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Abstract. We consider the long time behavior of solutions of dissipative

Quasi-Geostrophic flow (QG) with sub-critical powers. The flow under con-
sideration is described by the nonlinear scalar equation

∂θ

∂t
+ u · ∇θ + κ(−4)αθ = f,(0.1)

θ|t=0 = θ0

Rates of decay are obtained, for both the solutions and higher derivatives in

different Sobolev spaces.

1. Introduction

In this paper we are concerned with the long time behavior of the solutions
to a special case of surface 2D dissipative Quasi-Geostrophic flows (DQG) with
sub-critical powers α

∂θ

∂t
+ u · ∇θ + κ(−4)αθ = f,(1.2)

θ|t=0 = θ0

Here α ∈ (0, 1], κ > 0, θ(t) is a real function of two space variables x ∈ R2 and a
time variable t. The function θ(t) = θ(x, t) represents the potential temperature.
The fluid velocity u is determined from θ by a stream function ψ

(1.3) (u1, u2) = (− ∂ψ

∂x2
,
∂ψ

∂x1
)

where the function ψ satisfies

(−4)
1
2ψ = −θ

Equation (1.2) is obtained when dissipative mechanisms are incorporated into the
inviscid 2D-Quasi-Geostrophic equation (2DQG). The 2DQG is derived from the
General Quasi Geostrophic (GQG) equations by reduction to the special case of
solutions with constant potential vorticity in the interior and constant buoyancy
frequency [3]. For information on the GQG equations we refer the reader to [8]. The
fractional power α = 1/2 is perhaps the most interesting one since it corresponds
to a fundamental model of quasi-geostrophic equations, see [4] and [8]. As pointed
out in [4] “Dimensionally the 2DQG equation with α = 1/2 is the analogue of the
3D Navier-Stokes equations.”
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Two main problems will be considered. In the first, the power α will range in
the interval ( 1

2 , 1]. In this case when α ∈ (1/2, 1] it is known that the solutions
are smooth on the torus, see [4]. In [16] Wu establishes regularity of solutions for
certain type of data and forcing functions. Here we obtain smooth solutions in R2 by
establishing uniform bounds in the Hm norms for solutions with appropriate data
and forcing term. Interest will be then focused on the analysis of the asymptotic
behavior of the energy of derivatives of all orders.

To establish decay in Hm(IRn) spaces the main tool will be the Fourier splitting
method [11], [12]. This technique was used among others to treat solutions to Par-
abolic Conservation Laws (PCL) and Navier-Stokes Equations (NSE). What makes
the approach different here is that unlike the case of PCL and NSE the dissipative
mechanism is not given by a straightforward Laplacian but by a fractional power of
the Laplacian and new estimates are necessary. Before even addressing questions of
decay new estimates are necessary to establish uniform bounds for the derivatives.

Some of the proofs presented in this paper only consider the case when α ∈
(1/2, 1]; these proofs could be extended to the case α ∈ (0, 1] provided there were
an a priori bound ( possibly time dependent) of the derivatives of the solutions in
the space L2. In particular the estimate obtained by Wu in [16] could be used once
a uniform bound on the W 1,∞ norm of the velocity u is established.

The second question we address is the decay of the solutions in Lp. Given the
decay in L2 obtained in [4], the new Hm decay obtained in the first part of the
paper will yield immediately, via a Gagliardo-Nirenberg inequality, decay in all Lp

spaces with p ≥ 2. Decay rate in Lp had been already obtained in [16], for p > 1.
The problem now is to improve this decay by imposing conditions on the initial data
which insure the decay of the L1 norm of the solutions. Two cases are considered.
First the weak solution will be analyzed when α = 1/2 and decay will be shown in
L1. Second, decay is established for solutions in W q,p, p ≥ 2 and q ≥ 1, in the case
where α ∈ (1/2, 1].

Acknowledgments. The authors would like to express their thanks to the anony-
mous referees for many very helpful and thoughtful comments and suggestions.

1.1. Notation and Preliminaries. The Fourier transform of v ∈ S(R2) is defined
by v̂(ξ) = (2π)−1

∫
R2 e

−ix·ξv(x) dx. It is then extended as usual to S ′. Given a
multi-index γ = (γ1, γ2) and m = |γ| = γ1 + γ2, we denote

∂γ =
∂|γ|

∂γ1
x1∂

γ2
x2

and
Dm =

∑
|α|=m

∂γ .

If k is a nonnegative integer, W k,p(R2) will be, as is standard, the Sobolev
space consisting of functions in Lp(R2) whose generalized derivatives up to order
k belong to Lp(R2). As usual, when p = 2, then W k,2(R2) = Hk(R2) where (also
as usual) the space Hs is defined for all s ∈ R as the space of all f ∈ S ′ such that
(1 + |ξ|2)s/2f̂(ξ) ∈ L2.

Following Constantin and Wu [4], we denote by

(1.4) Λ = (−4)
1
2



ASYMPTOTIC BEHAVIOR TO QUASI-GEOSTROPHIC FLOWS 3

the operator defined by Λ̂f(ξ) = |ξ|f̂(ξ). More generally, if s ≥ 0, we define Λs by

Λ̂sf(ξ) = |ξ|sf̂(ξ).

Clearly Λsf is well defined (and in L2) if f ∈ Hs. More generally, one can define
the domain of Λs as consisting of all elements f ∈ S ′ such that f̂ is a function (i.e.,
locally integrable); it is then clear that the definition given above defines Λsf as a
tempered distribution.

We denote by R1,R2 the Riesz-transforms in R2; i.e., R̂jf(ξ) = −i(ξj/|ξ|)f̂(ξ).
The operatorR⊥ taking scalar valued functions to vector valued functions is defined
by

(1.5) R⊥f = (−∂x2Λ
−1f, ∂x1Λ

−1f) = (−R2f,R1f).

The relation between u and θ in (1.2) can then briefly be stated as u = R⊥θ.
If F is a function defined on R2 × [0,∞), we define for t ≥ 0 the function F (t)

on R2 by F (t)(x) = F (x, t). For such F , the Fourier transform (and inverse Fourier
transform) is always with respect to the space variables; thus

F̂ (ξ, t) = F̂ (t)(ξ)

for all t ≥ 0. The letters C, C0, C1, etc., will denote generic positive constants,
which may vary from line to line during computations.

2. Uniform Estimates

In this section we suppose α ∈ (1/2, 1]. We show that Λβθ decays in L2-norm
for β ≥ 0; in particular we establish the uniform boundedness of the solution θ
in Hm if the initial datum θ0 ∈ Hm. Our results in Theorem 2.4 can easily be
adapted to the torus and as such extend those of Constantin and Wu [4, Theorem
2.1]. The decay we obtain in this section is not optimal, but is needed to obtain
the optimal rate of decay in the next section. In the last part of this section we
establish uniform estimates on the L∞ norms of the solutions. These estimates are
obtained by bounding the L1 norm of θ̂. We will need to use Theorem 3.1 from [4],
we state it here for ease of reference.

