The equivalence of the de�nitions follows by
Example 2: (see [M])

Let A 6= ; , A � Rn , 0 � m � k , Hm(A) <1 . Then Hk(A) = 0 .

For each � > 0 , there is a cover fSj(�)g of A with diam Sj(�) � � andX
�m

�diam Sj(�)

2

�m
� Hm(A) <1

Consequently,

lim
X

�k

�diam Sj(�)

2

�k
� �k
�m
Hm(A) lim�k�m = 0

Therefore Hk(A) = 0 .

From here it follows that for a �xed set A , there exists a nonnegative number d such
that

Hm(A) =

� 1 if 0 � m < d
0 if d < m <1

All four de�nitions of the Hausdor� measure of A yield d . Incidentally, Hd(A) could
be anything : 0 , 1 , or any positive real number, depending on what A is.

We also note that one can show

Lemma 6.1 Hn = Ln on Rn .

Proof :
See [M].

Hausdor� Measure of Singular Set.

Theorem 6.1 Sche�er [Sc]
Let u be a weak solution to the Navier-Stokes in 
�R+ , 
 � R3 equations with zero
external force. Let S be its singular set. Then

H3=2(S) � 1
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H1(S \ 
 � ftg) �1 uniformly in t:

We now proceed to recall the estimate on parabolic Hausdor� measures due to Ca�arelli
Kohn and Nirenberg. For this we need some auxiliary de�nitions.

De�nition 6.14 Suitable Weak Solution:
(u; p) is called a suitable weak solution of Navier-Stokes equations on an open set D �
R3 �R+ with force f if

1. u , p , f are measurable on D and f 2 Lq(D) , q > 5=2 , r � f = 0 .

2. p 2 L5=4(D) .

3. For some E0 , E1

i)

Z
Dt

ju(x; t)j2 dx � E0 , Dt = D \ [R3 � ftg] .

ii)

Z Z
D

jruj2 dx � E1 .

4. Generalized energy inequality (GEI):
For all � 2 C1

0 (D) , � � 0

2

Z Z
D

jruj2 � dx ds �
Z Z

D

juj2 (�t +��) dx ds+Z Z
D

(juj2 + 2p) u � r� + 2(u � f)� dx ds

Note GEI is obtained formally by multiplying Navier-Stokes equations by u � � and
integrating over D . We remark that it is easy to show if u 2 L2(R3) \ H1(R3) ,
u 2 L10=3(D) and hence p 2 L5=3(D) ([CKN]). This follows by Sobolev inequalityZ

Br

jujq dx � C(

Z
Br

jruj2 dx)a (
Z
Br

juj2 dx)q=2�a + C

r2a
(

Z
Br

juj2 dx)q=2

where C is a constant independent of r , Br the ball of radius r , 2 � q � 6 ,
a = 3=4(q�2) . If u has mean zero or Br = R3 , then the second term in right hand side
can be omitted. In our case let q = 10=3 , a = 1 and integrate in time the last inequalityZ Z

D

juj10=3 dx ds � C E
2=3
0 E1:

Now recall (taking divergence of the Navier-Stokes equations)
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�
�p = �P @i@juiuj

� � rp = P
�i �ui on @
� (0; t)

If 
 � R3 then

P =
X

RiRj(uiuj)

where Ri are Riezs operators, i.e.

De�nition 6.15 Riesz Operator:

Ri
bf (�) = �i

j�j
bf

These operators are Calderon Zigmund operators. See [S]. Hence we have they are bounded
in LqZ
Rn

Z
D

jpjq dxdt =
XZ Z

D

jRiRj(uiuj)jqdxdt �
X

C

Z Z
juiujjqdxdt � C

Z Z
D

juj2qdxdt

Thus for q > 1 , in particular q = 5=3Z Z
D

jpj5=3dxdt � C

Z Z
D

juj10=3dxdt � C(E0; E1)

Now we state the C.K.N. result on parabolic Hausdor� measure for singular set for suitable
weak solutions to the Navier-Stokes equations.

Theorem 6.2 [CKN]
For any suitable weak solution to the Navier-Stokes equations on open space time set,

P1(S) = 0:

7 Construction of a Weak Solution.

The construction we use was presented in [CKN]. We include this construction for com-
pletness. There are several such constructions, see for example [SWW] and [L].
We use is the following notation :

H1
0 (
) closure of C1

0 (R3;
) in
�Z

R3

jruj2
�1=2

;

H�1(
) dual of H1
0 (
) ;

V = C1
0 (R3;
) \ fu : div u = 0g ;

V closure of V in H1
0 (
) ;
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H closure of � in L2(
) ;

V
0

dual of V ;

D = 
� (0; T ) ;

E0(u) = ess sup0<t<T

Z
juj2 ;

E1(u) =

Z T

0

Z



jruj2 .

We will work in general with 
 = R3 . The conditions on f and uo are as follows

(F.1) f 2 L2(0; T ;H�1(R3)) r � f = 0:

u0 2 H1 \W 2=5
5=4 (
):

These conditions imply that

Z
R3

(u � f) is de�ned if u 2 H1
0 (R

3) .

For future use we also recall the de�nitions

W s
p = ff 2 S0 : kfksp <1g

where
kfksp = kIsfkp

Isf = F�1[(1 + j � j2)5=2F(f)]
F(Isf) = (1 + j�j2)5=2 bf

Hence if f 2 W s
p , then kF�1[(1 + j�j2)5=2 bf ]kp <1 . The main theorem is then

Theorem 7.1 (See [CKN])
For 
 = R3 , f and u0 satisfy (F:1) and (u0; 1), respectively. Then there exists a weak
solution (u; p) to the Navier-Stokes equations on D with force f satisfying

u 2 L2(0; T ;V ) \ L1(0; T ;H); (19)

u(t) �! u0 weakly in H as t �! 0; (20)

p 2 L5=3(D) in case 
 = R3;
rp 2 L5=4(D) in case 
 is bounded,

(21)

if � 2 C1(D) , � � 0 , and � = 0 near @
� (0; T ) , then for 0 < t < T ,Z

�ftg

juj2� + 2

Z t

0

Z



jruj2� �
Z



ju0j2�(x; 0) +
Z t

0

Z



juj2(�t +��)Z t

0

Z



(juj2 + 2p)u � r� + 2

Z t

0

Z



(f � u)�:
(22)
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The method of construction will be based on retarded molli�cation. That is
We �nd a solution of

ut +  �(u) � ru��u+rp = fon D (23)

(here u = uN , p = pN , N > 0 , � = T=N ). Here  �(u) denotes the retarded
molli�cation, i.e. a smooth function whose values at t depend only on values of u at
times t� � . One will solve on strips R3 � (m�; (m+ 1)�) , 0 � m � N � 1 . One gets
estimates on the respective uN which are independent of m . This allows us to pass to
the limit. Since  �(u) �! u , it can be shown that u satis�es the Navier-Stokes equations.

Before sketching the proof we need some auxiliary lemmas (see [CKN]).

Lemma 7.1 Suppose f 2 L2(0; T ;V 0) , u 2 L2(0; T ;V ) , p is a distribution, and

ut ��u+rp = f (24)

in the sense of distributions on D . Then

ut 2 L2(0; T ;V 0) (25)

d

dt

Z



juj2 = 2

Z



(ut; u) (26)

in the sense of distributions on (0; T ) , and

u 2 C([0; T ];H) (27)

after modi�cation on a set of measure zero. Solutions of (24) are unique in the space
L2(0; T ;V ) for given data u0 2 H .

Assertion (25) follows by (24) and the hypothesis on u and f . Part (26), (27) follows
by obtaining (26), (27) for smooth approximations and passing to the limit.

The plan now is to construct smooth solutions for the linearizations. For this a Faedo
Galerkin method is used. Following [CKN]

Lemma 7.2 Suppose f 2 L2(0; T ;V 0) , u0 2 H , and w 2 C1(D;R3) with r�w = 0 .
Then there exists a unique function u and a distribution p such that

u 2 C([0; T ];H) \ L2(0; T ;V ); (28)

ut + w � ru��u+rp = f (29)

in the sense of distributions on D , and

u(0) = u0: (30)
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Proof :
We assert �rst the existence of a function u satisfying

u 2 L2(0; T ;V ) \ L1(0; T ;H); (31)

for each v 2 V
d

dt

Z



(u; v) +

Z



(w � ru; v) +
Z



(ru;rv)�
Z



(f; v) = 0 (32)

in the sense of distributions on (0; T ) , and u(0) = u0 . It makes sense to impose the
initial condition, because (31) and r � w = 0 imply w � ru 2 L2(0; T ;V 0) ; whence by
Lemma 1.1, Chapter III of [35], ut 2 L2(0; T ;V 0) .

Existence follows as stated above by a Faedo-Galerkin method. We follow for this part
Temam's book [T]. That is we had for a sequence fumg satisfying

um =
mX
i=1

gim(t) !i

where f!ig is a set which is linearly independent and generates V . Since V is separable
such a sequence exists. Now de�ne

(u; v) =

Z
R3

u v dx

((u; v)) =

Z
R3

ru rv dx:

Then recalling that V was the closure of C1
0 (R3) divergence free functions in H1

0 (
) ,
it follows that multiplying the Navier-Stokes equations by u and integrating yields

(u
0

m; !j) + �((um; !j)) =< f; !j > (33)

um(0) = um0 (34)

where u0m is the orthogonal projection of u0 in H the space spanned by f!igmi=1 .
The functions gim are scalar functions de�ned on [0; T ] . Rewriting (33) yields

mX
i=1

(!i; !j) g
0

im(t) + �

mX
i=1

((!i; !j)) gim(t) =< f(t); !j > j = 1; : : : ;m

Since f!ig are independent, the matrix Wm = (!i; !j)1�i;j�m is non singular. Thus we
can invert Wm to get
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g
0

im(t) +

mX
i=1

�ij gim(t) =

mX
i=1

�ij < f(t); !j > 1 � i � m: (35)

The data condition is the same as

gim(0) = i-th component of u0m i.e. from (34) (36)

(35), (36) is an ODE system which de�nes the gim uniquely in [0; T ] .

Note that t �!< f(t); ! > are scalar, square integrable functions. Hence so are the
gim . Thus for each m

um 2 L2(0; T ;V ); u
0

m 2 L2(0; T ;V 0):

From here we can obtain appriori estimates which are independent of m . Thus one can
pass to the limit on subsequences and obtain similar estimates for the limiting functions.
See Teman [T] to show that

1) u
0

m �! um 2 L2(0; T ;V ) \ L1(0; T ;H)

2) u is a distributional solution to the Navier-Stokes equations.

The steps now in the [CKN] proof are as follows

Lemma 7.3 Let 
 , u0 , and f satisfy (u0:1) and (F:1) , and let w 2 C1(D;R3)
with r � w . Let (u; p) be the solution of (29), (29). Then, for every � 2 C1(D) with
� = 0 near @
� (0; T ) , and for every t , 0 < t � TZ


�ftg
juj2� +

Z Z
D

jru0j2� =

Z



ju0j2�(x; 0) +
Z Z

D

juj2(�t +��)+Z Z
D

(jruj2w + 2pu) � r�t + 2

Z Z
D

(u � f)�

Proof :
See [CKN].

This last lemma just insures that the solution satis�es an approximating GEI. Following
[CKN] we proceed to obtain the weak solution via the retarded molli�er. Let  (x; t) 2 C1

 � 0 and

Z 1

�1

Z
R3

 dx dt = 1; (37)

supp � f(x; t) : jxj2 < t; 1 < t < 2g: (38)

For u 2 L2(0; T ;V ) , let ~u : R3 �R! R3 be
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~u =

(
u(x; t) if (x; t) 2 D;

0 otherwise:
(39)

We set

 �(u)(x; t) = ��4
Z 1

�1

Z
R3

 
�y
�
;
�

�

�
~u(x� y; t� � ) dy d�: (40)

The values of  �(u) at time t clearly depend only on the values of u at times
� 2 (t� 2�; t� �) . With this de�nition in hand we return to the original theorem, where
we look at uN solution to

uN + ( �(u) � r) uN +rpN ��uN = f

div uN = 0:

One can show that

uN �! u� strongly in L2(D)

weakly in L2(0; T ;V )

weak star in L1(0; T ;H)

pN �! p� weakly in L5=3(D)

Since uN was bounded in L10=3(D) , by interpolation uN �! u� in Ls , 2 � s < 10=3 .
Moreover, by de�nition of  �(u)

 �(uN ) �! u� strongly in Ls; 2 � s < 10=3:

From the last observations it follows easily that u� is a weak solution to the Navier-Stokes
equations. For details see [CKN].

8 Decay of Solutions. Part 1 : Non-uniformity in L
2.

The plan now is to show decay of weak solutions in several Sobolev norms and weighted
spaces : L2 , Hm , moment spaces.
The problem of decay will be considered for solutions with large data. Note that since the
solution eventually becomes smooth showing decay in Hm will mean that either we start
with small data in an approprite Sobolev space or we wait long enough so that solution
becomes small and hence smooth.
The irst question we want to address is how fast does the solution decay in L2(Rn) ,
n � 2 . This question for, n = 3: was the closing remark in Leray's 1934 pioneering paper.
It was �rst answered for small smooth data. In this case the main idea was to invert the
linear part. Kato was the �rst to give an answer on decay of solutions with small data
in Lp spaces, showing that the solutions decay at the same rate as solutions to the heat
equation, provided the data is small. Speci�cally, Kato established:
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Theorem 8.1 [K]
Let a 2 PLm . Then there is T > 0 and a unique solution u such that

t(1�m=q)=2u 2 BC([0; T );PLq) for m � q � 1;

t1�m=2q@u 2 BC([0; T );PLq) for m � q <1;

both with values zero at t = 0 except for q = m in the �rst formula, in which u(0) = a .
Moreover, u has the additional property

u 2 Lr(0; T1;PL
q) with 1=r = (1 �m=q)=2; m < q < m2(m� 2);

with some 0 < T1 � T .

Theorem 8.2 There is � > 0 such that if kakm � � , then the solution u in Theorem
8:1 is global, i,e, we may take T = T1 =1 . In particular, ku(t)kq decays like t�(1�m=q)=2

as t �!1 , including q =1 , and k@u(t)kq decays like t�(1�m=2q) , including q = m .

Theorem 8.3 In Theorem 8:2, we have

T�1
Z T

0

ku(t)km dt �! 0 as T �!1:

Proof :
See [K].

Remark 8.1 Here PLm = PLm(Rm;Rm) , and PLp is the subspace of Lp(Rm;Rm)
with divergence zero.

The decay of solutions with large data in L2 without rate in L2 can be found in Masuda's
paper [MAS]. The questions we will address here are:

1. Optimal algebraic decay of solutions to Navier-Stokes equations if data is large and
belongs to L2 \X . X will be speci�ed below.

2. Why solutions to the Navier-Stokes equations with data only in L2 can only be
expected to decay only to zero without any rate.

Other questions are related to decay in presence of external forces. We note that if f(x; t)
is such that kf(�; t)kX decays very fast (where X = L2 or X = Hm ), then the solution
decay rate will not change.
The problem is if f decays slowly. At this point there are still open questions, i.e.

1. If f decays very slowly, will the decay of the solution be governed by the decay of
f ?
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2. If f = f(x) is a function of x alone, what can be said about the decay? The
expectation is that

ku� uSkX �! 0

where uS is the solution of the stationary equation.

3. If f = f(t) , what happens with the solution as t �!1 ?

We start now by studying the decay of solutions when u0 2 L2 \ X , where X will be
speci�ed below.

We note �rst that even at the heat equation level solutions with data only in L2 cannot
decay at a uniform algebraic rate. Thus we cannot expect a uniform rate for the solutions
to the Navier-Stokes equations with data in L2 alone.

Speci�cally for each sphere of radius � in L2 there is a point on the sphere so that the
corresponding solution decays arbitrarily slowly. In other words for each sphere of radius
� and each time T , there exists data u0 , with ku0kL2 = � such that

ku(T )kL2
ku0kL2 � 1� �:

Proposition 8.1 There exists no functions G(t; �) with the following two properties.
If u is a solution to heat equation or to Navier-Stokes equations with data in L2(Rn) ,
n = 2 , or 3 , then

(i) ju(�; t)jL2 � G(t; ku0kL2)
(ii) limt!1G(t; �) = 0 for all � � 0 .

Proof :
Heuristically follows from the conservation law of kinetic energy

d

dt

Z
Rn

juj2 dx = �
Z
Rn

jruj2 dx

which can be interpreted by saying that the closer the solution is to a constant the smaller
the gradient will be. Hence the smaller the rate of decay.

The proof of the above theorem for solutions to the heat equation is as follows:
Let u�0 = �n=2 u(�x; �2t) . Then

ku�0k2L2 = �n
Z
ju(�x; �2t)j2 dx =

Z
u(y; 0) dy = ku0k2L2
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Let u�(x; t) = �n=2 u(�x; �2t) , the solution to the heat equation with data u�0 . Note
that by Plancherel

juj2L2 = �n
Z
Rn

ju(�x; �2t)j2 dx =

Z
Rn

ju(y; �2t)j2 dy =Z
Rn

jbu(�; �2t)j2 d� = Z
Rn

e�2j�j
2�2tjbu0(�)j2 d�

Since by Lebesgue's dominated convergence theorem

lim
�!0

Z
Rn

e�2j�j
2�2tjbu0(�)j2 d� = Z

Rn

jbu0(�)j2 d�
we have

lim
�!0

ju�(�; t)j2L2
ju(�; 0)j2

L2
= 1

and thus (ii) cannot hold.

To obtain a similar result for solutions to the Navier-Stokes equations we need to consider
initial data with divergence zero. Let u�0 = �n=2 u0(�x) . Then from before we know

1. ku�0k22 = ku0k22

2.
kv�k2L2
ku0k2L2

�! 1 if v is solution to heat equation with data u0 .

Hence, since u satis�es the integral equation (in Fourier space)

bu�(�; t) = e�j�j
2t bu0�(�)� Z t

o

e�j�j
2(t�s) bH�(s) ds (41)

where

j bH�(s)j1 = j
X

�i[u�j u
�
i + �jbp�j � j�j ku�k2:

Suppose by contradiction that

ku�(t)k2L2
ku�0k2L2

�! 0 as � �! 0 (42)

We are going to suppose that we are working with a smooth solution to Navier-Stokes.
This is true for all t > 0 if n = 2 . If n = 3 we either start with small data or we
restart our problem when t is su�ciently large. We note that by (41)

ku�(�; t)kL2
ku0kL2 � ke�jsj2t u�0kL2

ku0kL2 �

Z t

0

ke�j�j2(t�s) bH�kL2ds
ku0kL2 = I� � II� (43)
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Since I� �! 1 as � �! 0 (by the calculations for the solutions to the Heat equations).
Thus it su�ces to show that II� �! 0 . Noting that (let H� = H and drop the � )

bH1 =
X

�iduiuj � �jbp
�c�p = �j�j2bp = �X �i�jduiuj =)

j�jbpj � P �i�k
j�j2 �j jduiukj

Thus
j bHj j � C j�j j bu2j � C j�j kuk2L2 (44)

j bHjj � C ju � ruj � C kuk2L2 kruk2L2 (45)

If solution is smooth we have kruk2L2 � C0 . Hence

II� � C�

Z t

0

ke�j�j2(t�s)kL2 ku
�kL2

ku0kL2 ds:

Since ke�j�j2(t�s)kL2 � C(t � s)�3=4 , by Lebesgue dominated convergence theorem since
ku�kL2 � ku�0kL2 = ku0kL2 = C0 and C0(t� s)�3=4 is integrable, we can pass to the limit
inside the integral sign. Hence

lim
�!0

II� = 0;

which is a contradiction since combining (43) with the fact that lim�!0 I� � II� = 1 it
yields that

lim
�!0

ku�k
ku0k � 1:

Thus lim�!0
ku�k
ku0k > 0 and we are done.