Theorem 2.1. Let α ∈ (0, 1] and θ0 ∈ L1 ∩ L2. Assume that f ∈ L1([0,∞);L2),
satisfying

(2.1) ‖f(t)‖2 ≤ C0(1 + t)−
1
α−1, |f̂(ξ, t)| ≤ C0|ξ|α

for some constant C0. Then there exists a weak solution θ of the 2DQG equation

(2.2)
∂θ

∂t
+ u · ∇θ + κ(−4)αθ = f, θ|t=0 = θ0

such that

(2.3) ‖θ(·, t)‖L2(R2) ≤ C(t+ 1)−
1
2α

where C is a constant depending on L1 and L2 norms of θ0, on the L1(L2) norm
of f , and on C0.

We also need the following Sobolev type estimate.
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Lemma 2.2. Let 2 < p < ∞ and let σ = 1 − 2
p . There exists a constant C ≥ 0

such that if f ∈ S ′ is such that f̂ is a function, then

‖f‖p ≤ C‖Λσf‖2.

Proof: Since f̂ is a function, we have f̂(ξ) = |ξ|−σ|ξ|σ f̂(ξ). Taking the inverse
Fourier transform, we get f = Iσ(Λσf) where Iσ is the Riesz potential of order σ.
It is well known (cf. [13, Chapter V, Theorem 1]) that Iσ is bounded from L2(R2)
to Lp(R2) if 1

p = 1
2 −

σ
2 . The Lemma follows.

Next, a simple observation connecting the L2 norms of the temperature and the
velocity (or transport term) that will be used repeatedly.

Remark 2.3. Let 1 < p <∞. There exists a constant Cp depending only on p such
that

(2.4) ‖Λβu(t)‖p ≤ Cp‖Λβθ(t)‖p

for all β ≥ 0, t ≥ 0. If p = 2, this inequality can be strengthened to

(2.5) ‖Λβu(t)‖2 = ‖Λβθ(t)‖2.

In fact, (2.4) is immediate from the fact that u = R⊥θ, the fact that the Riesz
transforms commute with Λβ and the boundedness of the Riesz transforms in Lp.
Concerning (2.5), it suffices to observe that

Λ̂βu(ξ, t) =
i

|ξ|
(ξ2, ξ1)|ξ|β θ̂(ξ, t)

and the norm equality follows.

We are ready to state and prove the main result of this section. This first theorem
gives a uniform bound for the derivatives of the solution θ(t) of the two dimensional
DQG and, for a sufficiently fast decaying f , an auxiliary rate of decay that will be
improved in the next section.

Theorem 2.4. Let α ∈ (1/2, 1], β ≥ α and assume q satisfies 2/(2α−1) < q <∞.
Suppose θ0 ∈ L1 ∩ L2, Λβθ0 ∈ L2, f ∈ L1([0,∞] : Lq ∩ L2), satisfies (2.1) and
Λβ−αf ∈ L2((0,∞), L2). If θ is a solution to (1.2) with initial datum θ0 then

(2.6) ‖Λβθ(t)‖L2 ≤ C0(1 + t)−
1
2α + C1

(∫ t

0

‖Λβ−αf(s)‖22 ds
)1/2

,

for t ≥ 0, where C0, C1 are constants depending only on norms of the initial datum
and f. In particular, if f = 0, then

(2.7) ‖Λβθ(t)‖L2 ≤ C0(1 + t)−
1
2α

for all t ≥ 0.

Remark 2.5. In [4, Theorem 2.1] the authors assume, in case β < 1, that q =
2/(1 − β). This choice is consistent with our more general one, since it is also
assumed in [4] that β + 2α > 2, which implies 2/(1 − β) > 2/(2α − 1). The
assumption θ0 ∈ L1 ∩L2 (as well as f satisfying (2.1)) is needed to apply Theorem
2.1.
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Proof:
The first part of the proof we present is formal. At the end of the proof we give

a sketch on how to make the arguments rigorous. To obtain (2.6) multiply both
sides of (1.2) by Λ2βθ(t) and integrate in space,

1
2
d

dt

∫
R2
|Λβθ(t)|2 dx+ κ

∫
R2
|Λα+βθ(t)|2 dx =(2.8)

−
∫

R2
(u · ∇θ)Λ2βθ dx+

∫
R2
fΛ2βθ. dx

We estimate the second term on the right hand side of the last equation by

(2.9)
∫

R2
fΛ2βθ dx ≤ κ

8

∫
R2
|Λα+βθ(t)|2 dx+

2
κ

∫
R2
|Λβ−αf |2 dx.

Estimating the first term will take a little bit longer. We claim that there exists
a constant C(κ, θ0, f), depending only the initial datum θ0, the L1(0,∞, Lq)-norm
of the external force f , and κ, such that

(2.10)
∣∣∣∣∫

R2
(u · ∇θ)Λ2βθ dx

∣∣∣∣ ≤ κ

8
‖Λα+βθ‖22 + C(θ0, f, κ)‖Λs+1−(2/p)θ‖22,

where s = β−α+ 1 and p is determined by 1
p + 1

q = 1
2 and q is as in the statement

of the theorem. The meaning of s, p, q will not change for the remainder of this
proof. To establish the claim, we begin observing that because div u = 0 we can
write

u · ∇θ = div(uθ)− θdivu = div(uθ);

thus, by Plancherel, Hölder, and again Plancherel∣∣∣∣∫
R2

(u · ∇θ)Λ2βθ dx

∣∣∣∣ =
∣∣∣∣∫

R2
(ξ1θ̂u1(ξ) + ξ1θ̂u2(ξ))|ξ|2β θ̂(ξ) dξ

∣∣∣∣
≤

2∑
i=1

∫
R2
|ξ|β−α+1|θ̂ui(ξ)||ξ|α+β |θ̂(ξ)| dξ

≤
2∑

i=1

‖Λβ−α+1(θui)‖2‖Λα+βθ‖2,

hence

(2.11)
∣∣∣∣∫

R2
(u · ∇θ)Λ2βθ dx

∣∣∣∣ ≤ κ

8
‖Λα+βθ‖22 +

2
κ

2∑
i=1

‖Λs(θui)‖22.