9 Decay of Solutions. Part 2 : Uniformity in L2 (n � 3).

From section 8 it is clear that in order to obtain uniform decay of solutions in L2 that
the initial data needs to be in a better space than L2 alone.
Historically it was �rst shown that if u0 2 L2 \ L1 , then the solutions u(x; t) of Navier-

Stokes decay at a rate of (t+ 1)�n=4 (See [S1], [S2]). This rate is optimal in the sense
that the solutions to Navier-Stokes decay at the same rate as the solutions to its its linear
counterpart, i.e. solutions to the heat equation. The method we use is called Fourier
Splitting. It was �rst applied to parabolic conservation laws [S4]. It consists of obtaining
a di�erential inequality (i.e. an Ordinary Di�erential Inequality) for the L2 norms of the
Fourier transform of the solutions which combined with a time dependent splitting the of
the frequency domain will yield the decay. Speci�cally, the method can be applied under
the following circumstances.
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9.1 Fourier Splitting.

Let u satisfy the following energy inequality

d

dt

Z
Rn

juj2 dx � �C
Z
Rn

jruj2 dx+ C(t) (46)

where C(t) � C(t+ 1)�(�+1)

� 2 S(t) = f� : j�j � g(t)g then jbu(�; t)j � C0 (47)

Here g2(t) = n
C(t+ 1)

. If (46) and (47) hold, then

ku(�; t)k22 � C(t+ 1)��0

where �0 = min (�; n=2) .

Remark 9.1 If in (47) jbu(�; t)j � C j�j , then the decay is of order �0 = min (�; n=2+1) .

Remark 9.2 The function g can be replaced essentially by any function such thatZ t

g2 = ln h(t) and h(t) �! 0 at some rate. We still will get a decay rate but

not as good.

Proof of the Fourier Splitting method :

Note that from (46) u 2 L2 . Hence bu is well de�ned. By PLancherel (46) can be
rewritten as

d

dt

Z
Rn

jbuj2 d� � �C Z
Rn

j�j2 jbuj2 d� + C(t):

Let m > max (n; �+ 1) . Let

S(t) =
n
� : j�j �

� m

C(t+ 1)

�1=2o
;

then

d

dt

Z
Rn

jbuj2 d� � �C Z
S(t)

j�j2 jbuj2 d� �C

Z
S(t)c

j�j2 jbuj2 d� + C(t):

We drop the �rst term on the right hand side and bound the second one by the fact that
� 2 S(t)c yields �c j�j2 � � m

t+ 1 . Thus

d

dt

Z
Rn

jbuj2 d� � � m

t+ 1

Z
S(t)c

jbuj2 d� + C(t):
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Hence since Rn = S(t) + S(t)c

d

dt

Z
Rn

jbuj2 d� + m

t+ 1

Z
Rn

jbuj2 d� � m

t+ 1

Z
S(t)

jbuj2 d� + C(t):

Now multiplying by (t+ 1)n , using Plancherel and (47) yields

d
dt

�
(t+ 1)n

Z
Rn

juj2 dx
�

� m (t+ 1)m�1 C0 jS(t)j+ (t+ 1)m C(t)

� ~C n (t+ 1)m�1 (t+ 1)�n=2 + C(t) (t+ 1)m:
(48)

Thus integrating in time again yields

(t+ 1)m
Z
Rn

juj2 dx � C(t+ 1)�n=2+m +

Z t

o

C(t)(t+ 1)m dt

and by (47) it follows that

(t+ 1)m
Z
Rn

juj2 dx � C(t+ 1)�n=2+m + C(t+ 1)m��:

Thus Z
Rn

juj2 dx � C(t+ 1)�n=2 + C(t+ 1)��:

This concludes the proof.

To obtain the result in Remark 9:1 we only need to note that the estimate in (48) of
C0jS(t)j can be improved sinceZ

S(t)

jbuj d� � Z
S(t)

j�j2 � C(t+ 1)�n=2�1

which gives the extra degree of decay.

Remark 9.3 We note that condition (47) can be replaced byZ
S(t)

jbu(�; t)j2 d� � C(t+ 1)��0 : (49)

We are now in position to apply Fourier splitting to solutions to Navier-Stokes equations.
We de�ne the following space for the data (Note Wiegner [W] introduced this space)

Dn
� = f(u0; f) : ku0(t)k22 + kfk22(t+ 1)2 � C(t+ 1)��g

where u0(t) is the solution to the heat equation with data u0 . The proof of the decay
for solutions to the Navier-Stokes equations uses Fourier splitting with the modi�cation of
the Remark 9:3.
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Theorem 9.1 Let n � 3 . Suppose (u0; f) 2 Dn
� and f 2 L0 . Let u be a Leray-Hopf

solution (i.e. satisfying the energy inequality) of the Navier-Stokes equations. Then

ku(�; t)k2L2 � C0(t+ 1)��0 ;

where �0 = min (�; n=2) , C0 depends only on n and ku0k2 .
Proof :
The proof is formal. To make it rigorous it needs to be applied to approximating solutions
and pass to the limit. We recall that a Leray-Hopf solution is such that it satis�esZ

Rn

juj2 +
Z t

0

Z
Rn

jruj2 dx ds �
Z
Rn

ju0j2 +
Z t

o

Z
Rn

f � u:

The one that [CKN] constructed by retarded molli�cation is one such solution. We remark
�rst that Wiegner has shown that such solutions belong to L2 . See [W]. Formally we
have

d

dt

Z
Rn

juj2dx � �2
Z
Rn

jruj2dx+
�Z

Rn

jf j2dx
�1=2�Z

Rn

juj2dx
�1=2

: (50)

Let C(t) = kfk2 kuk2 � C(t+ 1)��=2�1 . From (50) we have by Plancherel

d

dt

Z
Rn

jbud� � �2Z
Rn

j�j2 jbuj2d� + C(t+ 1)��=2�1 (51)

and thus Fourier splitting yields

d

dt
[(t+ 1)m

Z
Rn

juj2] � m(t+ 1)m�1
Z
S(t)

jbuj2 + (t+ 1)m��=2�1: (52)

So we will �rst get an auxiliary decay rate of (t+ 1)�� , with � = min (m=2 � 1; �=2) .
For this we need to show that jbu(�; t)j � C for � 2 S(t) . We �rst get the auxiliary
estimate. Take the Fourier transform of Navier-Stokes

but + j�j2 = � bH = �[u rucrp (53)

Recall that in section 8 we showed

j bHj � j�j kuk22:
Thus solving (53) bu(�; t) = e�j�j

2t bu0 � Z t

0

H e�j�j
2(t�s) ds:

Hence

jbu(�; t)j � jbu0(t)j+ Z t

0

j�j e�j�j2(t�s) ds � j[u0(t)j+ C

j�j2
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Note that the reason to bound bu(�; t) for � 2 S(t) was to obtain a bound of
Z
S(t)

jbu(�; t)j2 d� .
Here we have since u0 is solution to heat equation

I =

Z
S(t)

jdu(t)j2 � 2

Z
Rn2

ju0(t)j2 + 2C

Z
S(t)

d�

j�j2 :

Since n � 3
I � C(t+ 1)�� + C(t+ 1)�n=2+1:

Thus from (52)

d

dt
[(t+ 1)m

Z
Rn

juj2] � C(t+ 1)m�1(t+ 1)�� + C(t+ 1)m�n=2+1:C(t+ 1)m��=2+1;

from where we have after integrationZ
Rn

juj2C(t+ 1)��0 � �0 = min (�=2; n=2 � 1):

Now we use this decay to improve the decay of

C(t) = jf(t)j2 ju(t)j2 � C(t+ 1)��=2�� � C(t+ 1)��:

Repeating the above argument we will obtain a decay rate of order (t + 1)��0 ; �0 =
min (n=2 � 1; �) . If � � n=2 � 1 , then we are done. If n=2 � 1 < � , we proceed as
follows. Note that n=2� 1 � 1=2 . We use the auxiliary decay of kuk22 � C(t+1)�n=2+1 .
to bound bu(�; t) when � 2 S(t) .Recall

jbu(�; t)j � jbu0 e�j�j2tj+ Z t

0

e�j�j
2(t�s) j�j ku(s)k22 ds

� jbu0 e�j�j2tj+ Z t

0

1

(t+ 1)1=2
1

(s + 1)n=2�1
ds

� jbu0(t)j+ C
(t+ 1)1=2

(t+ 1)1=2

� jbu0(t)j+ C0:

Here we used (s+ 1)�n=2+1 � (s+ 1)�1=2 . HenceZ
S(t)

jbuj � C

Z
Rn

ju0(t)j2 + C0

Z
S(t)

� C(t+ 1)�� + C(t+ 1)�n

and the decay rate follows by Remark 9:2.
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9.2 Special Cases.

Theorem 9.2 Let u0 2 L2 \ Lp; 1 � p < 2 . Let u be a Leray-Hop� solution to the
Navier-Stokes equations (for simplicity let f � 0 ). Then

ku(�; t)k22 � C(t+ 1)�n=2(2=p�1):

Proof :
We only must show

(u; 0) 2 Dn
� with � = n=2(2=p � 1):

That is we need
ku0(t)k2L2 � C(t+ 1)�n=2(2=p�1):

We used this estimate to show thatZ
S

kbu0(t)k2 d� � C(t+ 1)�n=2(2=p�1):

Hence we will show this last inequality . For this we use H�older's inequality and the Riesz
convexity theorem [S]. We recall the Riesz convexity theorem:

De�nition 9.1 T is said to be of type (p; q) is for all f 2 Lp

kTfkq � K kfkp:
The minimum of such K is called the (p; q) norm of T .

Theorem 9.3 (Riesz convexity (R.C.))
Let T be of the type (pi; qi) with norm ki , i = 1; 2 . Then T is of the type (pt; qt)

with norm kt and kt � k1�t0 kt1 where pt =
1 � t
p0 + t

q0 , qt =
1� t
p1 + t

q1 .

We apply this theorem with T = F the Fourier transform. It is well known that F is of

types (1;1) and (2; 2) . Let 1
p = 1 � �

2 + �
2 , 1

q = 1� �
2 + �

2 some 0 � � � 1 . Thus

1
p +

1
q = 1 . Then by R.C.

kF (w)kLq � kFk1�t(1;1) kFkt(2;2) kwkLp (54)

Let w = u0(t) solution to heat equation with data u0 . ThenZ
S(t)

jbu0(t)j2 d� � �Z
S(t)

jbu0(t)jq�1=r �Z
S(t)

jbu0(t)jp�1=s (55)

where q = r
2 . Choose s so that 1 = 1

r +
1
s = 2

q +
1
s = 2 � 2

p +
1
s . Hence 1

s = 2
p � 1 .

Thus by (54)
kFu0(t)k � C ku0(t)kLp � C0:
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Since we know that if u0 2 Lp , then u0(�; t) 2 Lp . We also have that�Z
S(t)

d�
�1=2

� C(t+ 1)�n=2(2=p�1):

Thus by (55) �Z
S(t)

jbu0(t)j2 d��1=2 � C(t+ 1)�n=2(2=p�1):

Hence by Fourier splitting and Theorem 9:1 it follows that

ku(�; t)k2L2 � C(t+ 1)�n=2(2=p�1):

In particular if u0 2 L2 \ L1

ku(�; t)k22 � C(t+ 1)�n=2:

10 Decay of Solutions. Part 3 : Uniformity in L
2 (n = 2).

We �rst indicate how to obtain an auxiliary rate of decay that will be used in order to
obtain an optimal rate of decay.

Theorem 10.1 Let (u0; f) 2 D2
�; � > 0 . Let u be a solution to the Navier-Stokes

equations with data u0 . Then

ku(�; t)k2L2 � C0 [ln (t+ e)]�2 (56)

C0 depending only on the data.

Proof :

The proof follows the same steps as Theorem 9:1 using g2(t) =
3

2 ln (t+ e)(t+ e)
. That

is using the Fourier splitting. For details of the proof see [S2].

To improve the decay of order (t+1)�1 we use Wiegner's extension to the Fourier Splitting
method. Speci�cally we restate Wiegner's theorem [W] and refer the reader to his proof
[W].

Theorem 10.2 (Wiegner)
Let n � 2 . Let u be a weak solution to Navier-Stokes in the sense of Leray-Hopf and
thus suppose that the Leray energy inequality holds. Let

(u0; f) 2 L2(R
n)n � L1(R

�; L2(R
n)n):

Then we have the following
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(a) ku(t)k2 �! 0 for t �!1 .

(b) (u0; f) 2 D(n)
� , then ku(t)k22 � C(1 + t)��0 with �0 = min (�0;

1

2
n+ 1) .

(c) Furthermore, the solution u is asymptotically equivalent with the solution of the heat
system with the same data in the sense that

ku(t)� u0(t)k22 � h�0(t) (1 + t)�d

with d =
1

2
n+1�2 max (1��0; 0) (note that d > �0 = �0 as long as �0 <

1

2
n+1 ),

and

h�0(t) =

8<: "(t) for �0 = 0; with "(t)& 0 for t �!1
C ln2(t+ e) for �0 = 1
C for �0 6= 0; 1:

For part (c) we need some additional assumption on f as stated, for example, in (??)
(d):

f 2 Ln(R
n)n with kf(s)kn � C s��; � =

1

2
(�0 + 1) +

1

4
n:

The constants depend explicitly on the data.

11 Lower Bounds.

We note that solutions to the heat equation can decay at very fast speeds depending on
the atness of the Fourier transform of the solution at the origin. Speci�cally let

R�
� = fu : jbu(�)j � � j�j � �g

Rk = fu : jbu(�)j = o(j�jk) � �! 0g:
Theorem 11.1 Let u be a solution to heat equation with data u0 2 R�

�\L2(Rn) . Then

ku(�; t)k2L2 � C(t+ 1)�n=2

with C = C(�; �) .

Proof : Z
juj20 dx =

Z
jbuj2 d� � Z jbu0 e�j�j2tj2 d� �Z

j�j��
jbu0j2 e�2j�j2t d� � �2

tn=2

Z
y��pt

e�y
2
dy � C0

(t+ 1)n=2
:
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Theorem 11.2 Let u0 2 Rk \ L2(Rn) .Then

ku(�; t)k2L2 � C(t+ 1)�k�n=2:

Proof :
Same as before by replacing bu0(�) by j�jk .

Theorem 11.3 Let u0 2 L2(Rn) and bu = 0 in N� = f� : j�j � �g .Then

ku(t)k2L2 � exp (��2 t):

Proof :

Z
Rn

juj2 dx =
Z
Rn

jbuj2 d� � Z
j�j��

jbu0j2 e�2j�j2t d� � e��
2t

Z
j�j��

jbu0j2 d� � C e��
2t:

The expectation is that for solutions to Navier-Stokes equations there is a lower bound
due to the mixing of the terms which is produced by the corrective term. Here we only
show that

Theorem 11.4 If u0 2 R�
� \ L2(Rn) , then

ku(�; t)k2L2 � C(t+ 1)�n=2; n � 3:

Proof :
Proof is formal. Let w = u(t; x)� u0(t) , where u0 is solution to the heat equation with
same data. Then

wt = 4w � (u ru+rp):
We note that

d

dt

Z
Rn

jwj2 = �
Z
Rn

jrwj2�
Z
Rn

(u� u0)u ru�
Z
Rn

w rp = �
Z
Rn

jrwj2+
Z
Rn

u u0 ru:

The other terms vanish since div u = div w = 0 (Note div u0 = 0 =) div u0(t) = 0 ).
We also notice that

kuk2L2 � ku0(t)k2L2 � kwk2L2 :
Hence it su�ces to show that

kwk2L2 � C(t+ 1)�n=2+�; � > 0:

The result will follows by Fourier Splitting.
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1) Note �rst

j
Z
Rn

u0 u(t) rujdx = j
Z
Rn

X
i

@iu0(t) ui ujdx � jru0jL1 kuk2L2:

It is well known that
jru0jL1 � C(t+ 1)�n=4�1=2:

Hence

j
Z
Rn

u0 u(t) rujdx � C(t+ 1)�n=4�1=2�n=2 � C(t+ 1)�3n=4�1=2:

2) We need an estimate forZ
S(t)

j bwj d� � Z
S(t)

�Z t

0

j�j kuk22 e�j�j
2(t�s)

�2
d�:

Hence Z
Rn

jbwj d� � 1

t+ 1

Z
S(t)

Z t

0

1

(s+ 1)n=2
ds d� � 1

t+ 1

1

(t+ 1)n=2
C0:

Thus from the usual Fourier splitting we have

d

dt
[(t+ 1)m

Z
Rn

jwj2dx] � (t+ 1)m�1[
Z
S(t)

j bwj2 d� + C(t+ 1)�3n=4�1=2] �

� C (t+ 1)m�1 C0

�
(t+ 1)�n=2�1 + C (t+ 1)�3n=4�1=2

�
Let m > max (n=2 + 1; 3n=4 + 1=2) + 1 . Hence integrating yields after dividing by
m Z

Rn

jwj2dx � C1(t+ 1)�m + C1(t+ 1)�n=2�1 + C2(t+ 1)�3n=4+1=2

since n � 3; 3n=4 � 1=2 � n=2 + 1 . HenceZ
Rn

jwj2dx � C(t+ 1)�n=2�1

and we are done.
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12 Decay of Higher Hm Norms.

In this section we will study the decay of solutions in the spaces Hm and in Hm of time
derivatives of the solution.

We �rst recall that in section 3 we have shown

1. If n = 3 , bu0 2 L1 , and the solution stays in H1 , then all the higher derivatives
are bounded.

2. If 3 � n � 5 , bu0 2 L1 , and the solution is in C[[T0;1);W 2;2] , then all higher
derivatives are bounded.

Hence here we are going to suppose that either data is su�ciently small so that our solution
is smooth or that we are starting at a su�ciently large time so that the solution is small.
The decay of the solution in Hm spaces is based on the Fourier splitting method. We
remark that for decay of exterior domain there is work of the Kozono, Ogawa, and Sohr
[KO],[KOS]. The general idea is to obtain inductively energy inequality of type (46) for
the D�u . More precisely we take D� derivatives of the equation (j�j = m) multiply
by D�u and integrate. After integration by parts and several estimates ( we sum all the
� derivatives with j�j = m ) we get an expression of the form

d

dt

Z
Rn

jDmuj2dx � �2
Z
Rn

jDm+1uj2dx+ Cm(t);

where Cm(t) will decay. The problem is that when we do our induction the �rst term
around Cm(t) will not decay fast enough to give the optimal decay. The procedure then
is to obtain auxiliary decays that well step by step allow us to improve our decay to the
optimal one ( i.e. the same decay rate as for the heat equation).