We estimate ‖Λs(θui)‖2 by the calculus inequality, getting

‖Λs(θui)‖2 ≤ C (‖ui‖q‖Λsθ‖p + ‖θ‖q‖Λsui‖p)

for i = 1, 2. This inequality follows easily by combining Hölder’s inequality with
the Gagliardo-Nirenberg and Young inequalities, see also inequality (3.1.59) on
page 74 of [14]). Since ui = ±Rjθ (i, j ∈ {1, 2}, i 6= j) and the Riesz transforms
commute with Λ and are bounded in Lp, Lq (notice that 2 < p, q < ∞), we have
‖Λsui‖p ≤ C‖Λsθ‖p and ‖ui‖q ≤ C‖θ‖q for i = 1, 2. Applying this to the previous
estimate, we get

(2.12) ‖Λs(θui)‖2 ≤ C‖θ‖q‖Λsθ‖p
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for i = 1, 2. To continue, we estimate ‖θ‖q by the following maximum principle,

(2.13) ‖θ‖Lq ≤ ‖θ0‖Lq +
∫ t

0

‖f(τ)‖Lq dτ.

For details on this inequality and its proof we refer the reader to [10], [1], but we
briefly describe the main idea, as given by Wu [15]. Specifically, (2.13) follows by
multiplying both sides of (1.2) by q|θ|q−2θ and integrating with respect to x to get

d

dt
‖θ‖q

Lq ≤ q

(∫
|θ|q−2θf dx

−
∫
|θ|q−2θ(u · ∇θ) dx−

∫
|θ|q−2θκ(−4)αθ) dx

)
.

One sees that the second integral on the right is zero. The last integral on the right
can be shown to be positive [10], [15]. Thus

d

dt
‖θ‖q

Lq ≤ q

∫
|θ|q−2θf dx ≤ q‖f‖Lq‖θ‖q−1

Lq

and (2.13) follows. Because f ∈ L1(0,∞;Lq), we proved

‖Λs(θui)‖2 ≤ C(θ0, f)‖Λsθ‖p

for i = 1, 2, where C0(θ0, f) is independent of t, depends only on θ0, f . By Lemma
2.2,

‖Λs(θui)‖2 ≤ C(θ0, f)‖Λs+1−(2/p)θ‖2
for i = 1, 2. Using this in (2.11), (2.10) follows, establishing our claim, with
C(κ, θ0, f) = 4

κC(θ0, f)2. Combining (2.8), (2.9) and (2.10) yields

(2.14)
1
2
d

dt
‖Λβθ(t)‖22 +

3κ
4
‖Λα+βθ(t)‖22 ≤ C0‖Λγθ‖22 +

2
κ
‖Λβ−αf‖22

where C0 = C(κ, θ0, f) and we introduced γ = s + 1 − 2
p = β − α + 2(1 − 1

p ).
To continue estimating, let BM = {ξ : |ξ|2 ≤ M}, with M > 0 to be determined
appropriately below. The choice 2/(2α−1) < q <∞ implies 1

2 >
1
p = 1

2−
1
q > 1−α,

hence 1
p + α− 1 > 0. Thus γ = α+ β − 2( 1

p + α− 1) < α+ β and

‖Λγθ(t)‖22dx =
∫

BM

|ξ|2γ |θ̂(t)|2 dξ +
∫

Bc
M

|ξ|2γ |θ̂(t)|2 dξ

≤ M2γ‖θ(t)‖22 +M−4( 1
p +α−1)‖Λα+βθ(t)‖22

Selecting M large enough to satisfy M−4( 1
p +α−1) < κ/(4C0), it follows that

(2.15) C0‖Λγθ(t)‖22dx ≤
κ

4
‖Λα+βθ(t)‖22 + C0M

2γ‖θ(t)‖22.

Next,

‖Λα+βθ‖22 ≥
∫

Bc
M

|ξ|2(α+β)|θ̂|2 dξ ≥M2α

∫
Bc

M

|ξ|2β |θ̂|2 dξ

= M2α‖Λβθ‖22 −M2α

∫
BM

|ξ|2β |θ̂|2 dξ

implying

(2.16) ‖Λα+βθ‖22 ≥M2α‖Λβθ‖22 −M2(α+β)‖θ(t)‖22.
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By Theorem 3.1 in [4] (stated as Theorem 2.1 in this article), ‖θ(t)‖2 decays at the
rate of (1 + t)−1/α. Using this estimate in (2.15) and (2.16), and then returning to
(eq:L1), we get

(2.17)
d

dt
‖Λβθ(t)‖22 + κM2α‖Λβθ(t)‖22 ≤ C̃0M

c(1 + t)−1/a +
2
κ
‖Λβ−αf(t)‖22

where C̃0 is a new constant depending only on f, θ0, κ and c = max(2γ, 2α+2β). For
convenience, let ν = κM2α. Multiplying both sides of (2.17) by eνt and integrating
in time we see that

‖Λβθ(t)‖22 ≤ e−νt‖Λβθ0‖22 + C̃0M
c

∫ t

0

e−ν(t−s)(s+ 1)−
1
α ds

+
2
κ

∫ t

0

e−ν(t−s)‖Λβ−αf(s)‖22 ds.

The desired estimate (2.6) now follows, since∫ t

0

e−ν(t−s)(1 + s)−
1
α ds ≤ C(1 + t)−

1
α ,(2.18) ∫ t

0

e−ν(t−s)H(s) ds ≤
∫ t

0

H(s) ds(2.19)

for all t ≥ 0, some C.
This completes the formal part of the proof. To make the above arguments rig-

orous, apply the same proof to the “retarded mollifications θn” which are solutions
of the sequence of approximate equations

(2.20)
∂θn

∂t
+ un · ∇θn + κ(−4)αθn = f,

where un = Ψδn(θn) is obtained from θn by

(2.21) Ψδn
(θn) =

∫ t

0

φ(τ)R⊥θn(t− δnτ) dτ.

and R⊥ is defined by (1.5).
The function φ is smooth, has support in [1, 2] and

∫∞
0
φ(t) dt = 1. This con-

struction is similar to the one used by Caffarelli, Kohn and Nirenberg in [2] for
solutions to the Navier-Stokes equations. It is easy to see that for each n the values
of un depend only on the values of θn in [t − 2δn, t − δn]. As stated in [4] the θn

converge to a weak solution θ and strongly in L2 almost everywhere in t. Since the
bounds for the Λβθn are independent of n it follows that they hold for the limiting
solution θ.

This concludes the proof of the theorem
�

Remark 2.6. In proving Theorem 2.4 we estimated (see (2.19))∫ t

0

e−ν(t−s)‖Λβ−αf(s)‖22 ds ≤
∫ t

0

‖Λβ−αf(s)‖22 ds

to get the second term on the right hand side of (2.6). The assumption f = 0 then
causes the L2-norm of Λβθ(t) to decay in time. However, by (2.18), it follows that
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we have decay of this norm as long as ‖Λβ−αf‖2 decays fast enough. For example,
if

‖Λβ−αf(t)‖2 ≤ C(1 + t)−δ

for some δ > 0, then (2.7) can be replaced by

(2.22) ‖Λβθ(t)‖L2 ≤ C0(1 + t)−min( 1
2α ,δ)

where C0 only depends on f and the initial datum θ0.