The results on decays for Hm norms for 2D where �rst presented in [S3]. Here we present
a perhaps less obvious way than in [S3] but more compact way of establishing the decay
[SW]. The main result is that each derivative will add one order of decay to the rate
in k � k22 . For this the following two Lemmas are needed for smooth solutions to the
Navier-Stokes equations.

Lemma 12.1 For m 2 N , we have the inequality

d

dt
kDmuk22 +

3

2
kDm+1uk22 � Cm(kuk21 kDmuk22 +Rm)

with

Rm =

�
0 for m = 1; 2;P

1�j�m=2 kDjuk21 kDm�juk22 for m � 3:
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Proof :
Energy methods. See [SW].

Lemma 12.2 Let m 2 N , Tm = T0 + 1� 2�m and assume

kDm�1uk22 � Cm�1 (t� Tm�1)��m�1 for t > Tm�1:

with si � �m�1 + 2 . Then

d

dt
kDmuk22 + kDm+1uk22 � c0 (t� Tm�1)�1 kDmuk22 +

mX
i=1

ci (t� Tm�1)�si ;

with �m = 1 + �m�1 and some Cm depending on Cm�1 , ci , si , �m , m , but not
on T0 .

Proof :
Fourier splitting. See [SW].

From these two lemmas follows the main result. See [SW].

Theorem 12.1 Suppose kuk22 � C0 (t+ 1)�2� , for t � 0 , with some � � 0 . Then for
m 2 N , there is some Cm = Cm(�;C0) , independent of T0 , with T0 given by (1), such
that

kDmuk22 � Cm (t+ 1)�m�2� for t � T0 + 1:

Remark 12.1 If n = 2 or if kank is small enough, we have T0 = 0 , while T0 =

c(n) kak4=(n�2)n is admissible for weak solutions, n = 3 or 4 .

Proof of Theorem 13:4 :
We want to show by induction the estimate

kDmuk22 � Cm (t� Tm)
�m�2� for t � Tm = T0 + 1 � 2�m:

If m = 1 or 2 , we know by Lemma 12:2 and ([?]), that

d

dt
kDmuk22 + kDm+1uk22 � c K (t� T0)

�1 kDmuk22:

We may apply Lemma 12:2 to get the claim for m = 1 or 2 .

For m � 3 , we have the additional term Rm to estimate. We use interpolation inequality

kDjuk1 � c kDm+1ukaj2 kuk1�aj2 with aj = (j +
n

2
)=(m+ 1):

Note that
j

m+ 1
< aj < 1 forj � m

2
and m � n� 1
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and in the case n = 5 , m = 3 , j = 1 . Then

Rm � 1

2
kDm+1uk22 + c kuk22

X
1�j�m=2

kDm�juk2=(1�aj)2

� 1

2
kDm+1uk22 + c

X
j

(t� Tm�1)sj ;

with

sj = 2� + (m+ 1)
m� j

m� j + 1� n
2

� 2� +m+ 1;

where we used the induction hypothesis (weakened to) kDkuk22 � Ck (t � Tk)�k for
k � m� 1 . Hence Lemma 12:2 may be applied again and proves the claim.

Form here the Lp norm decay follows by Gagliardo-Nirenberg's inequality.

Theorem 12.2 Under the same assumptions, there holds, for 2 � p � 1 and j 2 N0 ,

kDjukp � c (t� T0 � 1)�j=2+n=2(1=2�1=p)+�)

(especially kuk1 � c (t� T0 � 1)�(�+n=4) ).

Proof :
By interpolation (Gagliardo-Nirenberg)

kDjukp � c kDmuka2 kuk1�a2

1

p
=
j

n
+ a (

1

2
� m

n
) + (1 � a)

1

2
:

In order to derive estimates also for time derivatives of u , we have to show �rst a
generalization of Lemma 12:1.

Lemma 12.3 For t > T0 , there holds

D� dk

dtk
u 2 L2(R

n)n

for all multi-indices � and all k 2 N .

Proof :
Follows the same steps as for bounds of space derivatives. See [SW].

Theorem 12.3 Under the same assumptions as in Theorem 12:1, we get, for t > T0+2 ,

kDm dk

dtk
uk2 � c(t� T0 � 2)�(m=2)�k��:
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Proof :

By Lemma 12:3, we know that we may apply

D� dk�1

dtk�1

to the equation. After scalar multiplication by

D� dk

dtk
u

and integration by parts, the pressure drops out and we get with H�older's inequality

kD� dk

dtk
uk2 � kD� dk�1

dtk�1
(�u� u � ru)k:

Thus, letting k = 1 , we get , for t > T1 + 1 ,

kD� d

dt
uk2 � c kDj�j+2 uk2 + c

X
j�j�j=2

kDj uk1 kDj�j�j+1 uk2

� c(t� T0 � 1)�j�j=2�1�� + c
X
j

(t� T0 � 1)�(j=2+n=4+�)�((j�j�j+1)=2+�)

� c(t� T1 � 1)�(j�j=2)�1��;

where we used Theorem 12:2. Estimates for

kD� d

dt
ukp; 2 � p � 1;

now follow by interpolation. The case of general k is then a consequence of straightforward
induction.

13 Decay of Moments of Solutions: Connection with Pointwise

Decay.

In this section we discuss briey the decay of moments of the solutions. We recall that the
moments are de�ned as

Mk(u) =

Z
Rn

jxjk juj2 dx:

Studying this type of decay will lead to obtaining time and spatial point-wise decay. Specif-
ically in [AGSS] rom the decay of moments of higher derivatives, via application of a
Gagliardo-Nirenberg inequality yield point-wise decay of the solution, both in space and
time . Here we are going to concentrate on the decay of the moments. We remark �rst that

43



the main part of work is to obtain a construction of a solution for which the moments are
bounded. The decay of the moments will follow by a H�older inequality. Here we will only
give a sketch to construct solutions for which the moments are bounded for k � n . For
details we refer the reader to [S3]. At the end of the section we show how to use the bounds
of the moments with an appropriate H�older inequality to obtain the decay of the moments.

To obtain decay of the moments we proceed in several steps

1. We design a construction of weak solutions such that the Lr
� norms are bounded,

where
Lr
�(R

n) = ff : jxj� f 2 Lrg:
2. We use the Lr

� bounds to obtain the bounds of the moments.

3. The �rst bounds are time dependent.

4. We obtain time independent bounds.

To obtain time dependent bounds in Lr
� we use the following construction.

We show that the approximating solutions which satisfy the linearized equations

vt + (u � r)v +rP (u; v)��v = 0 (57)

where v = uk+1 , u = uk , are bounded in Lr
� (More precisely they will have D�v 2 Lr

� ).
The bounds will depend on time and u . That is on the approximating solution on level
k . We will show that for small data or for solutions bounded in Lr , r > n the bounds
will behave independent of k . To understand the linearization (57) we have to de�ne the
operator P (u; v) .
For this we need to recall the de�nition of the Riesz transform. Riesz transform is de�ned
such that R = (R1; : : : ; Rn)

Rj f(�) = i
�j
j�j
bf(�):

Note where it is used. For example, if we need to solve

�g = @i@jf =) j�j2bg = ��i �j bf =)

bg(�) = � �i
j�j

�j
j�j
bf =) g(�) = �RiRj(f):

We use it in
��p = �

X
@i@j(ui uj) =) p = RiRj(ui uj):

We recall that if p , � are real numbers such that 0 � � < n
n � � < q <1 , then Ri

are bounded operators in Lq
� , where

Lq
�(R

n) = ff : jxj� f 2 Lqg:
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For a proof see Stein's book.

The bound on the Riesz Transform can be used to obtain appropriate bounds for the
solutions of the linearization (57). That is let v be a solution to8><>:

vt + (u � r)v +rP (u; v)��v = 0

div v = 0

v(x; 0) = u0;

where
P (u; v) =

X
j;k

RjRk(uj; vk):

The idea is to solve �rst the integral equation

v(x; t) = s(t) u0 �
Z t

0

s (s� t) [u � rv +rP (u; v)] ds:

Local existence follows by �xed point argument and Gronwall.Speci�cally we invert the
linear part of the equation and use knonw bounds for teh Heat Operator and the Riesz
Operator in Sobolev Spaces. From here one can show

Theorem 13.1 For appropriate data and velocity u the following bound holds

kD�v(t)kLr� � C(T )

where C(T) depends on T, norms of the data and u.

Proof : The proof is quite technical. The idea again is to invert the linear part of the
corresponding weighted integral equation. The main problem is to bound the nonlinear
term. For this we use known we use weighted bounds for the Heat and Riesz Operator.
For detail of the proof see [SS]for details.

We remark that if data small enough, the existence can be extended for all time. To obtain
the same type of bounds for the solutions to the Navier-Stokes equations we let

v = ul+1 u = ul;

By the theorem above provided we are in a good data space we have the estimate for
ful+1g , for all l. A technical argument shows that passing to the limit the estimate still
holds. It turns out that lim ul is a weak solution to Navier-Stokes equations. Thus
the result holds for solutions to the Navier-Stokes eqautions. Moroever for small data the
bound holds for all time . Since the ul depend on the data we obtain a result for all time
depending on the data. Moroeverone can show that the bound will be independent of time
[SS].
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Decay of Moments :

Once we have Z
jxjk juj2 dx � k <1:

The decay follows by H�older inequality.