The remainder of this section deals with obtaining L∞ bounds of the solution;
more precisely, L1-bounds of the Fourier transform of the solution. If the hypotheses
of Theorem 2.4 are satisfied with β > 1, it is clear that θ̂(t) ∈ L1 and ‖θ̂(t)‖1 is
uniformly bounded in t. In fact, θ ∈ L2 ∩ H̃β = Hβ , hence∫

R2
|θ̂(ξ)| dξ ≤ C

(∫
R2

(1 + |ξ|2)β |θ̂(ξ)|2 dξ
)1/2

with

C =
(∫

R2
(1 + |ξ|2)−β | dξ

)1/2

<∞.

In the next lemma, we show that we also have θ̂(t) ∈ L1, with a uniformly bounded
L1-norm, if β = 1.

The next lemma gives an a priori bound of the L1 norm of θ̂(t). It then suffices
to establish a local existence theorem to obtain a global uniform bound.

Lemma 2.7. (A priori bound) Assume the hypothesis of Theorem (2.4) with β ≥ 1.
If β = 1, assume also that θ̂0 ∈ L1 and that f̂ ∈ L1(0,∞, L1). It follows that there
exists C ≥ 0 such that

‖θ̂(t)‖1 ≤ C

for all t ≥ 0

Remark 2.8. The hypothesis on f in case β = 1 can be considerably weakened, but
the proof becomes somewhat more involved.

Proof: Since we only want an a priori bound the proof is formal. The case
β > 1 was dealt with in the remarks preceding this lemma; we assume from now
on that β = 1. By Theorem 2.4, there exists C ≥ 0 such that

‖∇θ(t)‖2 = ‖Λθ(t)‖2 ≤ C

for all t ≥ 0. An easy calculation yields

θ̂ = e−κ|ξ|2αtθ̂0 −
∫ t

0

e−κ|ξ|2α(t−s)û · ∇θ ds+H(t)

where

H(t) =
∫ t

0

e−κ|ξ|2α(t−s)f̂(s) ds.

By the additional hypothesis on f , it is obvious that H(t) is uniformly bounded in
the L1-norm. Hence

(2.23) ‖θ̂(t)‖1 ≤ ‖θ̂0‖1 +
∫ t

0

‖e−κ|ξ|2α(t−s)û · ∇θ‖1 ds+ C
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where C is chosen so that ‖H(t)‖1 ≤ C for all t ≥ 0. Since the first term of the right
hand side of (2.23) is bounded by hypothesis, we only need to bound the second
term. For this purpose, we split it into two parts for an appropriate value of ε > 0
as follows. ∫ t

0

‖e−κ|ξ|2α(t−s)û · ∇θ‖1 ds = I + II

where, if t ≥ ε,

I =
∫ t−ε

0

‖û · ∇θ‖1 ds,

II =
∫ t

t−ε

‖e−κ|ξ|2α(t−s)û · ∇θ‖1 ds;

if 0 ≤ t < ε, then I = 0 and II =
∫ t

0
‖û · ∇θ‖1 ds. We begin bounding II, assuming

t > ε.

II ≤
∫ t

t−ε

‖e−κ|ξ|2α(t−s)‖2‖û · ∇θ‖2 ds ≤ C

∫ t

t−ε

1
(t− s)

1
2α

‖∇θ‖2‖u‖∞ ds

≤ C sup
t≥0

‖∇θ(t)‖2 sup
0≤s≤t

‖θ̂(s)‖1ε1−
1
2α ,

where we used that ‖u(t)‖∞ ≤ C‖û(t)‖1 ≤ C‖θ̂(t)‖1, since the components of û are
obtained multiplying θ̂ by functions of absolute value 1. Since ‖∇θ(t)‖2 is bounded
in t, we can select ε > 0 so that

(2.24) II ≤ 1
2

sup
0≤s≤t

‖θ̂(s)‖1

for all t ≥ ε. Assuming now t < ε, we estimate essentially the same way to get

II ≤ C sup
t≥0

‖∇θ(t)‖2 sup
0≤s≤t

‖θ̂(s)‖1
∫ t

0

(t− s)−
1
2α ds ≤ C sup

0≤s≤t
‖θ̂(s)‖1ε1−

1
2α .

Decreasing the size of ε > 0 if necessary, we can assume that (2.24) also holds for

0 < t < ε.
To bound I, we use the fact that ‖u(s)‖2 = ‖θ(s)‖2 ≤ C(1 + s)−1/2α ≤ C,

‖∇θ(s)‖2 ≤ C for all s ≥ 0 (some constant C). We assume t ≥ ε (otherwise I = 0).

I ≤
∫ t−ε

0

‖e−κ|ξ|2α(t−s)‖1‖û · ∇θ‖∞ ds ≤ C

∫ t−ε

0

1
(t− s)

1
α

‖û · ∇θ‖∞ ds

≤ C

∫ t−ε

0

1
(t− s)

1
α

‖u‖2‖∇θ‖2 ds ≤ C

∫ t−ε

0

1
(t− s)

1
α

ds.

The last integral is bounded by Cε1−
1
α if α < 1, by C log(1/ε) if α = 1; in either case

by a constant since ε has been fixed. In other words I is bounded independently of
t; using this and (2.24) in (2.23), we get

‖θ̂(t)‖1 ≤ C +
1
2

sup
0≤s≤t

‖θ̂(s)‖1

for all t ≥ 0, C independent of t. The lemma follows.
�
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Corollary 2.9. Under the hypotheses of Lemma 2.7 one has that ‖θ(t)‖∞, ‖û(t)‖1,
and ‖u(t)‖∞, are uniformly bounded in t.

Proof: Since the components of u are Riesz transforms of θ (hence, the com-
ponents of û differ from θ̂ by factors of absolute value 1), it is immediate from
Lemma 2.7 that ‖û(t)‖1 is uniformly bounded in time. The uniform bound on the
L∞ norms now follows.

�
The next Lemma gives the local existence for solutions with data θ0, where

θ0 ∈ H1 and θ̂0 ∈ L1

Lemma 2.10. Let θ0 ∈ H1 and θ̂0 ∈ L1, and f satisfies the hypothesis of Theorem
(2.4). Let α ∈ (1/2, 1], β = 1. Then there exists T > 0 and a solution θ of(0.1)
such that θ ∈ L∞([0, T ] : H1) and θ̂ ∈ L∞([0, T ] : L1)

Proof: The proof follows by a straightforward application of the Contraction
Mapping Theorem to the sequence of solutions of the equations

∂θn

∂t
+ (−R2θn−1,R1θn−1) · ∇θn + κ(−4)αθn = f,

θ|t=0 = θ0

Theorem 2.11. Under the conditions of Theorem (2.4) there exists a global solu-
tion θ ∈ L∞([0,∞) : H1) such that θ̂ ∈ L∞([0,∞) : L1)

Proof:
Combine the two last Lemmas.

3. Hm and fractional derivatives decay

In this section we improve the decay of the derivatives of order β of the solution
θ of (1.2), assuming the external force f = 0. The decay established in the last
section is not optimal but does provide the stepping stone to obtain the optimal
decay; that is, a decay rate which coincides with that of the underlying linear part.
The main tool used is the Fourier splitting method, (see [11], [12]). The solutions
considered here are supposed to be smooth. The assumption that the external force
is zero is not essential. The same results can be obtained when f 6= 0, provided
‖Λβ−αf‖2 decays sufficiently fast (see Remark 2.6 above and Corollary 3.4 at the
end of this section). The proof is the same as the one presented below, with the
addition of a term that decays sufficiently fast by hypothesis.

We assume throughout this section that α ∈ ( 1
2 , 1], m ≥ α and θ is the solution

of (1.2) (with f = 0 until further notice) such that θ0 = θ(0) satisfies θ0 ∈ L1(R2)∩
Hm(R2). The hypotheses of Theorem 2.4 are thus satisfied for any β ∈ [α,m]. The
numbers p, q are as in the previous section; 1

p + 1
q = 1

2 , 0 < 1
q < α− 1

2 .
Before improving the rate of decay of the derivatives of θ, we state some of the

immediate consequences of Theorem 2.4.

Corollary 3.1. Under the assumptions mentioned above, the following estimates
hold for t ≥ 0:

‖θ(t)‖Hm ≤ C(1 + t)−
1
2α ,(3.1)

‖u(t)‖Hm ≤ C(1 + t)−
1
2α , ,(3.2)
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C a constant depending only on norms of the initial datum; moreover, if m ≥ 1, r
any exponent in [2,∞), then

‖θ(t)‖r ≤ Cr(1 + t)−
1
2α , 0 ≤ γ ≤ β − 1,(3.3)

‖Λγu(t)‖r ≤ Cr(1 + t)−
1
2α , 0 ≤ γ ≤ β − 1,(3.4)

Cr a constant depending only on norms of the initial datum and r.

Proof: Since Hm = {g ∈ L2 : Λmg ∈ L2}, inequality (3.1) is immediate from
Theorem 2.4; inequality (3.2) follows then from Remark 2.3. Inequalities (3.3),
(3.4) follow from these and Sobolev’s Theorem.

The next Theorem will give the optimal decay rate of decay for the derivatives
in the sense that it coincides with the decay rate of the underlying linear part.

Theorem 3.2. Assume θ is a solution of (2.2) with data θ0 ∈ L1 ∩Hm. Then

(3.5) ‖Λβθ(t)‖L2 ≤ C(t+ 1)−
β+1
2α ,

where C is a constant which depends only on the norms of the initial datum.

Proof: The proof is based on an appropriately modified Fourier splitting
method, combined with the preliminary estimates of the last section. We will
assume α < 1; referring to [5] for the case α = 1.

Assume α ≤ β ≤ m. We return to the derivation of inequality (2.14) in the proof
of Theorem 2.4, recalling that C(κ, θ0, f) = 4

κC(θ0, f)2 and C(θ0, f) was a bound
for ‖θ(t)‖q given by the maximum principle. If we forego this bound, we obtain
directly for some constant C1, all t ≥ 0,

(3.6)
1
2
d

dt
‖Λβθ(t)‖22 +

3κ
4
‖Λα+βθ(t)‖22 ≤ C1‖θ(t)‖2q‖Λ

β−α+1− 2
p θ(t)‖22.

Because β < β − a + 1 − 2
p < α + β, with δ > 0 such that β − a + 1 − 2

p =
(1− δ)β + δ(α = β), we have

‖Λβ−α+1− 2
p θ(t)‖22 ≤ ‖Λβθ(t)‖2(1−δ)

2 ‖Λα+βθ(t)‖2δ
2 ≤ κ

4C0
‖Λβθ(t)‖22+C2‖Λα+βθ(t)‖22,

where we take C0 so that C1‖θ(t)‖2q ≤ C0 for all t ≥ 0; C2 being determined by
this choice. Inequality (3.6) can be modified to

(3.7)
1
2
d

dt
‖Λβθ(t)‖22 +

κ

2
‖Λα+βθ(t)‖22 ≤ C2‖θ(t)‖2q‖Λβθ(t)‖22.

For t ≥ 0 set

S(t) = {ξ : |ξ|2α ≤ µ

κ(t+ 1)
},
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where µ is chosen so that µ > β+1
α + 1. Then

‖Λα+βθ(t)‖22 =
∫

R2
|ξ|2(α+β)|θ(t)|2 dξ

≥ 2µ
3κ(t+ 1)

∫
S(t)c

|ξ|2β |θ(t)|2 dξ

=
2µ

3κ(t+ 1)

(
‖Λβθ(t)‖22 −

∫
S(t)

|ξ|2β |θ(t)|2 dξ

)

≥ 2µ
3κ(t+ 1)

(
‖Λβθ(t)‖22 −

(
2µ

3κ(t+ 1)

) β
α

‖θ(t)‖22

)
;

estimating ‖θ(t)‖2 by const·(1+ t)−1/(2α), and putting it into (3.7) we get, after we
estimate the factor ‖θ(t)|2q in (3.7) by C(t+ 1)−

1
α (Corollary 3.1),

(3.8)
1
2
d

dt
‖Λβθ(t)‖22 +

µ

2(t+ 1)
‖Λβθ(t)‖22 ≤ C(t+ 1)−

1
α ‖Λβθ‖22 +C(t+ 1)−

β+1
α −1.

Assume proved for some λ, 0 < λ < (β + 1)/α, some C ≥ 0, and all t ≥ 0, that

(3.9) ‖Λβθ‖22 ≤ C(t+ 1)−λ.

Then using this in (3.8) we obtain, after multiplying by the integrating factor
2(t+ 1)µ,

d

dt

(
(t+ 1)µ‖Λβθ(t)‖22

)
≤ C(t+ 1)µ− 1

α−λ + C(t+ 1)µ− β+1
α −1.

Integrating from 0 to t, and then dividing by (t+ 1)−µ

‖Λβθ(t)‖22 ≤ ‖Λβθ(0)‖22 + C)(t+ 1)−µ + C(t+ 1)1−
1
α−λ + C(t+ 1)−

β+1
α .

It follows that in (3.9) we can replace λ by min(λ+ 1
α − 1, β+1

α ). Since 1
α − 1 > 0,

we are done. �

Corollary 3.3. Under the conditions of the last theorem it follows that the solutions
to DGD equations have the decay in Lp

‖Dju‖p ≤ Cp(t+ 1)−
1
α [ j+2

2 − 1
p ]

Proof: Use the estimates in Theorem (3.2) and [4] combined with a Gagliardo-
Nirenberg inequality.