Theorem 13.2 Supposing that for some r > n with 2 � n � 5 if

�(u) = sup
k=1:2::;t>0

juk(t)jr <1

u0 2 Lr
� \ Lr

�=2 \ Lr0 \H1 div u0 = 0 � = n(1� 2=r)

kuk2 � C(t+ 1)�� kuk1 � C(t+ 1)�(�+n=4:

Then
Mk(u) � C(t+ 1)�2�(1�k=n) k � n:

medskip
Proof:

Mk(u) =

Z
Rn

jxjk juj2 dx � C
� Z

Rn

juj2 dx
�1=p �Z

Rn

jxjk juj2 dx
�1=p0

;

where
1

p
=
n� k

n
;

1

p0
=
k

n
:

We get
Mk(u) � C(t+ 1)�2�(1�k=n):

14 Self-similar Solutions : General Description.

In this section interest will be focused on self-similar solutions to the Navier-Stokes equa-
tions. We note �rst that solutions to the Navier-Stokes equations are such that if u(x; t) ,
p(x; t) is a solution so is

u�(x; t) = � u(�x; �2t)

p�(x; t) = �2 p(�x; �2t):

A solution is said to be auto-similar if it is invariant with respect to the above transfor-
mation: speci�cally for all � > 0 ,

u(x; t) = u�(x; t) = � u(�x; �2t) (58)

p(x; t) = p�(x; t) = �2 p(�x; �2t) (59)

We note that there are two obvious candidates. We will call these forward self-similar
solutions (f.s.s.) and backward self-similar solutions (b.s.s.).
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14.1 Forward Self-similar Solutions.

Let � = �(t) = 1=
p
t . Then 8<: u(x; t) = 1p

t
U(x=

p
t)

p(x; t) = 1p
t
P (x=

p
t):

(60)

It is easy to see that (u; p) de�ned in (60) satisfy (58)and (59). In this part we will briey
recall the construction of a strong self-similar solution with data in a Besov space as was
done by Cannone [C] This type of solutions were in the past �ve years studied by several
people V. Meyer school as for example Cannone, Planchon, Barraza.

14.2 Backwards Self-similar Solutions.

Let 8><>:
u(x; t) = 1p

2a(� � t)
U(x=

p
2a(� � t))

p(x; t) = 1p
2a(� � t)

P (x=
p
2a(� � t));

(61)

for some a > 0 , �1 < t < T . We note that for (61) to be a self-similar solution in the
sense of (58) and (59) we need t �! t�T to be a translation. This is why if the original
t varies from zero to in�nity the new t will vary from minus in�nity to T (Note we are
going backwards).

The problem of studying (23) was mentioned �rst in Leray [L], where he proposes to study
such a solution, since if U 2 W 1;2(R3) exists and is nonzero, then the corresponding u
(given by (61)) will satisfy :Z

R3

ju(x; t)j2 dx =
p
2a(T � t)

Z
R3

jU(y)j2 dy (62)

and Z
R3

jru(x; t)j2 dx =
p
2a(T � t)

Z
R3

jrU(y)j2 dy: (63)

Thus if there exists a U 2 W 1;2 , then u will satisfy that it is a solution to Navier-Stokes
such that Z

R3

ju(x; t)j2 dx <1 (64)

and

lim
t!T�

Z
R3

jru(x; t)j2 dx =1: (65)
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That is we would have constructed an L2 solution to Navier-Stokes equations where the
L2 norm of the gradient blows up in �nite time. A simple calculation shows that u
satis�es the elliptic equation(

a U + a yk
@
@k

U + Uk
@
@k

U +rP � � �U = 0

div U = 0
(66)

Here and in the future, double indices will be understood as summation, i.e. for example

yk
@

@k
U =

3X
k=1

yk
@

@k
U (67)

In particular Leray formulated the problem as follows (in [L], 1934):
If we can �nd a solution to the elliptic system (66) the (u(x; t); p(x; t)) de�ned by (61) is
a solution to Navier-Stokes which becomes irregular at t = T .

In 1995, [NRS] showed that (27) has no nonzero solution U 2 W 1;2
loc (R

3) \ L3(R3) .

In 1996, we showed [MNPS] that under slightly more restrictive conditions, i.e. U 2
W 1;2(R3) , all solutions to (66) are zero. The condition is the natural condition and the
proof is much simpler, i.e. it is purely geometric. This is the proof we present below in
these notes.

14.3 Di�erences between (f.s.s.) and (b.s.s.).

One of the �rst questions one has regarding di�erences between (f.s.s.) and (b.s.s.) is why
do we have smooth (f.s.s.) and only zero (b.s.s.). The answer is simple. For (b.s.s.) we
look for solutions in L2 . For (f.s.s.) we look for solutions in a Besov space. It is trivial
to show that for (f.s.s.) all L2(R3) solutions are zero as the following argument shows.

From (60) it follows easily that the corresponding (U;P ) satisfy(
�U � yk

@
@k

U + Uk
@
@k

U +rP � � �U = 0

div U = 0
(68)

Multiplying (29) by U and integrating in space yields

�
Z
R3

jU j2 dy �
Z
R3

yk
@

@k
U � U dy +

Z
R3

Uk
@

@k
U +

Z
R3

� jrU j2 dy = 0div U = 0 (69)

As usual the pressure and the convective terms integrate to zero and divU = 0 . Integra-
tion by parts yields

�
Z
R3

yk
@

@k
U � U dy = +

3

2

Z
R3

jU j2 dy:
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Notice that the boundary terms are supposed to be zero. Replacing the last equality in
(64) yields:

1

2

Z
R3

jU j2 dy + �
1

2

Z
R3

jrU j2 dy = 0:

Hence if there would exist an L2(R3) solution to (68) then U � 0 .

The situation is di�erent for (27). The same procedure as the one described above leads
to

�1

2
a

Z
R3

jU j2 dy + �
1

2

Z
R3

jrU j2 dy = 0;

thus leaving the possibility of a nonzero solution. We show below that this will not be the
case.

15 Forward Self-similar Solutions.

In this section we will present the background on (f.s.s.). For details of the material we
refer the reader to [C].

We �rst de�ne Besov spaces. We note that there are several equivalent de�nitions in par-
ticular the dyadic one and in some cases a continuous one [T], [P], [BL]. We give the
dyadic de�nition.

Besov Spaces:

Let �(x) 2 S(R3) (Schwartz space) invariant by rotations. Suppose that

0 � b�(�) � 1 �(�) =

�
1 j�j � 3=4
0 j�j � 3=2:

De�ne:
 (x) = 8 �(2x)� �(x)

 j(x) = 23j  (2jx) = �j+1(x)� �j(x); j 2 Z
where

�j(x) = 23j �(2jx); j 2 Z:
De�ne the operators:

Sj = �j�; j 2 Z
�j =  j�; j 2 Z:

Hence one has the (Littlewood - Paley) decomposition of the unity

I = S0 +
X
j�0

�j =
X
j2Z

�j:
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(Note the �rst decomposition is always valid, the second one is modulo polynomials. Take
for example f0 = 1 . It is clear that �jf0 = 0 ).

De�nition 15.1 (Besov spaces)
f 2 B�;q

p if the following quasi-norm is �nite

kfkB�;q
p

= kS0fkp +
nX

j�0
(2�j k�jfkp)q

o1=q
� 2 R; 0 < p; q � 1:

If q =1 , then
kfkB�;1

p
= kS0fkp + sup

j�0
2�j k�jfkp:

The homogeneous Besov norm is given by

kfk _B�;q
p

=
nX

j2Z
(2�j k�jfkp)q

o1=q
kfk _B

�;1
p

= kS0fkp + sup
j2Z

2�j k�jfkp:

We recall now one of the existence theorems established by Cannone [C].

Theorem 15.1 [Cannone]
Let q be �xed, 3 < q � 6 , � = 1 � 3=q . There exists a constant � > 0 such that if
u0 2 _B��;1

q with ku0k _B��;1q
< � , r � v0 = 0 , v0(x) = � v(�x) for all � > 0 , then

there exists a global "mild" solution to the Navier-Stokes equations of the form

u(x; t) =
1p
t
U(x=

p
t)

with U 2 B��;1
q (R3) \ L3(R3) and

U(x) = S(1) u0 +W (x)

with W 2 _H1=2(R3) if 3 < q � 4 , and W 2 L3(R3) if 4 < q � 6 .
This solution is unique by the condition

kUkq � R; R = R(ku0k _B�;1
q

):
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We recall that a mild solution of Navier-Stokes is a function u(x; t) , if there exists a
Banach space E , such that u 2 C([0; T ];E) and satis�es

v(x; t) = S(t)u0 �
Z t

0

PS(t� s)(u � r)u(s) ds;

where S(t) = exp (t�) is the heat semi-group and P the projection into divergence free
�elds.

First question : Why we use Besov spaces, where do they appear. For this let us recall
one of Kato's theorems (rewritten by Cannone).

Theorem 15.2 Let q be �xed in the interval (3; 6] , let � = 1 � 3=q . There exists
an absolute constant � such that for all initial data u0 2 L3(R3) with ku0kL3 < � ,
r�u0 = 0 , there exists a global mild solution u(x; t) of Navier-Stokes equations such that

u(x; t) 2 C([0;1); L3(R3))
t�=2 u(x; t) 2 C([0;1); Lq(R3))
limt!0 t�=2 kv(t)kq = 0:

Proof :
For details see [C].
Sketch of the proof. The proof follows by a �xed point theorem.

Lemma 15.1 [Fixed Point Lemma]
Let X be a Banach space, B : X �X �! X be bilinear and bicontinuous, i.e.

kB(x1; x2)k � � kx1k kx2k:
Then for all y 2 X satisfying

4 � kyk < 1

the equation
x = y +B(x; x)

has a solution x 2 X and kxk < 2 kyk .