(3.10) ‖Dju‖p ≤ Cp‖u‖1−a
2 ‖Dj+1‖a

2

where a = 1− 2
j+1

1
p . Thus

(3.11) ‖Dju‖p ≤ Cp(t+ 1)−[(1−a) 1
2α +a j+2

2α ]

Replacing a with its definition gives the expected decay. �

In the case that f 6= 0 we can obtain the same results of Theorem(3.2) provided
f decays at the appropriate rate. More precisely
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Corollary 3.4. Under the conditions of Theorem (3.2), suppose f satisfies (2.1) and

(3.12) ‖Λβ−αf(·, t)‖22 ≤ C(1 + t)−
β+1
2 −1

if θ is a solution to (2.2) with data θ0 then

(3.13) ‖Λβθ(t)‖L2 ≤ Ct−
β+1
2α ,

where C is constant which depends only on the L2 norm of the data and f.

Proof: The proof follows the same steps of the last theorem. �

4. L1 and improved Lp decay

In this section we consider the decay in Lp spaces for p ∈ [1,∞]. New conditions
on the data will be necessary to insure decay of the solutions in the Lp-norms when
p ∈ [1, 2), mainly that a Riesz potential of the data lies in the corresponding Lp

space.
We first consider the L1 decay of the solutions for the special case when α = 1/2.

In the more general case when α ∈ ( 1
2 , 1) the L1 decay for derivatives of higher order

will be obtained. The case of α = 1 is the easiest since the linear part is the heat
equation.

4.1. Linear asymptotics. Let α ∈ (0, 1], κ > 0. We consider the linear equation

(4.1)
∂θ

∂t
+ κ(−4)αθ = 0,

in R2 × R ; the solution θ = θ(x, t) is a function of a space variable x ∈ R2 and a
time variable t ≥ 0. Without loss of generality, we assume κ = 1.

The function Gα will be defined for α ∈ (0, 1] by

Ĝα(ξ, t) = e−|ξ|
2αt.

The solution θ of (4.1) with initial datum θ0 is then given by

θ(t) = etΛ2α

θ0 = Ga(t) ∗ θ0.
We recall once again that if 0 < β < 2, the Riesz potential Iβ is defined in the
Fourier variables by

(̂Iβw)(ξ) =
ŵ(ξ)
|ξ|β

.

Then we can write

(4.2) ∂γθ(t) = (∂γΛβGa)(t) ∗ (Iβθ0).

By a standard change of variables, since n = 2, it follows that

(4.3) (∂γΛβGα)(x, t) = t−( β
2α +

|γ|
2α + 1

α )(∂γΛβGα)(t−
1
2αx, 1)

hence, by the Hausdorff-Young inequality,

(4.4) ‖∂γθ(t)‖p ≤ t−( β
2α +

|γ|
2α + 1

α [1− 1
p ])‖∂γΛβGα(1)‖p‖Iβθ0‖1

for all t ≥ 0, 1 ≤ p ≤ ∞. Thus, in order to establish the Lp decay of ∂γθ(t) it will
suffice to prove that ∂γΛβGα(1) is in Lp. We do this in the next lemma.

Lemma 4.1. Assume α ≥ 1
2 and let p ∈ [1,∞]. Then ∂γΛβGα(1) ∈ Lp for all

β ≥ 0 and all multi-indices γ = (γ1, γ2).
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Proof: Since
̂∂γΛβGα(1)(ξ) = ξγ |ξ|βe−|ξ|

2α

is integrable, it follows that ∂γΛβGα(1) ∈ L∞ (for all α > 0). All that remains to
be proved is that ∂γΛβGα(1) ∈ L1.

We consider two cases; α > 1
2 and α = 1

2 . Assume first α > 1
2 . It is not hard to

see that ∣∣∣∆( ̂∂γΛβGα

)
(ξ, 1)

∣∣∣ =
∣∣∣∆(ξγ |ξ|βe−|ξ|

2α
)∣∣∣

≤ C(1 + |ξ|N )|ξ||γ|+β+2α−2e−|ξ|
2α

for some constants C,N ≥ 0, all ξ ∈ R2. It follows that
∣∣∣∆( ̂∂γΛβGα

)
(ξ, 1)

∣∣∣2
near 0 behaves like |ξ|2|γ|+2β+2α−4 which is integrable since, because α > 1

2 , 2|γ|+
2β + 4α − 4 ≥ 4α − 4 > −2. It follows that ∆

(
̂∂γΛβGα

)
(1) is in L2, hence so is

|x|2∂γΛβGα(1). It being clear that Gα(1) ∈ L2, it follows that (1+ |x|2)∂γΛβGα(1)
is in L2; since (1 + |x|2)−1 is in L2, the proof that ∂γΛβGα(1) is in L1 is complete.

Assume now α = 1
2 . Then

ΛβG 1
2
(x, 1) =

1
2π

∫
R2
|ξ|βeix·ξe−|ξ| dξ

=
1
2π

∫ 2π

0

∫ ∞

0

rβ+1e−r(1−ix sin θ) dr dθ

=
Γ(β + 2)

2π

∫ 2π

0

dθ

(1− ix sin θ)β+2
.

¿From the last expression it is immediate that ∂γΛβGα(1) ∈ L1(R2) if β + |γ| > 0.
It remains to see that the same is true if β = 0, γ = 0. However, in this case the
integral is easily computed by residues; one has

G 1
2
(x, 1) =

1
2π

∫ 2π

0

dθ

(1− ix sin θ)2
=

1
4(1 + |x|2)3/2

.

The last expression is clearly integrable over R2.
�

Remark 4.2. The last Lemma is valid for α ∈ (0, 1/2) provided β+ |γ| ≥ 1. In fact,
essentially the same proof as for the case α > 1

2 applies. The only relation α, β, γ
had to satisfy for the argument to be valid was 2|γ| + 2β + 4α − 4 > −2, which
clearly holds if α > 0 and β + |γ| ≥ 1.

The results in the remainder of this section are based on the ideas described in
[5] to study the L1 decay for solutions to viscous conservation laws.

Theorem 4.3. Let α ∈ (0, 1], let 0 < β and assume that Iβθ0 ∈ L1(R2). Let
γ = (γ1, γ2) be a multi-index; assume |γ|+ β ≥ 1 if α < 1

2 . Set

(4.5) A = lim
|ξ|→0

θ̂0(ξ)
|ξ|β

=
∫

R2
(Iβθ0)(x) dx.
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Let θ(t) = e−tΛ2α

θ0 = Ga(t) ∗ θ0 be the solution of (4.1) with initial datum θ0.
Then, for 1 ≤ p ≤ ∞,

(4.6) ‖∂γθ(t)|p ≤ Ct−
β
2α−

|γ|
2α−(1− 1

p ) 1
α ‖Iβθ0‖1

for all t > 0 and C = C(β, γ) independent of t and θ0. Moreover,

(4.7) t
β
2α +

|γ|
2α +(1− 1

p ) 1
α ‖∂γθ(t)−A∂γΛβGα(t)‖p → 0

as t→∞.

Proof: By Lemma 4.1 (see also the remark following it) we have ∂γΛβGα ∈ Lp.
Writing

∂γθ(t) = (∂γΛβGα(t)) ∗ Iβθ0,
in view of Lemma 4.1, (4.6) is immediate from (4.4) C = ‖∂γΛβGα(1)‖p.

For the proof of (4.7), we can write∣∣∂γθ(x, t)−A∂γΛβGα(x, t)
∣∣

≤
∫

R2

∣∣(∂γΛβGα)(x− y, t)− (∂γΛβGα)(x, t)
∣∣ |Iβθ0(y)| dy

≤
(∫

R2
|Iβθ0(y)| dy

) p−1
p
(∫

R2

∣∣(∂γΛβGα)(x− y, t)− (∂γΛβGα)(x, t)
∣∣p |Iβθ0(y)| dy)1/p

.

Raising to the power p, integrating with respect to x, and changing the variables
by z = xt−

1
2α , combined with the self-similar form of Gα ( see (4.3)) leads to the

following expression

‖∂γθ(t)−A∂γΛβGα(t)‖p
p

≤ ‖Iβθ0‖p−1
1

∫
R2×R2

∣∣(∂γΛβGα)(x− y, t)− (∂γΛβGα)(x, t)
∣∣p |Iβθ0(y)| dxdy

= t−
p
2α (β+|γ|+2(1− 1

p ))‖Iβθ0‖p−1
1

×
∫

R2×R2

∣∣∣(∂γΛβGα)(z − t−
1
2 y, 1)− (∂γΛβGα)(z, 1)

∣∣∣p |Iβθ0(y)| dxdy.
To complete the proof of (4.7) we only need to show that
(4.8)

lim
t→∞

∫
R2×R2

∣∣∣(∂γΛβGα)(z − t−
1
2 y, 1)− (∂γΛβGα)(z, 1)

∣∣∣p |Iβθ0(y)| dxdy = 0.

The Fourier transforms of all the derivatives of the function ∂γΛβG(1) are in L1; it
follows that this function is infinitely many times differentiable, with all derivatives
bounded. Thus the integrand in (4.8) converges uniformly to 0 over compact subsets
of R2 × R2. Moreover, by Lemma 4.1, the function (and its derivatives) are in Lp.
By this LP -integrability, and the integrability of Iβθ0, one can find for each ε > 0
a compact subset Kε of R2 × R2 such that∫

(R2×R2)\Kε

∣∣∣(∂γΛβGα)(z − t−
1
2 y, 1)− (∂γΛβGα)(z, 1)

∣∣∣p |Iβθ0(y)| dxdy < ε.

This, and the aforementioned uniform convergence, prove (4.8). This completes the
proof of the theorem. �
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Remark 4.4. In the case α = 1 we recall that, in [7], [6] Miyakawa obtained the
L1-decay of et∆u0 provided the |x|β-momentum of the data is bounded. The as-
sumption on the Riesz potential is weaker than the one assumed by Miyakawa, see
[5].

�

We also obtain, as an immediate corollary to Lemma 4.1:

Corollary 4.5. Let α ∈ (0, 1], let 0 < β and assume that Iβθ0 ∈ Lp(R2); 1 ≤ p ≤ ∞.
Let γ = (γ1, γ2) be a multi-index; assume |γ|+ β ≥ 1 if α < 1

2 . Then there exists a
constant C ≥ 0 such that

(4.9) ‖∂γe−tΛ2α

θ0‖p ≤ Ct−
β
2α−

|γ|
2α ‖Iβθ0‖p

for all t > 0.

Proof: By (4.2) and (4.3), and the Hausdorff-Young inequality,

‖∂γe−tΛ2α

θ0‖p ≤ t−
β
2α−

|γ|
2α−

1
α ‖∂γΛβGα(t−

1
2α ·, 1)‖1‖Iβθ0(t)‖p

= t−
β
2α−

|γ|
2α ‖∂γΛβGα(1)‖1‖Iβθ0(t)‖p

and the result follows from lemma 4.1.
�

4.2. Nonlinear Asymptotics. The next step is to use the results from the last
section to get the decay of the solutions to the geostrophic equations in L1 and
with that improve the decay of the solutions in Lp. The decay will be obtained by
estimating the solutions via their integral representation. We note that the decay
below might not be optimal. So as to be able to include the critical case α = 1

2 , we
recall the following result due to Constantin, Córdoba and Wu [1].

Theorem 4.6. There exists a constant c∞ such that for any θ0 ∈ H2(R2) with
‖θ0‖H2 ≤ c∞, the equation

θt + u · ∇θ + Λθ = 0

has a unique global solution θ with initial datum θ0, satisfying

‖θ(t)‖H2 ≤ ‖θ0‖H2

for all t ≥ 0.

Combining this theorem with Theorem 2.1, and using the Gagliardo- Nirenberg
inequalities, one obtains for this solution θ, u = R⊥θ

‖θ(t)‖∞ ≤ C‖θ‖
1
2
2 ‖Λ2θ‖

1
2
2 ≤ C‖θ0‖

1
2
H2

(1 + t)−
1
2 ,(4.10)

‖u(t)‖∞ ≤ C‖u‖
1
2
2 ‖Λ2u‖

1
2
2 ≤ C‖θ0‖

1
2
H2

(1 + t)−
1
2 ,(4.11)

and by Hölder,

(4.12) ‖∇θ(t)‖2 ≤ ‖θ(t)‖
1
2
2 ‖Λ2θ(t)‖

1
2
2 ≤ ‖θ0‖

1
2
H2

(1 + t)−
1
2 .

We assume θ is this solution in case α = 1
2 .
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Theorem 4.7. Let β > 0, assume that Iβθ0 ∈ L1(R2), and let θ be the solution of
the homogeneous DQG with initial datum θ0.

i: Assume 1
2 ≤ α < 1. Then

‖θ(t)‖1 ≤ Ct−ν

for all t > 0, some constant C, where

ν =
{

min(β, 1
2 ) if α = 1

2 ,

min( β
2α ,

1
2α ) if 1

2 < α < 1.

ii: Assume α = 1. Then

‖θ(t)‖1 ≤

{
Ct−

β
2 if β < 1,

Ct−
1
2 log(t+ 1) if β ≥ 1,

for some constant C.

Proof: Write the solution by its integral representation,

(4.13) θ(t) = Gα(t) ∗ θ0 +
∫ t

0

Gα(s) ∗ (u · ∇θ)(t− s) ds = Gα(t) ∗ θ0 + I(t).