(For proof see [C].) This lemma is applied to

u(t) = S(t)u0 �
Z t

0

PS(t)r � (u
 u)(s) ds

with
y = S(t)u0

B(u; u) =

Z t

0

PS(t)r � (u
 u)(s) ds:
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The Banach space used is E1

E1 = fu : sup
t�0

ku(t)kL3 + sup
t�0

t�=2 kv(t)kq <1g:

In [C] it is shown that if kS(t) u0kE1 is small, then a global solution exists. This is a
reformulation of Kato's theorem. The Besov spaces come into place since

L3 ,! B��;1
q :

Hence if ku0kL3 < � , then
ku0k _B�;1

q
> �:

Then to apply the �xed point lemma, we can work in a larger space, namely B��;1
q , as

was done by Cannone. Moreover, we recall the following equivalences.

Lemma 15.2 Let q 2 [1;1] , � > 0 . Then for all v 2 S1(R3) (tempered distributions),
the four following norms are equivalent:

sup
j2Z

2�j� k�jvkq �= (70)

sup
j2Z

2�j� kSjvkq �= (71)

sup
t�0

t�=2 kS(t)vkq �= (72)

sup
t�0

kS(t)vkB�;1
q
: (73)

Proof :
See [C].

The main equivalence we need is (72). This is a simple consequence that in the de�nition
of Besov spaces the function ' was not uniquely de�ned and can be chosen close to the
heat kernel. The 2��j can be replaced by t = 4�j . Note that now if instead of assuming
that ku0kL3 is small as was asked in Kato's theorem we asked for ku0kB��;1q

< � , then

sup t�=2 kS(t)u0kq < �;

and hence we can apply the �xed point theorem. This is part of the extension of Cannone
of Kato's theorem. More precisely, this is the �rst step in the direction of a construction
of a (f.s.s.).

The next questions, that one has, are how do we construct functions in Besov spaces of
the type B��;1

q . First remark

L3(R3) & B��;1
q :

These spaces are di�erent as the following lemma shows.
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Lemma 15.3 If v is a distribution homogeneous of degree �1 and if vjS2 2 L1(S2) ,
then v 2 _B��;1

q for all � = 1 � 3=q . Here S2 is the unit sphere in R3 .

Proof :
See [C] for details. It is easy to see, since Sjv(x) = 2j S0v , that

kvk _B��;1q
= kS0vkq;

and hence the de�nition of

S0v(x) =

Z
R3

'(y) v(x� y) dy

will yield the estimate.

This lemma shows that v(x) = 1
jxj 2 _B��;1

q , but v(x) = 1
jxj =2 L

3(R3) . Thus

L3(R3) 6= _B��;1
q :

If we want to construct functions in Besov spaces which are small as we need for the data
of Navier-Stokes equations we recall the following result.

Lemma 15.4 Let v 2 L3(R3) . Let wk(x) be such that kwk(x)kL1 � C and wk * 0
for k �!1 in the sense of distributions. Then

wk v �! 0 in B��;1
q ; � = 1 � 3

q
q > 3:

Proof :
See Cannone [C]. Idea of proof:
v 2 L3 then v = h+ g , h 2 C1

0 , kgkL3 < � . Since L3(R3) & B��;1
q , the main term

to estimate is wkv but will be simpler since h 2 C1
0 .

Let us recall that wk * 0 as distributions means that

Z
R3

wk � dx �! 0 for all

� 2 C1
0 (R3) . Geometrically it means that the wk become more and more oscillating.

Thus if v 2 L3 and wk are such that wk(x) = 1 a.e., then kwkvkL3 = kvkL3 and
we would be able to �nd a function with large L3 norm and small Besov norm. Hence
Theorem 15:1 by Cannone shows how to construct a smooth forward self-similar solution
with small Besov norm, but perhaps large L3 norm.

16 Backwards Self-similar Solutions.

For details in this section see [MNPS]. As we said in section 14 we will describe a way of
answering Leray's question regarding existence of solutions to the elliptic equation (61) in
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a negative way. Speci�cally we show that if U 2 W 1;2(R3) and U satis�es

a U + yk
@
@yk

U + Uk
@
@yk

U +rP � � �U = 0

div U = 0
(74)

a > 0 , � > 0 , then U � 0 .

We �rst mention that the reason why supposing w 2 W 1;2(R3) instead of W 1;2
loc (R

3)
T
L3(R3)

simpli�es the proof lies mainly in the fact that our u can be shown to be quite regular.
That is since u 2 W 1;2 then u 2 C([t1; t2];W 1;2) for t1 < t2 < T and as we showed
in section 2 then u 2 C([t1; t2];W 2;2) , but hence u 2 W 2;2 . Hence we are working with
functions which are quite regular. Moreover, one can show then since

�P = �
X

@i@j Ui Uj (75)

that P 2 W 2;2
loc (R

3)
T
Lq(R3) for all q 2 [1;1] . This follows by the regularity of u

and the fact that from (75) P can be expressed in terms of Riezs transforms applied to
UiUj , i.e.

P = RiRj(Ui Uj)

see section 13.

We now concentrate on showing that (74) has no nonzero solutions. This will be accom-
plished by using the maximum principle applied to the following energy

X =
jU j2
2

+ P + a Uk yk (76)

It will be shown using the maximum principle that X is either a positive constant or a
non-positive function.

Lemma 16.1 The energy X de�ned by (76) satis�es the equation

Uj
@X

@yj
� � �X+ a yj

@X

@yj
+ �

�
jrU j2 � @Ui

@yj

@Uj

@yi

�
= 0 (77)

Proof :
See [MNPS]. Follows by multiplying (74) by U , then by a y and using the pressure
identity (75).

The maximum principle will show the auxiliary lemma.

Lemma 16.2 There are two possibilities: either X 6 0 on R3 or X is a positive
constant.
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Proof :
We will give the details below. We �rst want to show how to use this auxiliary lemma just
stated.

Theorem 16.1 Let (U;P ) be a weak solution of (74). Then U � 0 .

Proof :
Let as before

X =
jU j2
2

+ P + a Uk yk:

Case 1. X = const > 0 .
Then equation (77) reduces to

jrU j2 � @Ui

@yj

@Uj

@yi
= 0:

This integrating in space yieldsZ
R3

jrU j2 =
Z
R3

@Ui

@yj

@Uj

@yi
:

But the right hand side after integration by parts reduces toZ
R3

@Ui

@yj

@Uj

@yi
=

Z
R3

X
i

@

@yj
div U = 0:

Thus rU = 0 , hence U = const . Since U(y)! 0 as jyj ! 0 (recall boundary terms
vanish), it follows that

U � 0:

Case 2. X = X(y) < 0 .
We give the formal proof. Multiply (74) by y and integrate. Then

a

Z
R3

Ui yi dy+a

Z
R3

yk
@Ui

@yk
yi dy+

Z
R3

Uk
@Ui

@yk
yi dy��

Z
R3

yi �Ui dy+

Z
R3

yi
@P

@yi
dy = 0:

Integration by parts now yields

�3a
Z
R3

Ui yi dy � 3

Z
R3

P dy �
Z
R3

jU j2 dy = 0:

Using the de�nition of X this can be rewritten as

�3
Z
R3

X(y) dy +
1

2

Z
R3

jU j2 dy = 0:
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Since X = 0 it follows that u � 0 .
The problem with the above computations to show that if X = 0 =) U � 0 lies in

the assumption

Z
R3

y U 6 1 , that is that y U is integrable. In order to make the

computations rigorous we have to use y
(1 + �r)�

as a multiplier instead of y , where jyj = r.

Note that Z
R3

y

1 + ��
� kUk2

Z
R3

r2

(1 + �r)2�
<1;

provided � > 5
2 . In the end we obtain an identity which depends on � . Letting �& 0

yields X � 0 . The computations are quite technical. For details we refer the reader to
[MNPS].

To establish Lemma 16.2 we proceed as follows [MNPS].
Proof of Lemma 16.2 :
Set X�(y) = X�(y) e�� jyj2 , � > 0 . Then from (77) (elliptic equation for X ) it follows

multiplying by e��jyj
2
that X� satis�es

�� �X� + bj(y)
@X

@yj
+ b(y) X� = �

�
jrU j2 � @Ui

@yj
frac@Uj@yi

�
= A� (78)

where
bj(y) = Uj(y) + (a� 4��) yj

b(y) = 2� (a jyj2 � 2� � jyj2 + Uj yj � 3�):

Note that???@Ui

@yj

@Uj

@yi

??? �X
i;j

???@Ui

@yj

@Uj

@yi

??? � 1

2

hX
i;j

???@Ui

@yj

???2 +X
i;j

???@Uj

@yi

???2i � jrU j2:
So that in (78) A� � 0 . Since U 2 W 2;2(L3) , then U 2 L1(R3) . Thus

b(y) = (a� 2� �) jyj2 + Uj yj + 3� � 0;

provided jyj � R for some R su�ciently large, since the leading coe�cient a�2� � > 0
if � su�ciently small. That is choose jyj � R and � 2 (0; �0) so that b(y) � 0 .

Thus now we can apply the maximum principle to

�� �X� + bj(y)
@X

@yj
+ b(y) X� � 0: (79)

Let M = max
jyj=R

X(y) . Then

M � 0 or M � 0:
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Case 1. M � 0

Since X � c1 + c2jyj ( recall U 2 L1 and P 2 W 2;2 , hence P 2 L1 ), thus X�

decreases and there exists R� > R such that

X� <
M

2
for jyj = R�:

Apply the minimum principle for X� in BR�
nBR . Then for all � 2 [R;R�]

max
jyj=�

X� �M exp (�� R2):

Let � �! 0+ (Note that R� can and probably will tend to 1 ) yields

max
jyj=�

X �M:

Thus
max
jyj=�

X �M = max
jyj=R

X � max
jyj�R

X (80)

Recall that by (77)
�� �X+ (a yk + Uk) � 0 (81)

Hence applying the maximum principle to (81) in B� it follows that

max
jyj=R

X � max
jyj=�

X (82)

From (80) and (82) we have

max
jyj=�

X =M for all � � R:

But (80) implies that the max X must be attained inside B� and therefore

X =M (const) on R3 for M > 0:

Case 2. M � 0

Then
sup
jyj�R

X� � 0 (83)

Note that (83) follows since there exists R > R such that sup
jyj�R

X� < � for any � > 0 .

Apply maximum principle in BR nBR , then

sup
y2B

R
nBR

X� < max (M; �) = �:

57



Since � was arbitrary, (83) follows. Thus

sup
jyj�R

X � 0:

Applying the maximum principle to (81) inside BR yields

max
jyj�R

X � max
jyj=R

X =M � 0:

Hence X(y) � 0 for all y 2 R3 if M � 0 . This concludes the proof of the Lemma
16:2, and hence from Theorem 16:1 it follows that the only possible solution in W 2;2 to
the equation (74) is U � 0 .

17 Pseudo-Self-similar Solutions.

In this section we investigate the possibility of existence of solutions where instead of using

u(x; t) = �(t) U(�(t) x) with �(t) =
1p

2a(T � t)

we look for a pair of functions �(t) , �(t) which make the solution

u(x; t) = �(t) U(�(t) x)

have a bounded L2 norm, while the L2 norm of the gradient blows up in �nite time.
Speci�cally we look for solutions to Navier-Stokes equations in the form

u(x; t) = �(t) U(�(t) x)

p(x; t) = K(t) P (�(t) x)

where U 2 W 1;2(R3) . In the same way as before for the Leray self-similar solution (i.e.
b.s.s.) it follows that U 2 W 2;2(R3) \ L1(R3) and P 2 W 1;2(R3) . An easy calculation
shows that (U;P ) will satisfy

�
0
U + �

�
�
0
yk

@
@yk

U � � � �2 �U + �2 � Uj
@
@yj

U +K � rP = 0

div U = 0
(84)

Taking divergence of the equation for U yields

K

�2
�P = �@Uj

@yi

@Ui

@yj
:

Since the right hand side is independent of t , it follows that K = ~C �2 . To simplify the
notations we let ~C = 1 . Then (84) can be rewritten as

�
0

�2�
U + �

0

��2
yk

@
@yk

U � � �
�
�U + Uj

@
@yj

U +rP = 0

div U = 0
(85)

For these equations we are only able to give some answers (see [MNPS]):

58



1. u has the Leray form, i.e. �(t) = �(t) = 1p
2a(T � t)

. Hence, U � 0 .

2. U � 0 due to some trivial arguments.

3. u is a non singular self-similar solution, that is �(t) = �(t) = 1p
t
. These are the

solutions studied by Cannone, Planchon, Barraza (V. Meyer's school).

4. There possibly exists a singular solution, for which we have a special form in frequency
space in spherical coordinates. We note that since we are not able to specify the angle
part of these solutions, they still might be zero.

In order to rule out (f.s.s.), i.e. solutions of type 3. above, we impose conditions on �(t) ,

�(t) (these are conditions for �(t) = 1p
2a(T � t)

to be satis�ed). For these equations

we are only able to get some partial answers (see [MNPS]). The conditions

ku(t)k2L2 � const, for t < T

limt!T� kru(t)k2L2 =1Z T

t1

kru(t)k2L2 ds <1

yield the following conditions on �(t) , �(t) :

�2(t)

�2(t)
� C0; for t 2 (�1; T ) (86)

lim
t!T�

�2(t)

�(t)
=1 (87)Z T

t1

�2(t)

�(t)
dt <1 (88)

Moreover, multiplying (85) by U and integrating yields

�
0

�2 �

Z
R3

jU j2 dy + �
0

� �2

Z
R3

yk
@

@yk
U � U dy +

� �

�

Z
R3

jrU j2 dy = 0:

Thus, integrating by parts the second termh �
0

�2 �
� 3

2

�

� �2

i Z
R3

jU j2 dy + � �

�

Z
R3

jrU j2 dy = 0:

Hence if kUk2 6= 0 (If kUk2 = 0 , then the solution is U � 0 and we are done), let

K3 =
krUk22
kUk22

. Then the last equation can be rewritten as

�
0

�2 �
� 3

2

�

� �2
= ��

�
K3 �: (89)
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Remark 17.1 If
�(t)
�(t)

= const: = C0 , then (89) reads

�
0

�
= 2 C0 K3 � =M0; with M0 > 0:

Solving yields

�(t) =
1p

2 M0 (T � t)1=2
; with T =

1

2 �(0) M0
:

which gives the Leray solution U � 0 .

Case �(t) 6= �(t) const .

Thus we study the case �(t) 6= �(t) const . We �rst try to give some characterization of
the space in which such solutions live. For this we introduce the auxiliary space: Let U
be solution to (85)

HU = H =
n
� 2 W 1;2(R3) :

Z
R3

Ui �i dy =

Z
R3

@Ui

@yk
yk �i dy = 0

o
:

Note that functions in H annihilate the �rst two terms in the elliptic equation (85) with
respect to the L2 product. This last remark implies that if

� 2 H =)
Z
R3

rUi r�i dy = 0:

Suppose that this is not the case and multiply (85) by U and integrate to obtain

�
�

�

Z
R3

rUi r�i dy +

Z
R3

�
Uj

@

@yj
Ui �i +

@P

@yi
�i dy

�
dy = 0:

Thus, if

Z
R3

rUi r�i dy 6= 0 , then the last equation implies
�

�
= const . Since we are

working with � , � such that �(t) 6= �(t) const we have that

� 2 H =)
Z
R3

rUi r�i dy = 0:

Thus we have that the solution U of the Navier-Stokes equations belongs to H? . That
is

H? =
n
V 2 W 1;2(R3) :

Z
R3

Vi �i dy =

Z
R3

rUi r�i dy = 0; for all � 2 H
o
:

We rede�ne H in terms of functionals. That is let

< F1;� >=

Z
R3

Ui �i (90)
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< F2;� >=

Z
R3

Ui

yk
yk �i (91)

then

H =
n
� 2 W 1;2(R3) : < F1;� >=< F2;� >= 0

o
:

We use the Riesz representation theorem, i.e. if F is functional de�ned on a Hilbert space
H , then there exists y 2 H representing F in the sense < F;� >= (F;�) for all
� 2 H . In our case, H = W 1;2 . Thus there exist U1 and U2 in W 1;2 such that

< F1;	 >= (U1;	) + (rU1;r	) 8 	 2 W 1;2 (92)

< F2;	 >= (U2;	) + (rU2;r	) 8 	 2 W 1;2: (93)

Here we used that the inner product in W 1;2 is given by

((�1;�2))W 1;2 = (�1;�2) + (r�1;r�2):

Since U1; U2 2 W 1;2

(rU1;r�) = �(�U1;�):

Hence (90), (91), (92), (93) yield

(U;�) = (U1;�)� (�U1;�)

( @U
@yk

yk;�) = (U2;�)� (�U2;�)

Thus

U = U1 ��U1

@U
@yk

yk = U2 ��U2
(94)

We recall that U was shown to belong to H? (this space is spanned by U1 , U2 ).
Thus there exist C1 , C2 such that

U = C1 U
1 + C2 U

2:

Hence (94) yields

C1 U + C2 yk
@U

@yk
= U ��U (95)

Take the Fourier transform of the last equation

bU + j�j2 bU = C1
bU + C2 (� bU + �k

@

@�k
bU) (96)

Pass to spherical coordinates r = j�j and � = �
r angle. Note that

@ bU
@r

=
@ bU
@�k

� @�k
@r

=
@ bU
@�k

� @r
@�k

:
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Thus

�k
@ bU
@�k

= �k
@�k
@r

@ bU
@r

=
@r2

@r

@ bU
@r

= r
@ bU
@r

:

Hence we rewrite (96) as

(� + r2) bU + C2 r
@ bU
@r

= 0;

where � = 1� C1 + 3 C2 . Solving the last ODE yields

bUi(�) = Si(�=r) r
��=C2 e�r

2=2C2 (97)

Since we want U 2 L2 , by Plancherel and going to spherical coordinates it follows thatZ
R3

jU j2 dy =
Z
R3

jbU j2 d� = C

Z �=2

�=2

Z 2�

0

sin�2kS(�=r)j2
Z 1

0

r2��=C2 e�r
2=2C2 dr d� d� <1:

Thus we have

C2 > 0;
�

C2
<

3

2
:

In summary what we have is that if
�(t)
�(t)

6= const , then there is the possibility of having

singular solution which has in Fourier space the form. Naturally, to insure the existence
of such a nonzero solution means to be able to construct a function S of the angle which
is nonzero and such that the corresponding U satis�es the elliptic equation (85).

At this point we have only been able to show that

1. If � > �C2 , then �(t) will not become singular at t = T� .

2. If �(t) = (T � t)� ,  > 0 . Then necessarily  = 1
2 and � will be constant

multiple of � , reducing the case to the Leray situation and, hence, U � 0 .

The details of these two situations are technical and we refer the reader to [MNPS].

We conclude this notes with the open question of showing either that

1. S(�=r) = 0 in all cases or

2. Find an S(�=r) such that the corresponding U is a solution to (85).

In the �rst case we would show that all pseudo-self-similar solutions in W 1;2 are zero. In
the second case we would have constructed a solution to the Navier-Stokes equations with
bounded L2 norm and such that the L2 norm of the gradient blows up in �nite time. In
other words, we would give a construction of a singular L2 solution to the Navier-Stokes
equations.
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