From the last section it follows that

(4.14) ‖Gα(t) ∗ θ0‖1 ≤ Ct−
β
2α ‖Iβθ0‖1

and the theorem reduces to proving that

I(t) =
∫ t

0

‖Gα(s) ∗ (u · ∇θ)(t− s)‖1 ds ≤ C(1 + t)−ν

is appropriately bounded. By Hausdorff-Young, Hölder, and the fact that u∇θ =
div(uθ),

I(t) =
∫ t/2

0

‖Gα(s) ∗ (u · ∇θ)(t− s)‖1 ds+
∫ t

t/2

‖∇Gα(s) ∗ (uθ)(t− s)‖1 ds

≤
∫ t/2

0

‖Gα(s)‖1‖u(t− s)‖2‖∇θ(t− s)‖2 ds+
∫ t

t/2

‖∇Gα(s)‖1‖u(t− s)‖2‖θ(t− s)‖2 ds

= J(t) +K(t).

By the results of the last section we have

‖Gα(s)‖1 = ‖Gα(1)‖1 = C(4.15)

‖∇Gα(s)‖1 = s−
1
2α ‖∇Gα(1)‖1 = Cs−

1
2α ,(4.16)

C a constant depending only on α. We also have

‖u(t− s)‖2‖∇θ(t− s)‖2 ≤
{

(1 + t)−3/2 if α = 1
2 ,

(1 + t)−
3
2α if 1

2 < α ≤ 1.

The estimate for α = 1/2 comes from Theorem 2.1 and (4.12), the one for α > 1
2

from Theorem 3.2. Using this and (4.15) we get, with µ = 3
2 if α = 1

2 , µ = 3
2α ,

otherwise

J(t) ≤ C

∫ t/2

0

(1 + t− s)−µ ds ≤ C(1 + t)1−µ,
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since in all cases µ > 1. Note that µ − 1 = 1
2 when µ = 3

2 and for all other µ’s it
follows that µ− 1 ≥ 1

2α , so µ− 1 ≥ ν in all cases. Thus

(4.17) J(t) ≤ C(1 + t)−ν

and we are done with the estimate for J . To estimate K(t) we use that ‖u(t −
s)‖2‖θ(t− s)‖2 ≤ C(1 + t− s)−

1
α and (4.16) to get

(4.18) K(t) ≤ C

∫ t

t/2

s−
1
2α (1 + t− s)−

1
α ds ≤

{
Ct−

1
2α if 1

2 ≤ α < 1,
Ct−

1
2 log t if α = 1.

The conclusion of the theorem follows now from (4.13) and (4.14), using (4.17) and
(4.18) to bound I(t) = J(t) +K(t)

�
Derivatives of the solution θ can be similarly bounded, at least if α > 1

2 . We
have

Theorem 4.8. Let β > 0. Assume Iβθ0 ∈ L1(R2), θ0 ∈ Hm for some m ≥ 1 and
let γ be a multi-index, |γ| ≤ m− 1. Then

‖∂γθ(t)‖1 ≤

{
Ct−min(

β+|γ|
2α ,

|γ|+1
2α ), 1

2 < α < 1,
Ct−min(

β+|γ|
2α ,

|γ|+1
2α ) log(t+ 1), α = 1.

Proof: Proceeding as in the proof of Theorem 4.7, we get

‖∂γθ(t)‖1 ≤ ‖∂γGα(t) ∗ θ0‖1 + Jγ(t) +Kγ(t),

where the terms on the right hand side now have the following interpretations and
bounds:

‖∂γGα(t) ∗ θ0‖1 ≤ Ct−
β+|γ|

2α ,

by (4.6). For the second term, using the estimates in Theorem 3.2 we obtain first

(4.19)
‖∂γ(u·∇θ)(t−s)‖1 ≤

∑
|γ1|+|γ2|=|γ|+1

cγ1,γ2‖∂γ1u(t−s)‖2‖∂γ2θ(t−s)‖2 ≤ C(1+t−s)−
|γ|+3
2α ,

(the coefficients cγ1,γ2 coming from Leibnitz’ formula), hence (since 3− 2α ≥ 1)

Jγ(t) =
∫ t/2

0

‖Gα(s)‖1‖∂γ(u · ∇θ)(t− s)‖1 ds ≤ C(t+ 1)−
|γ|+3−2α

2α ≤ C(t+ 1)−
|γ|+1
2α

For the third term we use that ‖∇∂γGα(t)‖ = Ct−
|γ|+1
2α and, as in Theorem 4.7,

that
‖u(t− s)θ(t− s)‖1 ≤ (1 + t− s)−

1
α

to get

Kγ(t) =
∫ t

t/2

‖∇∂γGα(s)‖1‖(uθ)(t−s)‖1 ds ≤

{
Ct−

|γ|+1
2α if 1

2 < α < 1,
Ct−

|γ|+1
2 log(t+ 1) if α = 1.

The theorem follows. �
Finally, we see that the solution θ is asymptotically equivalent to the self-similar

solution of the linear equation, at least if β < 1. For a given β > 0, (4.3) shows that
the self-similar solution ∂γΛβGα of the linear equation decays in L1-norm at the
rate of t−

β+|γ|
2α as t→∞. Theorem 4.8 shows that the derivative ∂γ of the solution
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of the non-linear equation (with datum θ0 satisfying Iβθ0 ∈ L1) decays (at least)
at the same rate if β < 1. By asymptotic equivalence, we mean that the difference
of θ and the self-similar solution of the linear equation decays at a better rate.

Theorem 4.9. Assume 0 < β < 1 and the hypotheses of Theorem 4.8. Then, with

A = Aβ =
∫

R2
(Iβθ0)(x) dx,

one has
lim

t→∞
t

β+|γ|
2α

∥∥∂γθ(t)−A∂γΛβGα(t)
∥∥

1
= 0.

Proof: We have

∂γθ(t)−A∂γΛβGα(t) = ∂γ(Ga(t)∗θ0)−A∂γΛβGα(t)+
∫ t

0

∂γGα(s)∗(u·∇θ)(t−s) ds

and by Theorem 4.3 it suffices to prove that

(4.20) lim
t→∞

t
β+|γ|

2α H(t) = 0

where

H(t) =
∫ t

0

‖∂γGα(s) ∗ (u · ∇θ)(t− s)‖1 ds.

This is, however, immediate from the proof of Theorem 4.8. In fact, we have
H ≤ Jγ + Kγ , where Jγ ,Kγ are as in the proof of Theorem 4.8. It follows that
H(t) decays at the rate of either t−

|γ|+1
2α (α < 1) or t−

|γ|+1
2α log t (α = 1); in either

case (4.20) holds because β < 1.
�

Corollary 4.10. Under the conditions of the last Theorem if |γ| = 0 the conclusion
of the theorem is also valid for the case α = 1

2

Proof: The proof follows the same lines as the last theorem. �
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